Электронная библиотека » Яков Перельман » » онлайн чтение - страница 3


  • Текст добавлен: 31 января 2014, 02:22


Автор книги: Яков Перельман


Жанр: Учебная литература, Детские книги


Возрастные ограничения: +6

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 29 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +
Наподобие Левиафана

Почему на простом табурете сидеть жестко, в то время как на стуле, тоже деревянном, нисколько не жестко? Почему мягко лежать в веревочном гамаке, который сплетен из довольно твердых шнурков? Почему не жестко лежать на проволочной сетке, устраиваемой в кроватях взамен пружинных матрасов?

Нетрудно догадаться. Сиденье простого табурета плоско; наше тело соприкасается с ним лишь по небольшой поверхности, на которой и сосредоточивается вся тяжесть туловища. У стула же сиденье вогнутое; оно соприкасается с телом по большей поверхности; по этой поверхности распределяется вес туловища: на единицу поверхности приходится меньший груз, меньшее давление.

Итак, все дело здесь в более равномерном распределении давления. Когда мы нежимся на мягкой постели, в ней образуются углубления, соответствующие неровностям нашего тела. Давление распределяется здесь по нижней поверхности тела довольно равномерно, так что на каждый квадратный сантиметр приходится всего несколько граммов. Неудивительно, что в этих условиях мы чувствуем себя хорошо.

Легко выразить это различие и в числах. Поверхность тела взрослого человека составляет около 2 кв. м, или 20 ООО кв. см. Допустим, что, когда мы лежим в постели, с ней соприкасается, опираясь на нее, приблизительно 1/4 всей поверхности нашего тела, т. е. 0,5 кв. м, или 5000 кв. см. Вес же нашего тела – около 60 кг (в среднем), или 60 000 г. Значит, на каждый квадратный сантиметр приходится всего 12 г. Когда же мы лежим на голых досках, то соприкасаемся с опорной плоскостью лишь в немногих маленьких участках, общей площадью в какую-нибудь сотню квадратных сантиметров.

На каждый квадратный сантиметр приходится, следовательно, давление в полкилограмма, а не в десяток граммов. Разница заметная, и мы сразу ощущаем ее на своем теле, говоря, что нам «очень жестко».

Но даже на самом твердом ложе нам может быть вовсе не жестко, если давление распределяется равномерно на большую поверхность. Вообразите, что вы легли на мягкую глину и в ней отпечатались формы вашего тела. Покинув глину, оставьте ее сохнуть (высыхая, глина «садится» на 5—10 %, но предположим, что этого не происходит). Когда она сделается твердой как камень, сохранив оставленные вашим телом вдавленности, лягте на нее опять, заполнив собой эту каменную форму. Вы почувствуете себя, как на нежном пуховике, не ощущая жесткости, хотя лежите буквально на камне. Вы уподобитесь легендарному Левиафану, о котором читаем в стихотворении Ломоносова:

 
На острых камнях возлегает
И твердость оных презирает
Для крепости великих сил,
Считая их за мягкий ил.
 

Но причина нашей нечувствительности к жесткости ложа будет не «крепость великих сил», а распределение веса тела на весьма большую опорную поверхность.

Пуля и воздух

Что воздух мешает полету пули, знают все, но лишь немногие представляют себе ясно, насколько велико это тормозящее действие воздуха. Большинство людей склонно думать, что такая нежная среда, как воздух, которого мы обычно даже и не чувствуем, не может сколько-нибудь заметно мешать стремительному полету ружейной пули.

Рис. 14. Полет пули в пустоте и в воздухе.

Большая дуга изображает путь, какой описала бы пуля, если бы не существовало атмосферы.

Маленькая дуга слева – действительный путь пули в воздухе


Но взгляните на рис. 14, и вы поймете, что воздух является для пули препятствием чрезвычайно серьезным. Большая дуга на этом чертеже изображает путь, который пролетела бы пуля, если бы не существовало атмосферы. Покинув ствол ружья (под углом 45°, с начальной скоростью 620 м/сек), пуля описала бы огромную дугу в 10 км высотой; дальность полета пули составила бы почти 40 км. В действительности же пуля при указанных условиях описывает сравнительно небольшую дугу и дальность ее полета составляет 4 км. Изображенная на том же чертеже дуга эта почти незаметна рядом с первой; таков результат противодействия воздуха! Не будь воздуха, из винтовки можно было бы обстреливать неприятеля с расстояния 40 км, взметая свинцовый дождь на высоту 10 км.

Сверхдальняя стрельба

Обстреливать противника с расстояния в сотню и более километров впервые начала германская артиллерия к концу империалистической войны (1918 г.), когда успехи французской и английской авиации положили конец воздушным налетам немцев. Германский штаб избрал другой, артиллерийский, способ поражать столицу Франции, удаленную от фронта не менее чем на 110 км.

Способ этот был совершенно новый, никем еще не испытанный. Наткнулись на него немецкие артиллеристы случайно. При стрельбе из крупнокалиберной пушки под большим углом возвышения неожиданно обнаружилось, что вместо дальности в 20 км достигается дальность в 40 км. Оказалось, что снаряд, посланный круто вверх с большой начальной скоростью, достигает тех высоких разреженных слоев атмосферы, где сопротивление воздуха весьма незначительно; в такой слабо сопротивляющейся среде снаряд пролетает значительную часть своего пути и затем круто опускается на землю. Рис. 15 наглядно показывает, как велико различие в путях снарядов при изменении угла возвышения.

Рис. 15. Как изменяется дальность полета снаряда с изменением угла наклона сверхдальнобойного орудия, при угле 1 снаряд падает в Р, при угле 2 – в Р; при угле же 3 дальность стрельбы сразу возрастает во много раз, так как снаряд залетает в слои разреженной атмосферы


Это наблюдение и положено было немцами в основу проекта сверхдальнобойной пушки для обстрела Парижа с расстояния 115 км. Пушка была успешно изготовлена и в течение лета 1918 г. выпустила по Парижу свыше трехсот снарядов.

Рис. 16. Немецкая пушка «Колоссаль». Внешний вид


Вот что стало известно об этой пушке впоследствии. Это была огромная стальная труба в 34 м длиной и в целый метр толщиной; толщина стенок в казенной части – 40 см. Весило орудие 750 тонн. Его 120-килограммовые снаряды имели метр в длину и 21 см в толщину. Для заряда употреблялось 150 кг пороха; развивалось давление в 5000 атмосфер, которое и выбрасывало снаряд с начальной скоростью 2000 м/сек. Стрельба велась под углом возвышения 52°; снаряд описывал огромную дугу, высшая точка которой лежала на уровне 40 км над землей, т. е. далеко в стратосфере. Свой путь от позиции до Парижа – 115 км – снаряд проделывал в 3,5 минуты, из которых 2 минуты он летел в стратосфере.

Такова была первая сверхдальнобойная пушка, прародительница современной сверхдальнобойной артиллерии.

Чем больше начальная скорость пули (или снаряда), тем сопротивление воздуха значительнее: оно возрастает не пропорционально скорости, а быстрее, пропорционально второй и более высокой степени скорости, в зависимости от величины этой скорости.

Бумеранг

Это оригинальное оружие – самое совершенное произведение техники первобытного человека – долгое время вызывало изумление ученых. Действительно, странные, запутанные фигуры, описываемые бумерангом в воздухе (рис. 17), способны озадачить каждого.

В настоящее время теория полета бумеранга разработана весьма подробно и чудеса перестали быть чудесами. Вдаваться в эти интересные подробности мы не станем. Скажем лишь, что необычайные пути полета бумеранга являются результатом взаимодействия трех обстоятельств: 1) первоначального броска, 2) вращения бумеранга и 3) сопротивления воздуха. Австралиец инстинктивно умеет сочетать эти три фактора; он искусно изменяет угол наклона бумеранга, силу и направление броска, чтобы получить желаемый результат.

Рис. 17. Как австралийцы пользуются бумерангом на охоте, чтобы поражать жертву из-за прикрытия.

Путь полета бумеранга (в случае промаха) показан пунктирной линией


Впрочем, некоторую сноровку в этом искусстве может приобрести каждый.

Для упражнения в комнатах приходится довольствоваться бумажным бумерангом, который можно вырезать хотя бы из почтовой карточки в форме, указанной на рис. 18. Размеры каждой ветви – около 5 см в длину и немного меньше 1 см в ширину. Зажмите такой бумажный бумеранг под ногтем большого пальца и щелкните по его кончику так, чтобы удар направлен был вперед и немного вверх. Бумеранг полетит метров на пять, плавно опишет кривую, иногда довольно затейливую, и если не заденет какого-нибудь предмета в комнате, то упадет у ваших ног.

Рис. 18. Бумажный бумеранг и способ его метания

Рис. 19. Другая форма бумажного бумеранга (в натуральную величину)


Еще лучше удается опыт, если придать бумерангу размеры и форму, показанные на рис. 19 в натуральную величину. Полезно слегка изогнуть ветви бумеранга винтообразно (рис. 19, внизу). Такой бумеранг можно, при некотором навыке, заставить описывать в воздухе сложные кривые и возвращаться в место его вылета.

Рис. 20. Древнеегипетское изображение воина, мечущего бумеранг


В заключение заметим, что бумеранг вовсе не составляет, как обычно думают, исключительной особенности вооружения обитателей Австралии. Он употребляется в различных местах Индии и, судя по остаткам стенной живописи, был некогда обычным вооружением ассирийских воинов. В Древнем Египте и Нубии бумеранг также был известен. Единственное, что свойственно исключительно Австралии, – это слегка винтообразный изгиб, придаваемый бумерангу Вот почему австралийские бумеранги описывают замысловатые кривые и – в случае промаха – возвращаются обратно к ногам мечущего.

«Вечные двигатели»

О «вечном двигателе», «вечном движении» часто говорят и в прямом и в переносном смысле слова, но не все отдают себе отчет, что, собственно, надо подразумевать под этим выражением. Вечный двигатель – это такой воображаемый механизм, который безостановочно движет сам себя и, кроме того, совершает еще какую-нибудь полезную работу (например, поднимает груз). Такого механизма никто построить не смог, хотя попытки изобрести его делались уже давно. Бесплодность этих попыток привела к твердому убеждению в невозможности вечного двигателя и к установлению закона сохранения энергии – фундаментального утверждения современной науки. Что касается вечного движения, то под этим выражением подразумевается непрекращающееся движение без совершения работы.

На рис. 21 изображен мнимый самодвижущийся механизм – один из древнейших проектов вечного двигателя, иногда и теперь возрождаемый неудачливыми фанатиками этой идеи. К краям колеса прикреплены откидные палочки с грузами на концах. При всяком положении колеса грузы на правой его стороне будут откинуты дальше от центра, нежели на левой; эта половина, следовательно, должна всегда перетягивать левую и тем самым заставлять колесо вращаться. Значит, колесо должно вращаться вечно, по крайней мере до тех пор, пока не перетрется его ось. Так думал изобретатель. Между тем, если сделать такой двигатель, то он вращаться не будет. Почему же расчет изобретателя не оправдывается?

Рис. 21. Мнимое вечно движущееся колесо, придуманное в Средние века


Вот почему: хотя грузы на правой стороне всегда дальше от центра, но неизбежно такое положение, когда число этих грузов меньше, чем на левой. Взгляните на рис. 21: справа всего 4 груза, слева же – 8.

Оказывается, что вся система уравновешивается; естественно, что колесо вращаться не станет, а, сделав несколько качаний, остановится в таком положении.

Теперь доказано непреложно, что нельзя построить механизм, который вечно двигался бы сам собой, выполняя еще при этом какую-нибудь работу. Совершенно безнадежно трудиться над такой задачей. В прежнее время, особенно в Средние века, люди безуспешно ломали головы над ее разрешением и потратили на изобретение «вечного двигателя» (по латыни регреtuum mobile) много времени и труда. Обладание таким двигателем представлялось даже более заманчивым, чем искусство делать золото из дешевых металлов.

У Пушкина в «Сценах из рыцарских времен» выведен такой мечтатель в лице Бертольда.


«– Что такое perpetuum mobile? – спросил Мартын.

– Perpetuum mobile, – отвечает ему Бертольд, – есть вечное движение. Если найду вечное движение, то я не вижу границ творчеству человеческому… Видишь ли, добрый мой Мартын! Делать золото – задача заманчивая, открытие, может быть, любопытное и выгодное, но найти perpetuum mobile… О!..»


Были придуманы сотни «вечных двигателей», но ни один не двигался. В каждом случае, как и в нашем примере, изобретатель упускал из виду какое-нибудь обстоятельство, которое и разрушало все планы.

Вот еще образчик мнимого вечного двигателя: колесо с перекатывающимися в нем тяжелыми шариками (рис. 22). Изобретатель воображал, что шары на одной стороне колеса, находясь всегда ближе к краю, своим весом заставят колесо вертеться.

Рис. 22. Мнимый вечный двигатель с перекатывающимися шариками


Разумеется, этого не произойдет – по той же причине, как и с колесом, изображенным на рис. 21. Тем не менее в одном из городов Америки устроено было ради рекламных целей, для привлечения внимания публики к кафе, огромное колесо именно подобного рода (рис. 23). Конечно, этот «вечный двигатель» незаметно приводился в действие искусно скрытым посторонним механизмом, хотя зрителям казалось, что колесо двигают перекатывающиеся в прорезах тяжелые шары. В том же роде были и другие мнимые образцы вечных двигателей, выставлявшиеся одно время в витринах часовых магазинов для привлечения публики: все они незаметно приводились в движение электрическим током.

Рис. 23. Мнимый вечный двигатель в городе Лос-Анджелесе (Калифорния), устроенный ради рекламы


Один рекламный «вечный двигатель» доставил мне однажды немало хлопот. Мои ученики-рабочие были им настолько поражены, что оставались холодны к моим доказательствам невозможности вечного двигателя. Вид шариков, которые, перекатываясь, вращали колесо и тем же колесом поднимались вверх, убеждал их сильнее моих доводов; они не хотели верить, что мнимое механическое чудо приводится в действие электрическим током от городской сети. Выручило меня то, что в выходные дни ток тогда не подавался. Зная это, я посоветовал слушателям наведаться к витрине в эти дни. Они последовали моему совету.

– Ну, что, видели двигатель? – спросил я.

– Нет, – ответили мне сконфуженно. – Его не видно: прикрыт газетой…

Закон сохранения энергии вновь завоевал у них доверие и более уже не утрачивал его.

«Зацепочка»

Немало русских изобретателей-самоучек трудилось над разрешением заманчивой проблемы «вечного двигателя». Один из них, крестьянин-сибиряк Александр Щеглов, описан у М.Е. Щедрина в повести «Современная идиллия» под именем «мещанина Презентова». Вот как рассказывает Щедрин о посещении мастерской этого изобретателя:


«Мещанин Презентов был человек лет тридцати пяти, худой, бледный, с большими задумчивыми глазами и длинными волосами, которые прямыми прядями спускались к шее. Изба была у него достаточно просторная, но целая половина ее была занята большим маховым колесом, так что наше общество с трудом в ней разместилось. Колесо было сквозное, со спицами. Обод его, довольно объемистый, сколочен был из тесин, наподобие ящика, внутри которого была пустота. В этой-то пустоте и помещался механизм, составлявший секрет изобретателя. Секрет, конечно, не особенно мудрый, вроде мешков, наполненных песком, которым предоставлялось взаимно друг друга уравновешивать. Сквозь одну из спиц была продета палка, которая удерживала колесо в состоянии неподвижности.

– Слышали мы, что вы закон вечного движения к практике применили? – начал я.

– Не знаю, как доложить, – ответил он сконфуженно, – кажется, словно бы…

– Можно взглянуть?

– Помилуйте! За счастье…

Он подвел нас к колесу, потом обвел кругом. Оказалось, что и спереди и сзади – колесо.

– Вертится?

– Должно бы, кажется, вертеться. Капризится будто…

– Можно отнять запорку?

Презентов вынул палку – колесо не шелохнулось.

– Капризится! – повторил он, – надо импет дать.

Он обеими руками схватился за обод, несколько раз повернул его вверх и вниз и, наконец, с силой раскачал и пустил, – колесо завертелось. Несколько оборотов оно сделало довольно быстро и плавно, – слышно было, однако ж, как внутри обода мешки с песком то напирают на перегородки, то отваливаются от них; потом начало вертеться тише, тише; послышался треск, скрип, и, наконец, колесо совсем остановилось.

– Зацепочка, стало быть, – сконфуженно объяснил изобретатель и опять напрягся и размахал колесо. Но во второй раз повторилось то же самое.

– Трения, может быть, в расчет не приняли?

– И трение в расчете было… Что трение? Не от трения это, а так… Иной раз словно порадует, а потом вдруг… закапризничает, заупрямится – и шабаш. Кабы колесо из настоящего материалу было сделано, а то так, обрезки кой-какие».


Конечно, дело тут не в «зацепочке» и не в «настоящем материале», а в ложности основной идеи механизма. Колесо немного вертелось от «импета» (толчка), который дан был ему изобретателем, но неизбежно должно было остановиться, когда сообщенная извне энергия истощилась на преодоление трения.

Аккумулятор Уфимцева

Насколько легко впасть в ошибку, если о «вечном» движении судить только по внешнему виду, показывал так называемый аккумулятор механической энергии Уфимцева. Курский изобретатель А. Г. Уфимцев создал новый тип ветросиловой станции с дешевым «инерционным» аккумулятором, устроенным по типу махового колеса. В 1920 г. Уфимцевым построена была модель его аккумулятора в виде диска, вращающегося на вертикальной оси с шариковым подшипником, в кожухе, из которого выкачан воздух. Будучи разогнан до 20 ООО оборотов в минуту, диск сохранял вращение в течение пятнадцати суток! Глядя на вал такого диска, целыми днями вращающийся без притока энергии извне, поверхностный наблюдатель мог заключить, что перед ним реальное осуществление вечного движения.

«Чудо и не чудо»

Безнадежная погоня за «вечным» двигателем многих людей сделала глубоко несчастными. Я знал рабочего, тратившего все свои заработки и сбережения на изготовление модели «вечного» двигателя и дошедшего вследствие этого до полной нищеты. Он сделался жертвой своей неосуществимой идеи. Полуодетый, всегда голодный, он просил у всех дать ему средства для постройки «окончательной модели», которая уже «непременно будет двигаться». Грустно было сознавать, что этот человек подвергался лишениям единственно лишь вследствие плохого знания элементарных основ физики.

Любопытно, что если поиски «вечного» двигателя всегда оказывались бесплодными, то, напротив, глубокое понимание его невозможности приводило нередко к плодотворным открытиям.

Прекрасным примером может служить тот способ, с помощью которого Стевин, замечательный голландский ученый конца XVI и начала XVII века, открыл закон равновесия сил на наклонной плоскости. Этот математик заслуживает гораздо большей известности, нежели та, какая выпала на его долю, потому что он сделал много важных открытий, которыми мы теперь постоянно пользуемся: изобрел десятичные дроби, ввел в алгебру употребление показателей, открыл гидростатический закон, впоследствии вновь открытый Паскалем.

Закон равновесия сил на наклонной плоскости он открыл, не опираясь на правило параллелограмма сил, единственно лишь с помощью чертежа, который здесь воспроизведен (рис. 24). Через трехгранную призму перекинута цепь из 14 одинаковых шаров. Что произойдет с этой цепью? Нижняя часть, свисающая гирляндой, уравновешивается сама собой. Но остальные две части цепи – уравновешивают ли друг друга? Иными словами: правые два шара уравновешиваются ли левыми четырьмя? Конечно, да, – иначе цепь сама собой вечно бежала бы справа налево, потому что на место соскользнувших шаров всякий раз помещались бы другие и равновесие никогда бы не восстанавливалось. Но так как мы знаем, что цепь, перекинутая указанным образом, вовсе не движется сама собой, то, очевидно, два правых шара действительно уравновешиваются четырьмя левыми. Получается словно чудо: два шара тянут с такой же силой, как и четыре.

Рис. 24. «Чудо и не чудо»


Из этого мнимого чуда Стевин вывел важный закон механики. Он рассуждал так. Обе цепи – и длинная и короткая – весят различно: одна цепь тяжелее другой во столько же раз, во сколько раз длинная грань призмы длиннее короткой. Отсюда вытекает, что и вообще два груза, связанных шнуром, уравновешивают друг друга на наклонных плоскостях, если веса их пропорциональны длинам этих плоскостей.

В частном случае, когда короткая плоскость отвесна, мы получаем известный закон механики: чтобы удержать тело на наклонной плоскости, надо действовать в направлении этой плоскости силой, которая во столько раз меньше веса тела, во сколько раз длина плоскости больше ее высоты.

Так, исходя из мысли о невозможности вечного двигателя, сделано было важное открытие в механике.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации