Электронная библиотека » Яков Перельман » » онлайн чтение - страница 5


  • Текст добавлен: 31 января 2014, 02:22


Автор книги: Яков Перельман


Жанр: Учебная литература, Детские книги


Возрастные ограничения: +6

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 29 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +
Копейка, которая в воде не тонет,

существует не только в сказке, но и в действительности. Вы убедитесь в этом, если проделаете несколько легко выполнимых опытов. Начнем с более мелких предметов – с иголок. Кажется невозможным заставить стальную иглу плавать на поверхности воды, а между тем это не так трудно сделать. Положите на поверхность воды лоскуток папиросной бумаги, а на него – совершенно сухую иголку. Теперь остается только осторожно удалить папиросную бумагу из-под иглы. Делается это так: вооружившись другой иглой или булавкой, слегка погружают края лоскутка в воду, постепенно подходя к середине; когда лоскуток весь намокнет, он упадет на дно, игла же будет продолжать плавать (рис. 37). При помощи магнита, подносимого к стенкам стакана на уровне воды, вы можете даже управлять движением этой плавающей на воде иглы.

При известной сноровке можно обойтись и без папиросной бумаги: захватив иглу пальцами посредине, уроните ее в горизонтальном положении с небольшой высоты на поверхность воды.

Рис. 37. Игла, плавающая на воде. Вверху – разрез иглы (2 мм толщины) и точная форма углубления на воде (увеличено в 2 раза). Внизу – способ заставить иглу плавать на воде с помощью лоскутка бумаги


Вместо иглы можно заставить плавать булавку (то и другое – не толще 2 мм), легкую пуговицу, мелкие плоские металлические предметы. Наловчившись в этом, попробуйте заставить плавать и копейку.

Причина плавания этих металлических предметов та, что вода плохо смачивает металл, побывавший в наших руках и потому покрытый тончайшим слоем жира. Оттого вокруг плавающей иглы на поверхности воды образуется вдавленность, ее можно даже видеть. Поверхностная пленка жидкости, стремясь распрямиться, оказывает давление вверх на иглу и тем поддерживает ее. Поддерживает иглу также и выталкивающая сила жидкости, согласно закону плавания; игла выталкивается снизу с силой, равной весу вытесненной ею воды.

Всего проще добиться плавания иглы, если смазать ее маслом; такую иглу можно прямо класть на поверхность воды, и она не потонет.

Вода в решете

Оказывается, что и носить воду в решете возможно не только в сказке. Знание физики поможет исполнить такое классически невозможное дело. Для этого надо взять проволочное решето сантиметров 15 в поперечнике и с не слишком мелкими ячейками (около 1 мм) и окунуть его сетку в растопленный парафин. Затем вынуть решето из парафина: проволока окажется покрытой тонким слоем парафина, едва заметным для глаз. Решето осталось решетом – в нем есть сквозные отверстия, через которые свободно проходит булавка, – но теперь вы можете, в буквальном смысле слова, носить в нем воду. В таком решете удерживается довольно высокий слой воды, не проливаясь сквозь ячейки; надо только осторожно налить воду и оберегать решето от толчков.

Почему же вода не проливается? Потому что, не смачивая парафин, она образует в ячейках решета тонкие пленки, обращенные выпуклостью вниз, которые и удерживают воду (рис. 38).

Рис. 38. Почему вода не выливается из парафинированного решета?


Такое парафинированное решето можно положить на воду, и оно будет держаться на ней. Значит, возможно не только носить воду в решете, но и плавать на нем.

Этот парадоксальный опыт объясняет ряд обыкновенных явлений, к которым мы чересчур привыкли, чтобы задумываться об их причине. Смоление бочек и лодок, смазывание салом пробок и втулок, окрашивание масляной краской и вообще покрытие маслянистыми веществами всех тех предметов, которые мы хотим сделать непроницаемыми для воды, а также и прорезинивание тканей – все это не что иное, как изготовление решета вроде сейчас описанного. Суть дела и там и тут одна и та же, только в случае с решетом она выступает в необычном виде.

Сухим из воды

Положите монету на большую плоскую тарелку, налейте столько воды, чтобы она покрыла монету, и предложите гостям взять ее прямо руками, не замочив пальцев.

Эта, казалось бы, невозможная задача довольно просто решается с помощью стакана и горящей бумажки. Зажгите бумажку, положите ее горящей внутрь стакана и быстро поставьте стакан на тарелку близ монеты дном вверх. Бумажка погаснет, стакан наполнится белым дымом, а затем под ним сама собой соберется вся вода с тарелки. Монета же, конечно, останется на месте, и через минуту, когда она обсохнет, вы сможете взять ее, не замочив пальцев.

Какая сила вогнала воду в стакан и поддерживает ее на определенной высоте? Атмосферное давление. Горящая бумажка нагрела в стакане воздух, давление его от этого возросло, и часть газа вышла наружу. Когда бумажка погасла, воздух снова остыл, но при охлаждении его давление ослабело и под стакан вошла вода, вгоняемая туда давлением наружного воздуха.

Вместо бумажки можно пользоваться спичками, воткнутыми в пробочный кружок, как показано на рис. 39.

Весьма нередко приходится слышать и даже читать неверное объяснение этого старинного опыта[11]11
  Первое его описание и правильное объяснение находим у древнего физика Филона Византийского, жившего около I века до н. э.


[Закрыть]
. А именно, говорят, что при этом «сгорает кислород» и потому количество газа под стаканом уменьшается.

Рис. 39. Как собрать всю воду на тарелке под стакан, опрокинутый вверх дном


Такое объяснение грубо ошибочно. Главная причина только в нагревании воздуха, а вовсе не в поглощении части кислорода горящей бумажкой. Это следует, во-первых, из того, что можно обойтись и без горящей бумажки, а просто нагреть стакан, сполоснув его кипятком. Во-вторых, если вместо бумажки взять смоченную спиртом вату, которая горит дольше и сильнее нагревает воздух, то вода поднимается чуть не до половины стакана; между тем известно, что кислород составляет только 1/5 всего объема воздуха. Наконец, нужно иметь в виду, что вместо «сгоревшего» кислорода образуется углекислый газ и водяной пар; первый, правда, растворяется в воде, но пар остается, занимая отчасти место кислорода.

Как мы пьем?

Неужели и над этим можно задуматься? Конечно. Мы приставляем стакан или ложку с жидкостью ко рту и «втягиваем» в себя их содержимое. Вот это-то простое «втягивание» жидкости, к которому мы так привыкли, и надо объяснить. Почему, в самом деле, жидкость устремляется к нам в рот? Что ее увлекает? Причина такова: при питье мы расширяем грудную клетку и тем разрежаем воздух во рту; под давлением наружного воздуха жидкость устремляется в то пространство, где давление меньше, и таким образом проникает в наш рот. Здесь происходит то же самое, что произошло бы с жидкостью в сообщающихся сосудах, если бы над одним из этих сосудов мы стали разрежать воздух: под давлением атмосферы жидкость в этом сосуде поднялась бы. Наоборот, захватив губами горлышко бутылки, вы никакими усилиями не «втянете» из нее воду в рот, так как давление воздуха во рту и над водой одинаково.

Итак, строго говоря, мы пьем не только ртом, но и легкими; ведь расширение легких – причина того, что жидкость устремляется в наш рот.

Улучшенная воронка

Кому случалось наливать через воронку жидкость в бутылку, тот знает, что нужно время от времени воронку приподнимать, иначе жидкость из нее не выливается. Воздух в бутылке, не находя выхода, удерживает своим давлением жидкость в воронке. Правда, немного жидкости стечет вниз, так что воздух в бутылке чуть сожмется давлением жидкости. Но стесненный в уменьшенном объеме воздух будет иметь увеличенную упругость, достаточную, чтобы уравновесить своим давлением вес жидкости в воронке. Понятно, что, приподнимая воронку, мы открываем сжатому воздуху выход наружу, и тогда жидкость вновь начинает литься.

Поэтому весьма практично устраивать воронки так, чтобы суженная часть их имела продольные гребни на наружной поверхности, гребни, мешающие воронке вплотную приставать к горлышку.

Тонна дерева и тонна железа

Общеизвестен шуточный вопрос: что тяжелее – тонна дерева или тонна железа? Не подумавши, обыкновенно отвечают, что тонна железа тяжелее, вызывая дружный смех окружающих.

Шутники, вероятно, еще громче рассмеются, если им ответят, что тонна дерева тяжелее, чем тонна железа. Такое утверждение кажется уж ни с чем не сообразным, – и однако, строго говоря, это ответ верный!

Дело в том, что закон Архимеда применим не только к жидкостям, но и к газам. Каждое тело в воздухе «теряет» из своего веса столько, сколько весит вытесненный телом объем воздуха.

Дерево и железо тоже, конечно, теряют в воздухе часть своего веса. Чтобы получить истинные их веса, нужно потерю прибавить. Следовательно, истинный вес дерева в нашем случае равен 1 тонне + вес воздуха в объеме дерева; истинный вес железа равен 1 тонне + + вес воздуха в объеме железа.

Но тонна дерева занимает гораздо больший объем, нежели тонна железа (раз в 15), поэтому истинный вес тонны дерева больше истинного веса тонны железа! Выражаясь точнее, мы должны были бы сказать: истинный вес того дерева, которое в воздухе весит тонну, больше истинного веса того железа, которое весит в воздухе также одну тонну.

Так как тонна железа занимает объем в 1/8 куб. м, а тонна дерева – около 2 куб. м, то разность в весе вытесняемого ими воздуха должна составлять около 2,5 кг. Вот насколько тонна дерева в действительности тяжелее тонны железа!

Когда Октябрьская железная дорога длиннее – летом или зимой?

На вопрос: «Какой длины Октябрьская железная дорога?» – кто-то ответил:

– Шестьсот сорок километров в среднем; летом метров на триста длиннее, чем зимой.

Неожиданный ответ этот не так нелеп, как может показаться. Если длиной железной дороги называть длину сплошного рельсового пути, то он и в самом деле должен быть летом длиннее, чем зимой. Не забудем, что от нагревания рельсы удлиняются – на каждый градус Цельсия более чем на одну 100 000-ю своей длины. В знойные летние дни температура рельса может доходить до 30–40° и выше; иногда рельс нагревается солнцем так сильно, что обжигает руку. В зимние морозы рельсы охлаждаются до —25° и ниже. Если остановиться на разнице в 55° между летней и зимней температурой, то, умножив общую длину пути 640 км на 0,00001 и на 55, получим около 1/3 км! Выходит, что и в самом деле рельсовый путь между Москвой и Ленинградом летом на треть километра, т. е. примерно метров на триста, длиннее, нежели зимой.

Изменяется здесь, конечно, не длина дороги, а только сумма длин всех рельсов. Это не одно и то же, потому что рельсы железнодорожного пути не примыкают друг к другу вплотную: между их стыками оставляются небольшие промежутки – запас для свободного удлинения рельсов при нагревании. Зазор этот, при длине рельсов 8 м, должен иметь при 0° размер 6 мм. Для полного закрытия такого зазора нужно повышение температуры рельса до 65 °C. При укладке трамвайных рельсов нельзя, по техническим условиям, оставлять зазоров. Это обычно не вызывает искривления рельсов, так как вследствие погружения их в почву температурные колебания не так велики, да и самый способ скрепления рельсов препятствует боковому их искривлению. Однако в очень сильный зной трамвайные рельсы все же искривляются. То же случается иногда и с рельсами железнодорожного пути. Дело в том, что на уклонах подвижной состав поезда при движении увлекает рельсы за собой (иной раз даже вместе со шпалами), в итоге на таких участках пути зазоры нередко исчезают, и рельсы прилегают друг к другу концами вплотную.

Рис. 40. Изгибание трамвайных рельсов вследствие сильного нагревания


Наше вычисление показывает, что сумма длин всех рельсов увеличивается за счет общей длины этих пустых промежутков; общее удлинение в летние знойные дни достигает 300 м по сравнению с величиной ее в сильный мороз. Итак, железная часть Октябрьской дороги действительно летом на 300 м длиннее, нежели зимой.

Безнаказанное хищение

На линии Ленинград – Москва каждую зиму пропадает совершенно бесследно несколько сотен метров дорогой телефонной и телеграфной проволоки, и никто этим не обеспокоен, хотя виновник исчезновения хорошо известен. Конечно, и вы знаете его: похититель этот – мороз. То, что мы говорили о рельсах, вполне применимо и к проводам, с той лишь разницей, что медная телефонная проволока удлиняется от теплоты в 1,5 раза больше, чем сталь. Но здесь уже нет никаких пустых промежутков, и потому мы без всяких оговорок можем утверждать, что телефонная линия Ленинград – Москва зимой метров на 500 короче, нежели летом. Мороз безнаказанно каждую зиму похищает чуть не полкилометра проволоки, не внося, впрочем, никакого расстройства в работу телефона или телеграфа и аккуратно возвращая похищенное при наступлении теплого времени.

Но, когда такое сжатие от холода происходит не с проводами, а с мостами, последствия бывают подчас весьма ощутимы. Вот что сообщали в декабре 1927 г. газеты о подобном случае:


«Необычайные для Франции морозы, стоящие в течение нескольких дней, послужили причиной серьезного повреждения моста через Сену, в самом центре Парижа. Железный остов моста от мороза сжался, отчего вздулись и затем рассыпались кубики на покрывающей его мостовой. Проезд по мосту временно закрыт».

Легенда о сапоге в бане

«Отчего зимою день короткий и ночь длинная, а летом – наоборот? День зимою оттого короткий, что, подобно всем прочим предметам, видимым и невидимым, от холода сжимается, а ночь от возжения светильников и фонарей расширяется, ибо согревается».


Курьезное рассуждение «войска Донского отставного урядника» из рассказа Чехова вызывает у вас улыбку своей явной несообразностью. Однако люди, которые смеются над подобными «учеными» рассуждениями, нередко сами создают теории, пожалуй, столь же несообразные. Кому не приходилось слышать или даже читать о сапоге в бане, не влезающем на разгоряченную ногу будто бы потому, что «нога при нагревании увеличилась в объеме»? Этот знаменитый пример сделался чуть не классическим, а между тем ему дают совершенно превратное объяснение.

Прежде всего, температура человеческого тела в бане почти не повышается; повышение температуры тела в бане не превосходит 1°, много 2° (на полке). Человеческий организм успешно борется с тепловыми влияниями окружающей среды и поддерживает собственную температуру на определенной точке.

Но при нагревании на 1–2° увеличение объема нашего тела так ничтожно, что его нельзя заметить при надевании сапог. Коэффициент расширения твердых и мягких частей человеческого тела не превосходит нескольких десятитысячных. Следовательно, ширина ступни и толщина голени могли бы увеличиться всего на какую-нибудь сотую долю сантиметра. Неужели же сапоги шьются с точностью до 0,01 см – толщины волоса?

Но факт, конечно, несомненен: сапоги трудно надевать после бани. Причина, однако, не в тепловом расширении, а в приливе крови, в разбухании наружного покрова, во влажной поверхности кожи и тому подобных явлениях, не имеющих ничего общего с тепловым расширением.

Как устраивались чудеса

Древнегреческий механик Герон Александрийский, изобретатель фонтана, носящего его имя, оставил нам описание двух остроумных способов, с помощью которых египетские жрецы обманывали народ, внушая ему веру в чудеса.

Рис. 41. Разоблачение «чуда» египетских жрецов: двери храма открываются действием жертвенного огня


На рис. 41 вы видите пустотелый металлический жертвенник, а под ним скрытый в подземелье механизм, приводящий в движение двери храма. Жертвенник стоял снаружи его. Когда разводят огонь, воздух внутри жертвенника вследствие нагревания сильнее давит на воду в сосуде, скрытом под полом; из сосуда вода вытесняется по трубке и выливается в ведро, которое, опускаясь, приводит в действие механизм, вращающий двери (рис. 42). Изумленные зрители, ничего не подозревающие о скрытой под полом установке, видят перед собой «чудо»: как только на жертвеннике запылает огонь, двери храма, «внемля молитвам жреца», растворяются словно сами собой…

Рис. 42. Схема устройства дверей храма, которые сами открываются, когда на жертвеннике пылает огонь (ср. рис. 41)

Рис. 43. Другое мнимое чудо древности: масло само подливается в жертвенное пламя


Другое мнимое чудо, устраивавшееся жрецами, изображено на рис. 43. Когда на жертвеннике запылает пламя, воздух, расширяясь, выводит масло из нижнего резервуара в трубки, скрытые внутри фигур жрецов, и тогда масло чудесным образом само подливается в огонь… Но стоило жрецу, заведующему этим жертвенником, незаметно вынуть пробку из крышки резервуара – и излияние масла прекращалось (потому что избыток воздуха свободно выходил через отверстие); к этой уловке жрецы прибегали тогда, когда приношение молящихся было слишком скудно.

Поучительная папироса

На коробке лежит папироса (рис. 44). Она дымится с обоих концов. Но дым, выходящий через мундштук, опускается вниз, между тем как с другого конца он вьется вверх. Почему? Ведь, казалось бы, с той и с другой стороны выделяется один и тот же дым.

Рис. 44. Почему дым папиросы у одного конца поднимается вверх, у другого опускается вниз?


Да, дым один и тот же, но над тлеющим концом папиросы имеется восходящее течение нагретого воздуха, которое и увлекает с собой частицы дыма. Воздух же, проходящий вместе с дымом через мундштук, успевает охладиться и не увлекается уже вверх; а так как частицы дыма сами по себе тяжелее воздуха, то они и опускаются вниз.

Лед, не тающий в кипятке

Возьмите пробирку, наполните водой, погрузите в нее кусочек льда, а чтобы он не всплыл вверх (лед легче воды), придавите его свинцовой пулей, медным грузиком и т. п.; при этом, однако, вода должна иметь свободный доступ ко льду. Теперь приблизьте пробирку к спиртовой лампочке так, чтобы пламя лизало лишь верхнюю часть пробирки (рис. 45). Вскоре вода начинает кипеть, выделяя клубы пара. Но странная вещь: лед на дне пробирки не тает! Мы имеем перед собой словно маленькое чудо: лед, не тающий в кипящей воде…

Рис. 45. Вода в верхней части кипит, между тем как лед внизу не тает


Разгадка кроется в том, что на дне пробирки вода вовсе не кипит, а остается холодной; она кипит только вверху. У нас не «лед в кипятке», а «лед под кипятком». Расширяясь от тепла, вода становится легче и не опускается на дно, а остается в верхней части пробирки. Течения теплой воды и перемешивание слоев будут происходить лишь в верхней части пробирки и не захватят нижних более плотных слоев. Нагревание может передаваться вниз лишь путем теплопроводности, но теплопроводность воды чрезвычайно мала.

На лед или под лед?

Желая нагреть воду, мы помещаем сосуд с водой над пламенем, а не сбоку от него. И поступаем вполне правильно, так как воздух, нагреваемый пламенем, становится более легким, вытесняется со всех сторон кверху и обтекает наш сосуд.

Следовательно, помещая нагреваемое тело над пламенем, мы используем теплоту источника самым выгодным образом.

Но как поступить, если мы хотим, напротив, охладить какое-либо тело с помощью льда? Многие, по привычке, помещают тело над льдом, – ставят, например, кувшин молока поверх льда. Это нецелесообразно: ведь воздух над льдом, охладившись, опускается вниз и заменяется окружающим теплым воздухом. Отсюда практический вывод: если хотите остудить напиток или кушанье, помещайте его не на лед, а под лед.

Поясним подробнее. Если поставить сосуд с водой на лед, то охладится лишь самый нижний слой жидкости, остальная же часть будет окружена неохлажденным воздухом. Напротив, если положить кусок льда поверх крышки сосуда, то охлаждение его содержимого пойдет быстрее. Охлажденные верхние слои жидкости будут опускаться, заменяясь теплой жидкостью, поднимающейся снизу, пока не охладится вся жидкость в сосуде[12]12
  Чистая вода охлаждается при этом не до 0°, а только до температуры 4 °C, при которой она имеет наибольшую плотность. Но на практике и не встречается надобности охлаждать напитки до нуля.


[Закрыть]
. С другой стороны, охлажденный воздух вокруг льда также будет опускаться вниз и окружит собой сосуд.

Почему дует от закрытого окна?

Часто дует от окна, которое закрыто совершенно плотно и не имеет ни малейшей щели. Это кажется странным. Между тем здесь нет ничего удивительного.

Воздух комнаты почти никогда не находится в покое; в нем существуют невидимые для глаза течения, порождаемые нагреванием и охлаждением воздуха. От нагревания воздух разрежается и, следовательно, становится легче; от охлаждения, напротив, уплотняется, становится тяжелее. Легкий нагретый воздух от батареи центрального отопления или теплой печи вытесняется холодным воздухом вверх, к потолку, а воздух охлажденный, тяжелый, возле окон или холодных стен, стекает вниз, к полу.

Эти течения в комнате легко обнаружить с помощью детского воздушного шара, если подвязать к нему небольшой груз, чтобы шар не упирался в потолок, а свободно парил в воздухе. Выпущенный близ натопленной печки, такой шар путешествует по комнате, увлекаемый невидимыми воздушными течениями: от печки под потолком к окну, там опускается к полу и возвращается к печке, чтобы вновь путешествовать по комнате.

Вот почему зимой мы чувствуем, как дует от окна, особенно у ног, хотя рама так плотно закрыта, что наружный воздух не может проходить сквозь щели.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации