Электронная библиотека » Яков Перельман » » онлайн чтение - страница 5

Текст книги "Занимательные науки"


  • Текст добавлен: 13 ноября 2017, 20:20


Автор книги: Яков Перельман


Жанр: Книги для детей: прочее, Детские книги


сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 11 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +
Почему на Меркурии нет атмосферы?

Какая может быть связь между присутствием на планете атмосферы и продолжительностью ее оборота вокруг оси? Казалось бы, никакой. И все же на примере ближайшей к Солнцу планеты, Меркурия, мы убеждаемся, что в некоторых случаях такая связь существует.

По силе тяжести на своей поверхности Меркурий мог бы удерживать атмосферу такого состава, как земная, хотя и не столь плотную.

Скорость, необходимая для полного преодоления притяжения Меркурия на его поверхности, равна 4200 м/с, а этой скорости при невысоких температурах не достигают быстрейшие из молекул нашей атмосферы. И тем не менее Меркурий лишен атмосферы. Причина та, что он движется вокруг Солнца наподобие движения Луны около Земли, т. е. обращен к центральному светилу всегда одной и той же своей стороной. Время обхода орбиты (88 суток) равно времени оборота вокруг оси. Поэтому на одной стороне Меркурия, – той, которая всегда обращена к Солнцу, – непрерывно длится день и стоит вечное лето; на другой же стороне, отвернутой от Солнца, царят непрерывная ночь и вечная зима. Легко вообразить себе, какой зной должен господствовать на дневной стороне планеты, Солнце здесь в 21/2 раза ближе, чем на Земле, и палящая сила его лучей должна возрасти в 21/2 × 21/2, т. е. в 61/4 раз. На ночную сторону, напротив, в течение миллионов лет не проникал ни один луч Солнца, и там должен господствовать мороз, близкий к холоду мирового пространства[8]8
  Под условным выражением «температура мирового пространства» физики разумеют ту температуру, которую показал бы в пространстве зачерненный термометр, заслоненный от лучей Солнца. Эта температура несколько выше точки абсолютного нуля (–273 °C) вследствие греющего действия звездного излучения. См. мою книгу, «Знаете ли вы физику?».


[Закрыть]
(около –250 °C), так как теплота дневной стороны не может проникать сквозь толщу планеты. А на границе дневной и ночной стороны существует полоса шириной в 23°, куда вследствие либрации[9]9
  Либрация (лат. «раскачивание») – медленное колебание небесного тела. Для либрации Меркурия по долготе имеет силу то же приближенное правило, которому подчинена Луна: Меркурий постоянно обращен одной и той же стороной не к Солнцу, а к другому фокусу своей довольно вытянутой орбиты.


[Закрыть]
Солнце заглядывает лишь на время[10]10
  По современным данным, время оборота Меркурия вокруг оси составляет 59 земных суток.


[Закрыть]
.

Если учесть, что меркурианский год равен всего 88 суткам, то воображаемый космонавт, оказавшийся на этой планете, увидел бы странные картины: Солнце то останавливается на небосводе, то возвращается назад, а в некоторых зонах планеты восходы и заходы Солнца наблюдаются дважды за одни сутки, причем как на востоке, так и на западе.

Средняя температура поверхности равна +330 °C. Из-за близости Солнца дневная сторона Меркурия прогревается до температур 290–420 °C. Зато на ночной стороне температура падает до минус –173°. Атмосферное давление на Меркурии в 300 раз меньше, чем на Земле. То есть атмосфера практически отсутствует. Такие условия совершенно непригодны для жизни. Это тоже роднит Меркурий с Луной. Да и фотоснимки его так похожи на лунные, что даже специалист не сразу их различит. Весь Меркурий густо испещрен кратерами, такими же круглыми, как лунные, и очень похожи на лунные его «моря» и долины. Естественно – ведь поверхности обеих планет формировали вулканические извержения и бесчисленные удары больших и малых метеоритов. И не было плотной атмосферы, которая бы предотвратила или смягчила эти жестокие небесные удары.

При таких необычайных климатических условиях что же должно произойти с атмосферой планеты?

Очевидно, на ночной половине под влиянием страшного холода атмосфера сгустится в жидкость и замерзнет. Вследствие резкого понижения атмосферного давления туда устремится газовая оболочка дневной стороны планеты и затвердеет в свою очередь. В итоге вся атмосфера должна в твердом виде собраться на ночной стороне планеты, вернее – в той ее части, куда Солнце вовсе не заглядывает. Таким образом, отсутствие на Меркурии атмосферы является неизбежным следствием физических законов.

Мы должны отвергнуть и догадку, нередко высказываемую, будто имеется атмосфера на невидимой стороне Луны. Можно с уверенностью утверждать, что если нет атмосферы на одной стороне Луны, то не может ее быть и на противоположной.

В этом пункте расходится с истиной фантастический роман Уэллса «Первые люди на Луне». Романист допускает, что на Луне есть воздух, который в течение сплошной 14-суточной ночи успевает сгуститься и замерзнуть, а с наступлением дня вновь переходит в газообразное состояние, образуя атмосферу. Ничего подобного, однако, происходить не может. «Если, – писал по этому поводу проф. О.Д. Хвольсон, – на темной стороне Луны воздух затвердевает, то почти весь воздух должен перейти от светлой стороны в темную и там также замерзнуть. Под влиянием солнечных лучей твердый воздух должен превращаться в газ, который немедленно будет переходить на темную сторону и там затвердевать… Должна происходить непрерывная дистилляция воздуха, и нигде и никогда не может достигнуть сколько-нибудь заметной упругости».

Если для Меркурия и Луны можно считать доказанным отсутствие атмосферы, то для Венеры, второй от Солнца планеты нашей системы, присутствие атмосферы совершенно несомненно.

Установлено даже, что в атмосфере, точнее – в с т р а т о с ф е р е Венеры, много углекислого газа – в десять тысяч раз больше, чем в земной атмосфере.

Фазы Венеры

Известный математик Гаусс рассказывает, что однажды он предложил своей матери взглянуть в астрономическую трубу на Венеру, ярко сиявшую на вечернем небе. Математик думал поразить мать неожиданностью, так как в трубу Венера видна в форме серпа. Удивиться, однако, пришлось ему самому: приставив глаз к окуляру, женщина не выразила никакого изумления по поводу вида планеты, а осведомилась лишь, почему серп обращен в трубе в обратную сторону… Гаусс не подозревал до того времени, что мать его различает фазы Венеры даже и невооруженным глазом. Такое острое зрение встречается очень редко; до изобретения зрительной трубы никто поэтому не подозревал о существовании фаз Венеры, подобных лунным.


Рис. 33. Фазы Венеры, видимые в телескоп. Венера в разных фазах имеет различный видимый диаметр вследствие изменения расстояния от Земли


Особенность фаз Венеры та, что поперечник планеты в разных фазах неодинаков: узкий серп по диаметру значительно больше полного диска (рис. 33). Причина – различное удаление от нас этой планеты в различных фазах. Среднее расстояние Венеры от Солнца 108 миллионов км, Земли – 150 миллионов км. Легко понять, что ближайшее расстояние обеих планет равно разности 150–108, т. е. 42 миллионам км, а самое дальнее – сумме 150 + 108, т. е. 258 миллионам км. Следовательно, удаление Венеры от нас изменяется в этих пределах. В ближайшем соседстве с Землей Венера обращена к нам неосвещенной стороной, и потому наиболее крупная ее фаза совершенно невидима. Отходя от этого положения «нововенерия», планета принимает вид серпа, диаметр которого тем меньше, чем серп шире. Наибольшей яркости Венера достигает не тогда, когда она видна полным диском, и не тогда, когда диаметр ее наибольший, а в некоторой промежуточной фазе. Полный диск Венеры виден под углом зрения 10″, наибольший серп – под углом 64″.

Высшей же яркости планета достигает спустя три декады после «нововенерия», когда угловой диаметр ее 40″ и угловая ширина серпа – 10″. Тогда она светит в 13 раз ярче Сириуса, самой яркой звезды всего неба.

Великие противостояния

О том, что эпохи наибольшей яркости Марса и наибольшего его приближения к Земле повторяются примерно каждые 15 лет, известно многим. Очень популярно и астрономическое наименование этих эпох: великие противостояния Марса. Памятные годы последних «великих противостояний» красной планеты – 1924, 1939 (рис. 33) и 1956. Но мало кто знает, почему событие это повторяется именно через 15 лет. Между тем относящаяся сюда «математика» весьма несложна.

Земля совершает полный обход своей орбиты в 3651/4 суток, Марс – в 687 суток. Если обе планеты сошлись однажды на ближайшее расстояние[11]11
  Чему соответствует благоприятное для этого взаимное расположение эксцентрических орбит Земли и Марса. (Прим. ред.)


[Закрыть]
, то они должны сойтись вновь через такой промежуток времени, который заключает ц е л о е число годов как земных, так и марсовых. Другими словами, надо решить в целых числах уравнение


или


x = 1,88y,


откуда

.



Рис. 34. Изменение видимого диаметра Марса в различные противостояния XX в. В 1909, 1924 и 1939 гг. были великие противостояния

Развернув последнюю дробь в непрерывную, получаем



Взяв первые три звена, имеем приближение



и заключаем, что 15 земных лет равны 8 марсовым; значит, эпохи наибольшего приближения Марса должны повторяться каждые 15 лет. (Мы несколько упростили задачу, взяв для отношения обоих времен обращения 1,88 вместо более точного 1,8809[12]12
  Следующее великое противостояние Марса придется на 27 июля 2018 г. (Прим. ред.)


[Закрыть]
.)

По тому же способу можно найти и период повторения наибольшей близости Юпитера. Год Юпитера равен 11,86 земного (точнее 11,8622). Развернем это дробное число в непрерывную дробь:



Первые три звена дают приближение 83/7. Значит, великие противостояния Юпитера повторяются каждые 83 земных года (или 7 юпитеровых). Последнее великое противостояние Юпитера произошло в 1951 г. Расстояние Юпитера от Земли в эти моменты равно 587 миллионам километров. Это – наименьшее расстояние, на какое подходит к нам крупнейшая планета солнечной системы. Во время противостояния Юпитер достигает и наибольшей видимой яркости.

Планета или меньшее солнце?

Такой вопрос можно поставить относительно Юпитера – самой крупной из планет нашей системы. Этот исполин, из которого можно было бы сделать 1314 шаров такого объема, как земной, своим могучим притяжением заставляет обращаться вокруг себя целый рой спутников. Астрономами обнаружено у Юпитера 16 больших и более 20 малых лун; самые крупные из них – те 4, которые еще три века назад были открыты Галилеем, – обозначаются римскими цифрами I, II, III, IV. Спутники III и IV по размерам не уступают «настоящей» планете – Меркурию. В следующей табличке поперечники этих спутников сопоставлены с размерами диаметров Меркурия и Марса; заодно указаны поперечники первых двух спутников Юпитера, а также и нашей Луны:



Рис. 34 представляет иллюстрацию той же таблички. Большой круг – Юпитер; каждый из выстроенных по его диаметру кружков – Земля. Кружки по левую сторону Юпитера – его крупнейшие 4 спутника. Справа – Луна, Марс и Меркурий. Рассматривая этот чертеж, вы должны иметь в виду, что перед вами не диаграмма, а рисунок: соотношение площадей кружков не дает правильного представления о соотношении о б ъ е м о в шаров. Объемы шаров относятся, как кубы их поперечников.

Если диаметр Юпитера в 11 раз больше диаметра Земли, то объем его больше в 113, т. е. в 1300 раз. Сообразно этому вы и должны исправить зрительное впечатление от рис. 65, и тогда огромные размеры Юпитера предстанут перед вами в надлежащем виде.


Рис. 34. Размеры Юпитера и его спутников (слева) по сравнению с размерами Земли (вдоль диаметра), Луны, Марса и Меркурия (справа)


Что касается мощи Юпитера как притягивающего центра, то она внушительно выступает при обозрении расстояний, на которых планета-гигант заставляет обращаться вокруг себя свои луны. Вот табличка этих расстояний.



Вы видите, что система Юпитера имеет размеры в 62 раза бо́льшие, чем система Земля – Луна; столь широко раскинувшейся семьей спутников не владеет никакая другая планета.

Не без основания, значит, уподобляют Юпитер маленькому солнцу. Масса его втрое больше массы всех прочих планет, вместе взятых, и исчезни вдруг Солнце, – место его мог бы занять Юпитер, заставляя все планеты, хотя и медленно, обращаться вокруг него как около нового центрального тела системы.

Есть черты сходства Юпитера с Солнцем и по физическому устройству. Средняя плотность его вещества – 1,33 по отношению к воде – близка к плотности Солнца (1,4). Однако сильная сплюснутость Юпитера приводит к представлению о том, что Юпитер обладает плотным ядром, окруженным толстым слоем льда и гигантской атмосферой[13]13
  По современным данным, Юпитер состоит из твердого ядра, жидкой оболочки и газообразной атмосферы. Все эти слои состоят из тех же самых веществ, находящихся в разных агрегатных состояниях – твердом, жидком и газообразном. (Прим. ред.)


[Закрыть]
.

Еще совсем недавно уподобление Юпитера Солнцу простирали и дальше; предполагали, что эта планета не покрыта твердой корой и едва вышла из стадии самосветящегося тела. Сейчас этот взгляд приходится отвергнуть: непосредственное измерение температуры Юпитера показало, что она чрезвычайно низка: на 140 °C ниже нуля! Правда, речь идет о температуре облачных слоев, плавающих в юпитеровой атмосфере.

Низкая температура Юпитера делает трудно разрешимой задачей объяснение его физических особенностей: бурных явлений в атмосфере, полос, пятен и т. п. Астрономия стоит здесь перед целым клубком загадок.

В атмосфере Юпитера (а также его соседа Сатурна) обнаружено несомненное присутствие большого количества аммиака и метана[14]14
  Еще значительнее содержание метана в атмосфере более далеких планет – Урана и особенно Нептуна. В 1944 г. обнаружена атмосфера из метана на самом большом спутнике Сатурна – Титане. (Прим. ред.)


[Закрыть]
.

Исчезновение колец Сатурна

В 1921 г. у нас разнесся сенсационный слух: Сатурн лишился своих колец! Мало того, обломки разрушенных колец летят в мировом пространстве по направлению к Солнцу и по пути должны обрушиться на Землю. Называли даже день, когда должно произойти катастрофическое столкновение…

История эта может служить характерным примером того, как зарождаются слухи. Поводом к возникновению сенсации послужило попросту то, что в названном году кольца Сатурна на короткое время перестали быть видимы, «исчезли», по выражению астрономического календаря. Молва поняла это выражение буквально как физическое исчезновение, т. е. разрушение колец, и украсила событие дальнейшими подробностями, приличествующими мировой катастрофе; отсюда падение обломков колец к Солнцу и неизбежное столкновение с Землей.

Сколько шуму наделало невинное сообщение астрономического календаря об оптическом исчезновении сатурновых колец! Чем же обусловливается это исчезновение? Кольца Сатурна очень тонки; толщина их измеряется двумя-тремя десятками километров; по сравнению с их шириной они имеют толщину листа бумаги. Поэтому, когда кольца становятся к Солнцу ребром, их верхние и нижние поверхности не освещаются, – и кольца делаются невидимыми. Невидимы они также тогда, когда становятся ребром к земному наблюдателю.


Рис. 35. Какие положения занимают кольца Сатурна по отношению к Солнцу в течение 29-летнего обращения планеты по орбите


Кольца Сатурна наклонены к плоскости земной орбиты под углом в 27°, но за время 29-летнего обхода по планетной орбите кольца в двух диаметрально противоположных ее точках становятся ребром к Солнцу и к земному наблюдателю (рис. 35). А в двух других точках, расположенных на 90° от первых, кольца, напротив, показывают Солнцу и Земле свою наибольшую ширину, – «раскрываются», как говорят астрономы.

Астрономические анаграммы

Исчезновение колец Сатурна некогда сильно озадачило Галилея, который был близок к открытию этой достопримечательности планеты, но не осуществил его именно из-за непонятного исчезновения колец. История эта очень любопытна. В то время существовал обычай закреплять за собой право на первенство в каком-либо открытии своеобразным способом. Напав на открытие, которое нуждается в дальнейшем подтверждении, ученый из опасения, чтобы его не опередили другие, прибегал к помощи анаграммы (перестановки букв); он кратко объявлял о сущности своего открытия в форме анаграммы, истинный смысл которой был известен лишь ему одному. Это давало ученому возможность не спеша проверить свое открытие, а в случае появления другого претендента – доказать свое первенство. Когда же он окончательно убеждался в правильности первоначальной догадки, он раскрывал секрет анаграммы. Заметив в свою несовершенную трубу, что Сатурн имеет по бокам какие-то придатки, Галилей поспешил сделать заявку на это открытие и опубликовал следующий набор букв:


Smaismrmielmepoetaleumibuvnenugttaviras.


Догадаться, что скрывается под этим шифром, – совершенно невозможно. Конечно, можно испытать все перестановки из этих 39 букв и таким образом разыскать ту фразу, которую составил Галилей; но пришлось бы проделать чудовищную работу. Кто знаком с теорией соединений, тот может выразить общее число возможных здесь различных перестановок (с повторениями). Вот оно



Число это состоит примерно из 35 цифр (вспомним, что число секунд в году состоит «только» из 8 цифр!). Теперь понятно, как хорошо забронировал Галилей секрет своей заявки.

Современник итальянского ученого Кеплер с присущим ему беспримерным терпением затратил немало труда на то, чтобы проникнуть в сокровенный смысл заявки Галилея, и ему казалось, что он добился этого, когда из опубликованных букв (опустив две) составил такую латинскую фразу:


Salve, umbistineum geminatum Martia proles

(Привет вам, близнецы, Марса порождение).


Кеплер был убежден, что Галилей открыл тех двух спутников Марса, существование которых подозревал он сам[15]15
  10 Очевидно, Кеплер руководствовался при этом предполагаемой прогрессией в числе спутников планет; зная, что у Земли один спутник, а у Юпитера четыре, он считал естественным существование у промежуточной планеты, Марса, двух спутников. Подобный ход мысли заставил и других мыслителей подозревать наличие двух марсовых спутников. У Вольтера в астрономической фантазии «Микромегас» (1750 г.) находим упоминание о том, что его воображаемые путешественники, приблизившись к Марсу, увидели «две луны, служащие этой планете и до сих пор скрывающиеся от взора наших астрономов». В еще ранее написанных «Путешествиях Гулливера» Свифта (1720 г.) имеется сходное место: астрономы Лапуты «открыли двух спутников, обращающихся около Марса». Эти любопытные догадки получили полное подтверждение лишь в 1877 г., когда Холл обнаружил существование двух спутников Марса с помощью сильного телескопа.


[Закрыть]
(они в действительности и были открыты, но спустя два с половиной века). Однако остроумие Кеплера на этот раз не привело к цели. Когда Галилей раскрыл, наконец, секрет своей заявки, оказалось, что фраза – если двумя буквами пренебречь – такова:


Altissimum planetam tergeminum observavi

(Высочайшую планету тройною наблюдал).


Из-за слабости своей трубы Галилей не мог понять истинного значения этого «тройного» образа Сатурна, а когда спустя несколько лет боковые придатки планеты совершенно исчезли, Галилей решил, что ошибся и никаких придатков у Сатурна нет.

Открыть кольца Сатурна посчастливилось только через полвека Гюйгенсу. Подобно Галилею, он не сразу опубликовал свое открытие, а скрыл догадку под тайнописью:


Aaaaaaacccccdeeeeeghiiiiiiillllmmnnnnnnnnn

ooooppqrrstttttuuuuu.


Спустя три года, убедившись в правильности своей догадки, Гюйгенс обнародовал смысл заявки:


Annulo cingitur, tenui, plano, nusquam cohaerente,

ad eclipticam inclinato

(Кольцом окружен тонким, плоским, нигде

не прикасающимся, к эклиптике наклоненным).

Планета дальше Нептуна

В первом издании этой книги (1929 г.) я писал, что последняя известная нам планета солнечной системы – Нептун, находящийся в 30 раз дальше от Солнца, чем Земля. Уже во втором издании книги я не мог повторить этого, потому что 1930 г. прибавил к нашей солнечной системе новый член – девятую крупную планету, обращающуюся около Солнца далее Нептуна.

Открытие это не было полной неожиданностью. Астрономы давно уже склонялись к мысли о существовании неизвестной планеты далее Нептуна. Немногим больше 100 лет назад крайней планетой солнечной системы считался Уран. Некоторые неправильности в его движении навели на подозрение о существовании еще более далекой планеты, притяжение которой нарушает расчисленный бег Урана. Математическое исследование вопроса английским математиком Адамсом и французским астрономом Леверрье завершилось блестящим открытием: заподозренная планета была усмотрена в телескоп. Мир, открытый «на кончике пера» вычислителей, был обнаружен и человеческим глазом.

Так был открыт Нептун. Впоследствии оказалось, что влияние Нептуна не объясняет без остатка всех неправильностей в движении Урана. Тогда выдвинута была мысль о существовании еще одной занептунной планеты. Надо было ее отыскать, и вычислители стали работать над этой задачей. Предложены были разнообразные варианты ее решения: девятую планету относили на различные расстояния от Солнца и наделяли разыскиваемое небесное тело различной массой.

В 1930 г. телескоп, наконец, извлек из мрака окраин солнечной системы новый член нашей планетной семьи, получивший название Плутона. Это важное открытие было сделано молодым американским астрономом Томбо.

Плутон кружится по пути, весьма близкому к одной из орбит, которые были предвычислены заранее. Тем не менее, по утверждению специалистов, нельзя в этом видеть удачи вычислителя; совпадение орбит в данном случае не более как любопытная случайность.

Что мы знаем об этом новооткрытом мире? Пока немного; он так далек от нас и так скупо освещается Солнцем, что в сильнейшие инструменты с трудом удалось измерить его диаметр. Он оказался равным 6000 км, т. е. около половины диаметра Земли.

Плутон движется вокруг Солнца по довольно вытянутой (эксцентриситет 0,25) орбите, заметно наклоненной (17°) к плоскости земной орбиты, на расстоянии от Солнца в 40 раз большем, чем Земля. Около 250 лет затрачивает планета, чтобы обойти этот огромный путь.

На небе Плутона Солнце светит в 1600 раз слабее, чем на земном. Оно виднеется маленьким диском в 45 угловых секунд, т. е. примерно такой величины, каким мы видим Юпитер. Интересно, однако, установить, что светит ярче: Солнце на Плутоне или полная Луна на Земле?

Оказывается, далекий Плутон вовсе не так обделен солнечным светом, как можно думать. Полная Луна светит у нас в 440 000 раз слабее Солнца. На небе же Плутона дневное светило слабее, чем у нас, в 1600 раз. Значит, яркость солнечного света на Плутоне в , т. е. в 275 раз, сильнее, чем свет полной Луны на Земле.

Дневное освещение там равно освещению 275 полных лун и раз в 30 ярче самой светлой белой ночи в Петербурге. Называть Плутон царством вечной ночи было бы поэтому неправильно[16]16
  Правда, температура поверхности там, вероятно, ниже –220 °C. В силу этого Плутон, очевидно, лишен атмосферы, так как большинство газов при такой температуре находится в твердом или жидком состоянии. (Прим. ред.)


[Закрыть]
.


Страницы книги >> Предыдущая | 1 2 3
  • 4.8 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации