Электронная библиотека » Адам Пиорей » » онлайн чтение - страница 6


  • Текст добавлен: 1 апреля 2019, 19:00


Автор книги: Адам Пиорей


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 28 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

Без этого важнейшего клеточного амортизатора ребенок с МДД всякий раз повреждает свои мышцы, совершая какое-либо движение. (Представьте, что вы едете по ухабистой дороге на машине без амортизаторов.) Постепенно мышцы начинают разрываться. Вот почему такие дети приобретают эту неуклюжую походку. Вот почему они со временем всё больше теряют силу. Вот почему (даже когда они неуклонно слабеют) их мышцы с виду кажутся более выпуклыми, чем когда-либо, внушая родителям ложные надежды. Такие бугры возникают не из-за увеличения количества волокон, сделанных из миозина и актина. Они появляются из-за роста жировых отложений и толстого слоя неподатливой рубцовой ткани. Эти жесткие сгустки в конце концов обрекут своего юного носителя на инвалидное кресло.

После того как Суини закончил свой доклад на первой для себя конференции по МДД, его обступили родители страдающих этим недугом. И они говорили с ним совсем не так, как небольшие группы студентов (в сущности, его будущих коллег), подходивших к Суини после его лекций в Пенсильванском университете.

«Эти родители пребывали в отчаянии, – вспоминает он. – Им отчаянно хотелось узнать всё возможное, чтобы хоть как-то почувствовать, хоть как-то понять, что же происходит с их ребенком».

Больше всего Суини запомнилось их смятение, вызванное тем, что весь мир (как им казалось) равнодушен к страданиям их детей. Эти люди явно ощущали, что о них все забыли.

«Они хотели узнать, почему среди ученых так мало тех, кто стремился бы проводить исследования в попытке справиться с этой проблемой», – говорит Суини.

И внезапно глубинное интеллектуальное любопытство Суини, его восхищение тайнами природы – всё это обратилось в нечто куда более серьезное и значительное. Суини вдруг нырнул в водоворот реального человеческого страдания. И это изменило маршрут его профессиональной карьеры. «Я почувствовал себя виноватым, когда сказал им, что я, честно говоря, не пытаюсь справиться с этой проблемой, что я просто хочу разобраться в ней», – отмечает Суини.

Вернувшись домой, он никак не мог перестать думать об этих родителях и об их детях. Он хотел что-то сделать, как-то им помочь. Его понимание механики данного заболевания приобрело иной оттенок – оттенок зримой трагедии.

Если причиной всех этих страданий и несчастий действительно является мутация, очевидное решение – попытаться как-то обратить эту мутацию вспять. Но с чего начать?

* * *

Идея о том, что мы могли бы в буквальном смысле заново переписать генетические инструкции организма, углубиться в биологические «строительные планы» человеческого тела и внести в ДНК изменения, преобразующие ткани и органы, разительно отличается от всех других научных подходов, когда-либо возникавших в истории науки и человечества в целом.

Некоторые сказали бы, что тем самым мы по-хакерски взламываем Божественный код, ведь мы явно вмешиваемся в генетические последовательности, которые оттачивались и совершенствовались на протяжении миллиардов лет эволюции живых существ. Вот почему ученые уже давно предупреждают: если уж мы хотим идти по этому пути, нужно проявлять при этом особую осторожность. Все эти вмешательства в ДНК могут приводить к непредсказуемым последствиям. Можно обрушить на человечество невиданные недуги. Можно случайно вывести мутантные виды животных. Можно создать настоящий Парк юрского периода, как в известном цикле фильмов.

При этом всегда было очевидно, что подобные исследования таят в себе огромный потенциал избавления людей от страданий – слишком огромный, чтобы можно было с чистой совестью отказаться от движения по этому рискованному пути. Ученые и врачи уже много лет заявляют: если мы сумеем подчинить себе генетику, перед нами откроются практически неограниченные перспективы излечения недугов. Мы сможем исцелять детей, страдающих МДД и бесчисленным множеством других болезней и отклонений. Мы сможем спасать жизни. Специалисты осознали это вскоре после открытия ДНК, несмотря на всё беспокойство о возможном неправомерном использовании технологий и о том, что эти достижения могут пойти на пользу не всем страждущим, а лишь немногим избранным.

Так или иначе, все эти мечтания начали воплощаться в реальную клиническую практику лишь спустя десятилетия. По-настоящему этот путь начался около 40 лет назад. В конце 60-х – начале 70-х исследователи из Университета Джонса Хопкинса впервые показали, что некоторыми ферментами можно управлять, чтобы они, подобно паре волшебных микроскопических ножниц, рассекали длинные нити ДНК на определенные фрагменты, проводя разрезы в любых заданных местах. Вскоре стэнфордские биохимики опубликовали серию статей, где описывали, как они «сшивают» различные фрагменты – специально обрезанные так, чтобы они оканчивались комплементарными нуклеотидами. Такие нуклеотиды притягиваются друг к другу, словно противоположные полюса магнитов. Специалисты назвали результат такого сшивания «рекомбинантной ДНК».

В 1972 г. биологи Теодор Фридман и Ричард Роблин рассказали о революционных возможностях применения этих методов в программной статье, опубликованной в Science и озаглавленной «Генная терапия генетических заболеваний человека». Они предположили, что главным в медицине будущего станет переписывание наших собственных генетических «строительных планов».

За последние несколько лет биологи успели сделать еще один скачок вперед, разработав новую технологию редактирования генов под названием CRISPR[13]13
  CRISPR расшифровывается как Clustered Regularly Interspaced Short Palindromic Repeats – короткие палиндромные повторы, регулярно расположенные группами. Одноименная технология (обычно ее именуют CRISPR/Cas, где Cas – название группы белков) имеет дело как раз с такими ДНК-последовательностями. – Примеч. перев.


[Закрыть]
. Она проще, быстрее и дешевле, чем какой-либо из ее аналогов, использовавшихся прежде и обходившихся в тысячи долларов, причем на разработку одного такого метода зачастую уходили месяцы: изменению одного-единственного гена вполне могла быть целиком посвящена студенческая дипломная работа. До сравнительно недавнего времени методики целенаправленной генной терапии предполагали вставку генетического материала в какое-то произвольное место хромосомы, что иногда вызывало нежелательные побочные эффекты. А вот технология CRISPR, применимость которой для редактирования генов в человеческих клетках показали только в 2012 г., является гораздо более точным и тонким инструментом. В ее основе – задействование системы, используемой одноклеточными организмами для отслеживания чужеродных ДНК из встреченных ими ранее вирусов и плазмид, которые представляют угрозу для данной клетки. Применяя так называемые «гидовые РНК» как молекулярные маркеры для точного обозначения мест, где необходимо провести разрезы в человеческих клетках, ученые – они убедительно это продемонстрировали – могут управлять действиями фермента Cas9, обладающего способностью «взрезать» ДНК, чтобы извлекать нежелательные гены из клетки – или вставлять в нее новый генетический материал.

Методика позволяет даже лаборантам выполнять что-то вроде микрохирургии генов: теперь можно очень точно нацеливаться на определенные генетические последовательности в тех или иных участках хромосомы и легко изменять их. Эти серьезные модификации можно осуществлять сравнительно быстро – применяя доступные всем желающим готовые инструменты, которые стоят всего около 30 долларов. Многие убеждены, что вскоре эта технология позволит путем такого «переписывания» избавлять людей от многокомпонентных заболеваний и генетических черт – таких, причиной возникновения которых служит не один, а несколько генов.

Однако еще задолго до появления CRISPR ученые пытались использовать модифицированную ДНК. В 1990 г. группа, работающая в одном из американских Национальных институтов здравоохранения (National Institutes of Health, NIH) под руководством У. Френча Андерсона, лечила четырехлетнюю девочку от синдрома тяжелого комбинированного иммунодефицита [его еще называют «синдромом мальчика в пузыре», так как больные им весьма уязвимы перед инфекционными заболеваниями и вынуждены постоянно находиться в стерильной среде], взяв у нее пробу крови, изолировав лейкоциты (белые кровяные тельца) в чашке Петри и затем подвергнув их воздействию вируса, который, как надеялись ученые, сможет внедрить свой генетический груз в ядра клеток девочки. Этот вирус заранее выпотрошили и начинили рекомбинантной ДНК, кодирующей производство одного из важнейших ферментов, необходимых для выработки Т-лимфоцитов, борющихся с инфекциями: именно этот фермент организм пациентки оказался не способен вырабатывать самостоятельно. Когда ученые вернули эти клетки в организм больной и он начал синтезировать необходимый фермент, это стало поворотным моментом в истории науки.

Правда, те эффекты, которых добился Андерсон и его команда, оказались лишь временными и не столь мощными, как надеялись некоторые: большинство «старых» клеток девочки продолжали штамповать ошибочную ДНК. Время шло, и ее больные клетки продолжали делиться гораздо быстрее, чем их собратья, которых Андерсон после генетической модификации вернул к ней в организм. К тому же, разумеется, этих модифицированных клеток в ее организме было гораздо меньше, чем прочих.

Один из коллег Суини (позже они будут вместе работать в Пенсильванском университете), биолог Джеймс Уилсон, спустя четыре года после пионерских работ Андерсона с девочкой, страдающей синдромом тяжелого комбинированного иммунодефицита, продемонстрировал методику, дающую более долговременные результаты. Он сумел встроить особый вирус в печень пациента, страдающего генетическим заболеванием, из-за которого в организме возникает смертельно опасная концентрация «плохого» холестерина. Поскольку в печени гораздо больше регенеративных клеток, чем во многих других органах и жидкостях организма, методика Уилсона оказалась гораздо более эффективна, чем все предыдущие аналогичные попытки. Модифицированные клетки печени быстро и массово размножались, и со временем этот орган превратился в надежный источник новых клеток – завод по производству недостающих ферментов, постоянно вбрасывающий их в кровеносную систему.

Позже Уилсон едва не погубил свою карьеру из-за еще одного препятствия: как выяснилось, биологическая аппаратура самого организма, предназначенная для борьбы с инфекциями, иногда способна неожиданно бурно реагировать на присутствие таких вот «вирусных векторов», используемых для доставки новой – модифицированной – ДНК. В 1999 г. Джесси Гелсингер, 18-летний идеалист из Аризоны, страдавший сравнительно легкой формой одного генетического заболевания, вызвался поучаствовать в очередном исследовании Уилсона. Не прошло и четырех суток после того, как ему ввели вирус, содержащий модифицированную ДНК, как температура у Гелсингера поднялась до 40,3°. Повсюду в его организме начались воспалительные процессы, что указывало на острый иммунный отклик. Пять дней спустя Уилсону позвонили в четыре часа утра. Врач, работающий в палате интенсивной терапии, сообщил ему, что Гелсингера пришлось подключить к аппарату искусственного кровообращения. Его органы начали отказывать. Вскоре он умер.

«Белки, которые доставляли модифицированные гены, очень сильно активировали иммунную систему, мы такого никогда раньше не наблюдали, – говорит Уилсон. – Для нас это было как гром среди ясного неба. Каждый раз, когда нам звонили сообщить о его состоянии, новости были всё хуже и хуже».

Результатом трагедии стали судебные иски, слушания в Конгрессе, почти загубленная профессиональная карьера Уилсона. Вся сфера генетической инженерии словно бы откатилась на несколько лет назад. На протяжении почти всего первого десятилетия XXI в. одной из сложнейших проблем генной терапии станет отыскание способа подавлять атаку организма (иногда очень мощную) на модифицированные вирусные векторы, используемые для доставки ДНК, призванной избавить человека от смертельного недуга. Впрочем, в последние годы исследователи добились впечатляющих успехов на этом пути.

Однако исследователям, надеющимся развивать методы генной терапии, мешало – и до сих пор мешает – еще одно (вероятно, даже более серьезное) препятствие. Речь идет о сложности генетического кода как такового.

Человеческий геном – невероятно, ошеломляюще запутанная штука. В отличие от «синдрома мальчика в пузыре» и мышечной дистрофии Дюшенна, подавляющее большинство заболеваний и признаков человека вызвано взаимодействием многих различных участков ДНК и особенностей окружающей среды. Ученые уже начали более или менее успешно применять методы генной инженерии, ориентированные на борьбу с относительно несложными болезнями, причиной которых служит та или иная единичная мутация. Тем самым подтверждается, что методы генетической терапии, о которых мечтали Фридман и Роблин, действительно реализуемы на практике. Появление технологии CRISPR не исключает и того, что впоследствии удастся избавлять людей и от более сложных заболеваний, исправляя несовершенства ДНК сразу на нескольких ее участках. Но во многих смыслах вся эта работа, по сути, только начинается.

Ученые еще только пытаются понять, каким образом компоненты человеческого генома и окружающей среды взаимодействуют друг с другом, изменяя нас к лучшему или к худшему. Собственно говоря, специалисты лишь недавно создали сами инструменты, необходимые для быстрого и дешевого считывания 3,2 млрд нуклеотидов, образующих генетическую последовательность каждого отдельного человеческого существа. Многие исследователи вынуждены признать: лишь когда эти инструменты удастся в должной мере усовершенствовать, мы сможем по-настоящему реализовать потенциал генетической терапии.

В этой сфере активно применяются достижения по части наращивания вычислительных мощностей, роста математической изобретательности и развития систем распознавания закономерностей, – те же достижения, которые Хью Герр использует в своей лаборатории, выясняя, как функционирует человеческая нога. Они уже начинают преобразовывать молекулярную биологию. Тысячам специалистов потребовалось почти десятилетие (и 3 млрд долларов), чтобы к 2000 г. расшифровать и записать в виде последовательности биологических букв первый человеческий геном, состоящий из 3,2 млрд нуклеотидов. Сегодня биотехнологические компании способны проделать это всего за три дня, причем один такой анализ обходится дешевле 5000 долларов. К тому времени, когда вы будете это читать, они наверняка сумеют делать это всего за тысячу или даже за гораздо меньшую сумму. Похоже, с каждым месяцем «секвенирующие машины» для анализа ДНК становятся эффективнее, их стоимость падает, а возможности манипуляций с генами растут.

Для секвенирования геномов [т. е. выяснения их ДНК-последовательности] нынешние специалисты используют сравнительно недавно разработанные методики, позволяющие автоматической системе кромсать куски ДНК на удобные для анализа фрагменты, быстро делать миллионы копий этих фрагментов и затем с помощью сложных методов, использующих молекулярные метки и визуальное распознавание, «читать» буквы конкретных геномов. Эти технологии (наряду с ростом вычислительных мощностей, позволяющих вести анализ и сравнение в этой постоянно пополняемой библиотеке полностью секвенированных геномов длиной в 3 млрд нуклеотидов) сулят настоящую революцию в нашем понимании того, каким образом различные комбинации генов взаимодействуют друг с другом, вызывая заболевания и определяя то, как мы выглядим, действуем, мыслим.

* * *

Чтобы воочию увидеть передовые рубежи этого фронта научной революции (и попытаться понять, куда может привести генетическая инженерия, ориентированная на единичные мутации, – подобная той, которой занимается Суини), в 2014 г. я отправился во влажный, окутанный смогом южнокитайский мегаполис Шэньчжэнь, чтобы посетить компанию BGI, которая раньше носила название Bejing Genomics Institute [Пекинский институт геномики]. Компания располагается возле порта, в восьмиэтажном здании бывшей обувной фабрики. В 2008 г. в BGI работало всего 20 человек, но к 2014-му их количество перевалило за 5000, и компания стала крупнейшей в мире организацией, занимающейся секвенированием, а значит, заняла весьма заметное место в непрерывно растущей сфере генетических исследований.

Именно здесь – и в подобных фирмах и институтах – специалисты характеризуют и анализируют колоссальные массивы данных, отыскивая закономерности, которые могли бы объяснить, каким образом все эти миллиарды микроскопических белков, которые мы содержим в каждой своей клетке, взаимодействуют друг с другом, определяя наши черты, – и как небольшие изменения в этих белках могут в совокупности вызывать ту или иную поломку нашего организма.

Сегодня ученые из BGI и их коллеги раздвигают границы возможного с помощью инструментов современной генетики. Эти специалисты не только помогают выяснить, какие генетические последовательности несут ответственность за бесчисленные человеческие недуги, но и выявляют те гены, которые можно корректировать или размножать, создавая необычайно крупную рыбу – или просо, обладающее высокой урожайностью и засухоустойчивостью. Методами генной инженерии они вывели новую породу миниатюрных свиней, которые светятся в темноте, если на них упадет ультрафиолетовый луч: это полезно для научных исследований, поскольку такая особенность позволяет легко отслеживать состояние пересаженных органов. Биоинженеры BGI секвенировали ДНК «ледяного человека», останки которого (возрастом около 4000 лет) нашли в Гренландии: ученым хотелось выяснить, насколько он по своей генетической последовательности отличается от наших современников.

Более того, BGI даже вступила на этически сомнительную территорию поиска генов, которые могли бы сделать всех нас больше, быстрее, сильнее и умнее. Иными словами, компания начала искать того же рода молекулярные уровни, как и те, что порождают чрезвычайно мускулистых мышей и позволяют младенцу по имени Лайам Хёкстра, схватившись за пальцы матери, повиснуть в воздухе, образуя «железный крест».

Недавно BGI приступила к секвенированию ДНК более чем 2000 обладателей необычайно высокого IQ. Цель этих изысканий – выявить генетические предпосылки ума. Компания согласилась взяться за этот проект совместно с исследователями из лондонского Королевского колледжа и Вашингтонского университета. Это непростая задача: считается, что не меньше 10 000 генов (т. е. половина человеческого генома) вносят тот или иной вклад в интеллектуальные особенности каждой отдельной личности.

Во время своего визита в лаборатории BGI я познакомился с Крисом Чаном, американским программистом и генетиком, который участвует в этих исследованиях. Я расспросил его о целях проекта и о тех разногласиях, которые он пробуждает в кое-каких кругах – например, среди специалистов по медицинской этике и отдельных ученых, беспокоящихся, как бы всё это не привело к появлению генетически модифицированных младенцев. Чан заметил: «Мне кажется, если каждый желающий получит возможность обзавестись более смышлеными детьми, в конечном счете это улучшит состояние общества».

Многие ученые относятся к этим работам скептически: они считают, что компании вряд ли удастся разгадать тайны человеческого разума. Но если BGI все же добьется успеха, это станет не первым случаем, когда она сумела выявить генетические особенности, которые могли бы оказаться важными для создания биоинженерных методик совершенствования человека. В 2010 г., секвенировав геномы 50 тибетцев и 40 ханьских китайцев, компания объявила, что ей удалось обнаружить более 30 генов с мутациями, позволяющими некоторым людям лучше переносить пребывание на большой высоте. Почти половина из этих мутаций оказалась связана с тем, как организм использует кислород. В сущности, исследователи нашли биологические рычаги, на которые можно было бы попытаться нажимать с помощью медикаментов или генетических манипуляций, чтобы облегчить адаптацию человека, попавшего в горы.

Предупреждения университетских специалистов по этике о возможных последствиях грядущей генетической революции казались чем-то очень далеким и неважным, когда я бродил по коридорам BGI. В 2010 г. компания получила кредит на 1,5 млрд долларов от Китайского банка развития, финансирующего проекты, отвечающие политике властей страны. Эта колоссальная [во всяком случае, для научной организации] сумма позволила BGI буквально в одночасье воспарить, превратившись из сравнительно маленькой фирмы в корпорацию, обладающую более значительной «огневой мощью» по части генетических работ, чем какое-либо другое отдельно взятое научно-исследовательское учреждение планеты.

Во время своей поездки в Шэньчжэнь и в гонконгский филиал компании, расположенный в здании бывшей типографии и находящийся хоть и за границей, но совсем близко, я обходил помещение за помещением, заполненные самыми лучшими, самыми умными лаборантами-китайцами, с детскими лицами, в голубых лабораторных халатах. Склонясь над пробирками, держа в руках пипетки, они готовили образцы для секвенирующих машин.

Другие специалисты поджидали, когда можно будет, поднявшись на несколько лестничных пролетов, отнести эти образцы в один из просторных залов длиной с половину футбольного поля, похожих на пещеру, но освещенных флуоресцентными лампами и уставленных лабораторными столами. В Гонконге я вошел в один из таких залов. Здесь раздавалось неумолчное гудение мощных кондиционеров, поддерживающих в помещении постоянную температуру – ровно 20 °C. Из потолка с интервалами в несколько футов выступали темные круги (их было не меньше 60) – корпуса камер, в потоковом режиме передающих изображение в далекий «центр управления», находящийся в этом же здании. Камеры были устремлены на предметы, разложенные на столах передо мной.

На каждом столе располагалось обтекаемое устройство чуть больше обычного мини-холодильника – пожалуй, размером с маленькую микроволновку. Несмотря на столь скромные габариты, такое устройство стоит дорого: в США на эту сумму можно купить много домов на четыре спальни, причем в очень хорошем районе. Компании BGI принадлежит 128 этих секвенсоров ценой в 750 000 долларов каждый, сделанных по последнему слову техники. Называются они «Illumina HiSeq 2000».

Каждый 13-дневный цикл работы одной «Иллюмины» дает 600 гигаоснований информации (т. е. данные о 600 млрд нуклеотидов). Таким объемом генетических сведений можно заполнить шесть этажей библиотеки, на каждом из которых в общей сложности 900 м полок для научных журналов. Это в 1200 раз больше того количества данных, который поместится на обычном CD-ROM. Иначе говоря, на этих шести библиотечных этажах может храниться результат полной расшифровки геномов 200 человек, объемом по 3 млрд нуклеотидов. (Правда, для BGI это был бы результат расшифровки всего десяти геномов: каждый геном она секвенирует по 20 раз, чтобы добиться высочайшей статистической точности.) Таким образом, компания расшифровывает около 1730 геномов каждые 13 дней. Где-то во всех этих данных таятся закономерности, которые могут содержать указание на то, что же делает нас такими, какие мы есть, – и за какие молекулярные рычаги мы могли бы потянуть, чтобы позволить всем желающим преобразиться, став такими, какими они хотят стать.

После того как «Иллюмины» извергнут свои данные, целая армия молодых сотрудников, сидящих по ту сторону границы, в Шэньчжэне (в офисных ячейках, которые располагаются в огромном помещении, напоминающем склад), приступает к следующей стадии работы – очистке этой информации и поиску корреляций между определенными буквами в ДНК-последовательности и носителями определенных черт или заболеваний: возможно, эти особенности можно будет связать с конкретными генами.

Чтобы эффективно проводить все эти сопоставления, BGI организовала несколько вычислительных центров, оснащенных суперкомпьютерами. Анализ ДНК – математическая проблема на много порядков сложнее, чем выяснение взаимосвязей между различными частями человеческой руки или ноги, которое (как мы узнали из предыдущей главы) находилось далеко за пределами досягаемости предыдущих поколений инженеров-биомехаников: лишь в наше время специалисты вроде Хью Герра и Патрика ван дер Смагта получили возможность моделировать взаимодействия этих бесчисленных переменных и выявлять, как эти параметры связаны друг с другом и с движениями человека.

Герру приходится работать с тысячами переменных, а компании BGI – с миллиардами, так что ее аппетиты по части вычислительных мощностей постоянно растут и никогда не находят полного удовлетворения. Растет и объем компьютерной памяти, находящийся в распоряжении корпорации. Цель – достичь общей производительности в тысячу терафлопсов (иными словами, в 1 квадриллион операций в секунду). Незадолго до моего визита компания объявила, что сумела превысить четверть этой величины. В рамках некоторых проектов, требующих, чтобы статистики компании одновременно проводили сложный регрессионный анализ множества нуклеотидных последовательностей (каждая – длиной в 3 млрд нуклеотидов), китайское правительство разрешает BGI доступ к некоторым из самых мощных суперкомпьютеров в мире, расположенным в вычислительных центрах, которые принадлежат властям страны и которыми они безраздельно распоряжаются.

Вероятно, величайшие достижения и открытия компании еще впереди. BGI заявила, что планирует секвенировать миллион человеческих геномов. Если удастся реализовать эту амбициозную цель, корпорация получит в свое распоряжение генетическую библиотеку невиданного объема. Иными словами, компания надеется прочесть 3 квадриллиона нуклеотидов: для того чтобы хранить эти данные в традиционном бумажном формате, потребовалась бы библиотека в 30 млн этажей. Столь гигантская сокровищница данных, вероятно, позволит ученым искать любые корреляции между определенными генами и определенными признаками или заболеваниями, причем степень статистической достоверности при этом будет чрезвычайно высока. Но для этой работы, конечно, понадобятся и неслыханные вычислительные мощности.

Я поинтересовался у Чана, занимающегося исследованиями генетических корней интеллектуальных способностей, не становится ли ему неуютно при мысли о том, что в будущем какие-то человеческие черты можно будет формировать методами генной инженерии. Я передал ему опасения, которые часто высказывают специалисты по медицинской этике: мол, такие технологии пойдут на благо лишь немногим избранным, а мы, все остальные, останемся где-то далеко позади. Сначала мне показалось, что Чана не очень волнует эта проблема. Но когда я стал донимать его уточняющими вопросами, он все-таки признался, что некоторые сценарии дальнейшего развития этой отрасли заставляют его призадуматься.

«Если вы обладаете возможностью напрямую редактировать гены, вам могут показаться довольно страшными кое-какие вещи, которые вам не составит труда вообразить», – довольно беспечно признал он.

«Например, какие вещи?» – осведомился я. В конце концов, многие полагают, что эту способность напрямую редактировать гены даст нам технология CRISPR.

Чан заговорил о чертах, которые мы ассоциируем с социопатами вроде Бернарда Мейдоффа[14]14
  Бернард Мейдофф (род. 29 апреля 1938 г., Куинс, Нью-Йорк) – американский бизнесмен, бывший председатель совета директоров фондовой биржи NASDAQ. В 1960 г. основал на Уолл-стрит фирму «Bernard L. Madoff Investment Securities LLC» и возглавлял ее до 11 декабря 2008 г., когда он был обвинен в создании, возможно, крупнейшей в истории финансовой пирамиды. 29 июня 2009 г. Бернард Мейдофф за свою аферу был приговорен судом Нью-Йорка к 150 годам тюремного заключения. – Примеч. ред.


[Закрыть]
или Чарльза Мэнсона[15]15
  Чарльз Миллз Мэнсон, при рождении Чарльз Миллз Мэддокс (12 ноября 1934 г., Цинциннати, Огайо – 19 ноября 2017 г., Бейкерсфилд, Калифорния) – американский преступник, создатель и руководитель секты «Семья», члены которой, по его приказу, в 1969 г. совершили ряд жестоких убийств, среди которых убийство жены кинорежиссера Романа Полански, актрисы Шэрон Тейт, находившейся на девятом месяце беременности. Был приговорен к смертной казни, замененной на девять пожизненных сроков. – Примеч. ред.


[Закрыть]
 – людьми, которые словно бы не чувствуют никакого раскаяния, совершив деяния, которые большинство в нашем обществе считает омерзительными.

«Если кому-то покажется, что такая черта даст его ребенку конкурентное преимущество, – объясняет ученый, – и этот кто-то будет точно знать, как методом генной инженерии добиться… нужного сочетания признаков – никакого сочувствия плюс огромная самоуверенность, то это действительно страшно».

* * *

Чем больше Ли Суини думал о том, как помочь детям с мышечной дистрофией Дюшенна и их отчаявшимся родителям, тем больше он осознавал, что ему хочется найти способ помочь и другой группе пациентов, страдающих от атрофии мышц. Как раз в тот период, когда он посетил конференцию по МДД, так перевернувшую его жизнь, Суини печально размышлял над страшными последствиями процессов старения. Несколько месяцев его преследовала горестная картина почти неизбежного разрушения мышц, которое превращает тех, кто принадлежит к старшему поколению, в хрупкие тени самих себя.

На все эти мысли его натолкнула смерть бабушки – Мэтти Тео Ричардсон. Много лет она счастливо жила вместе с родителями Суини в техасском Арлингтоне. Но кончина, постигшая Ричардсон в 91 год, выглядела не очень-то привлекательно. Эта женщина всегда была очень энергичной, ей нравилось возиться в саду. Однако с годами она становилась всё слабее, и настал день, когда ее подвели ноги. Ричардсон упала и сломала бедро. После этого падения она так и не оправилась, хотя прожила еще полтора года.

Когда Суини виделся с ней в последний раз, Ричардсон сокрушенно сказала ему, что больше не в состоянии делать те вещи, которые она так любит делать, что она стала слишком хрупкой и что ей больше незачем жить.

«А дальше она просто угасла, – говорит Суини. – Ее мышцы очень ослабли, и она позволила себе умереть».

Ее смерть побудила Суини (в месяцы, предшествовавшие тому дню, когда он согласился выступить на конференции по Дюшенну) внимательнее присмотреться к тому, что происходит с нашими мышцами по мере того, как мы стареем. Между 30 и 80 годами все мы теряем в среднем одну треть общей массы своих скелетных мышц. Мы в буквальном смысле начинаем усыхать. Суини задался вопросом: почему так происходит? Да и должно ли происходить? Как ему казалось, точно такое же биологическое сырье, которое используется организмом для строительства мышц в молодости, остается доступным организму и в старости. Что заставляет наше тело внезапно прекратить эту необходимую работу по ремонту существующих мышц и созданию новых?

Слыша истории о страданиях детей с МДД от их родителей, Суини вспоминал о возрастной атрофии мышц, которая так занимала его мысли в последнее время. В беспомощности отчаявшихся родителей он узнавал свою собственную. Ученый осознал: если он сумеет раскрыть тайну увядания мышц по мере старения человека, не исключено, что это открытие принесет пользу и больным МДД. Если дать этим пациентам более крепкие мышцы (как он мечтал поступить со своей хрупкой бабушкой, прикованной к постели), и дети, и их близкие получат больше бесценного времени – и качество этого времени будет выше.

Была еще одна причина, по которой такую попытку стоило бы предпринять. Суини поддерживал тесные контакты с генетиком Джимом Уилсоном и его коллегами. Вместе с Уилсоном он даже выпустил статью о дистрофине и генной терапии. Да, мышечную дистрофию Дюшенна вызывают именно мутации, влияющие на этот белок, один-единственный. Однако дистрофиновый ген – самый крупный из всех, какие человек встречал в природе. Он состоит по меньшей мере из восьми независимых «промоторов» [своего рода биологических катализаторов], обладающих специфичностью по отношению к определенным тканям, и в нем около 2,4 млн нуклеотидов. Сам же белок дистрофин содержит более 3500 аминокислот. Как мы уже знаем, ученые научились потрошить некоторые вирусы и превращать их в механизмы доставки рукотворного генетического материала, но такие вирусы оказались просто недостаточно велики для того, чтобы в них поместились молекулярные инструкции для синтеза дистрофина. Нужные фрагменты ДНК в них не влезали.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации