Текст книги "Человек 2.0. Перезагрузка"
Автор книги: Адам Пиорей
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 28 страниц) [доступный отрывок для чтения: 9 страниц]
Само это устройство представляло собой чудо тогдашней техники. Однако один из его ключевых компонентов существовал столько же, сколько существовал на Земле класс млекопитающих. Вегеций отмечает, что лучшие пружины, эти гигантские «резинки», которые использовались в таких боевых машинах для выбрасывания в воздух смертоносных снарядов, делались из воловьих жил – сухожилий, извлеченных из шей быков или волов. В других катапультах применялись свитые косичкой канаты, сделанные из ахиллесовых сухожилий тех же животных.
Современные ученые иногда с удивлением оглядываются на эти примеры древнего хитроумия и иронически улыбаются: некоторые из них упоминали об этих случаях, когда я беседовал с ними, готовя свою книгу. Несмотря на то что еще в IV в. очень многие хорошо знали о любопытных свойствах сухожилий, потребовалось еще 16 столетий, прежде чем мы начали понимать ту важнейшую роль, которую необычайная эластичность сухожилий играет в биомеханике движений человека и животных, особенно их ходьбы и бега.
Забавно, что открытие, с которого начались эти новые исследования, тоже совершил уроженец римских земель. В 1950-е гг. Джованни Каванья, физиолог из Миланского университета, набрал добровольцев для занятий на беговом тренажере, оснащенном пластинами, чувствительными к нагрузке и способными измерять и записывать ту силу, которую человек прилагает к поверхности при каждом шаге. Оценив количество выдыхаемого при этом углекислого газа и потребляемого при этом кислорода (вероятно, он воспользовался результатами предшествующих экспериментов, где эти параметры измерялись с помощью специальной маски), Каванья сумел рассчитать количество калорий, расходуемое при каждом шаге, и сравнить его с той силой, которую при этом порождает бегун. Результаты поразили ученого. Получалось, что испытуемые потребляют значительно меньше кислорода, чем требовалось бы для выработки того количества энергии, которую они, судя по всему, генерировали для каждого своего шага. Получалось, что если его расчеты верны (а Каванья, конечно же, проверил их не один и не два раза), то «дополнительная» энергия шагов должна браться откуда-то еще. И тогда исследователь выдвинул революционную гипотезу: «Почти половина этой энергии, – предположил он, – порождена таящейся в ногах «энергией эластичного отскока», какой-то формой динамически накапливаемой мощи, которая способна придать вашей походке больше живости». Ученый решил: не исключено, что нога ведет себя как своего рода пружина.
Какое-то время его гипотеза оставалась лишь гипотезой, но вскоре британский зоолог Роберт Макнил Александер почти случайно наткнулся на первые факты, позволяющие начать разбираться в том, как работают такие пружины. Александер заметил, что лошади иногда ломают ноги, прыгая через препятствия, и задался вопросом, почему это происходит. Ему хотелось узнать, какую именно нагрузку акт прыжка создает в нижних конечностях млекопитающих и насколько эта нагрузка близка к той, при которой нога ломается.
Чтобы выяснить это, Александер обучил немецкую овчарку по кличке Счастливчик скачками нестись по длинному коридору возле лаборатории, где работал ученый, и затем запрыгивать на специальную платформу. Перед самым прыжком датчики, вмонтированные в пол, записывали ту силу, с которой лапы собаки давят на поверхность пола, а камера фиксировала положение всех составных частей задних ног Счастливчика (дополнительно помеченных светоотражающей лентой и фломастером-маркером). Введя все эти данные в уже известные математические уравнения, Александер сумел рассчитать, какую силу развивает каждая часть ноги Счастливчика, когда он прыгает вверх.
Располагая этими сведениями, Александер произвел рассечение недавно умершего пса почти таких же размеров (труп он получил у ветеринара), а затем с помощью прецизионных лабораторных приборов приложил к частям ног мертвой собаки такие же силы, которые возникали при прыжке Счастливчика. Ученому хотелось понять, насколько близко эти силы подводят части ног к «точке перелома» и какую дополнительную силу нужно приложить, чтобы перелом произошел. Но чтобы это выяснить, требовалось разобраться, как взаимодействуют друг с другом все эти части ног. Александер сразу же заметил, что собачья мышца не очень-то движется вне зависимости от того, что вы с ней делаете. Но когда исследователь приложил к ахиллесову сухожилию ту силу, которая, по его расчетам, должна воздействовать на него при прыжке, он поразился.
«В то время любой анатом сказал бы вам, что сухожилие нерастяжимо, что сухожилие не обладает эластичностью, – вспоминает он. – Но мы пришли к выводу, который тогда показался нам совершенно потрясающим».
Когда рассчитанную силу приложили к сухожилию Счастливчика, оно растянулось на целых 3 см. Впоследствии Александер убедительно продемонстрировал на примере довольно экзотического набора других животных (в их число вошли разные виды кенгуру и верблюд), что «пружинами» ноги млекопитающего являются не мышцы, как многие предполагали, а сухожилия.
Александер заключил, что особенно существенную роль играет при этом ахиллесово сухожилие: на его долю приходится около 35 % энергии, которую мы используем при беге. Изучая ампутированные ступни человека (результат операций, которым подверглись страдающие некоторыми болезнями периферийных сосудов) и нижние части ног верблюдов, Александер вскоре выявил еще одну природную пружину: она располагалась в своде стопы и, по его расчетам, обеспечивала еще 17 % энергии, необходимой ноге для каждого бегового шага. Вместе эти два сухожилия-пружины дают примерно половину той энергии, которую мы во время бега используем при каждом шаге. Так Александер разгадал тайну, с которой некогда столкнулся Каванья.
Позже ученые выяснили, что при сокращении мышца служит чем-то вроде стенки-упора, перенаправляющей энергию, которую поглощают сухожилия в тот момент, когда нога ударяется о землю, обратно вниз, тем самым заставляя сухожилия растягиваться подобно резинкам, накапливая потенциальную энергию. Чем жестче при этом мышца, тем сильнее растягивается сухожилие и тем больше количество запасаемой энергии.
Молодой гарвардский аспирант Норм Хеглунд расширил сферу этих исследований, обратившись к более крупным и менее кротким животным. Вскоре после того, как вышла статья Александера о кенгуру, оказавшая немалое влияние на ученый мир, Хеглунду поручили незавидное задание – колошматить палкой по крышке кастрюли и орать во все горло, чтобы напугать, улестить и убедить целый ковчег довольно здоровенных тварей, заставив их носиться взад-вперед по коридору, проходящему по подвалу при лаборатории Каваньи в Миланском университете. Наблюдая за этим с безопасного расстояния, группа более почтенных исследователей записывала результаты забегов при помощи видеокамер и пластин, чувствительных к нагрузке. Среди подопытных животных Хеглунда были два медвежьих макака[7]7
Да, здесь «макак» – мужского рода. – Примеч. перев.
[Закрыть], дикая индейка, долгоног, пара собак, баран весом около 185 фунтов [84 кг] и кенгуру.
«Хуже всего дело обстояло с мартышками, – вспоминал Хеглунд много лет спустя, – потому что они очень смышленые. Уставая от бесконечных повторений одного и того же эксперимента, они начинали вопить и повсюду носиться, делая всё что угодно, только не то, чего вы от них хотите. Потом они принимались гадить себе в ладони и метать в вас своими экскрементами. Наконец они просто физически атаковали вас. В ход шли зубы, ногти и всё прочее».
В итоге Хеглунд, Каванья и Чарльз Ричард Тейлор, гарвардский биолог, руководивший знаменитой Конкордской биостанцией, выявили две отличающиеся друг от друга схемы передвижения, позволяющие эффективно накапливать и расходовать энергию. Первая модель объясняла бег, вторая – ходьбу.
При беге пружинообразные сухожилия растягиваются в тот момент, когда нога ударяется о землю, и изменяют форму, чтобы накопить упругую (механическую) потенциальную энергию. Когда наша ступня отрывается от поверхности, сухожилия высвобождают эту накопленную энергию, словно резинка, и придают нам импульс, направленный вперед и вверх – и переходящий в наш следующий беговой шаг. «По сути, – объясняет Хеглунд, – при беге мы передвигаемся небольшими прыжками, словно баскетбольный мяч или пружинная ходуля „пого“».
Отметим, что при этом наши икроножные мышцы укорачиваются и удлиняются главным образом для того, чтобы менять жесткость системы, служа как бы регулятором громкости для ахиллесовых сухожилий. Чем жестче мышца, тем сильнее она натягивает сухожилие, а значит, тем большее напряжение к нему прикладывается. (Допустим, при пробежке нам попалась на пути лужа. Чтобы изменить длину шага, мы сгибаем ногу, делаем икроножную мышцу жестче, сжимаем сухожилие: это позволяет нам сделать короткий беговой шажок, после чего мы используем запасенную при этом энергию для того, чтобы перемахнуть через водную преграду.)
Эта же команда ученых выделила и другой тип движений, необходимый для ходьбы. Если при беге мы словно бы подпрыгиваем, как баскетбольный мяч, то при ходьбе наше тело сохраняет энергию скорее как качающийся маятник – еще одно рукотворное устройство, остроумно сконструированное для накопления и преобразования энергии. Точнее, при ходьбе наше тело действует как перевернутый маятник: туловище играет роль груза, закрепленного на нити, а нога играет роль собственно нити. Как и в случае обычного маятника, при ходьбе центр масс нашего тела то поднимается, то опускается, ускоряясь и замедляясь при каждом шаге. Нога при этом также совершает ритмические движения, расходуя энергию и теряя скорость, пока конечность идет вверх, преодолевая силу земного притяжения, и снова приобретая энергию, импульс и скорость на пути вниз, когда те же гравитационные силы, которые замедляли ее на пути вверх, толкают ее вперед. По оценкам Каваньи, этот силовой цикл, движимый гравитацией, обеспечивает до 60–65 % энергии, направляющей вперед каждый наш шаг при ходьбе, так что на долю мышц остается всего 35–40 %[8]8
В 80-е годы Хеглунд отправился в Кению, чтобы в полевых условиях заняться изучением крупных африканских животных (на которых частенько охотятся во время сафари). Однако наиболее интересные находки он сделал благодаря изучению местных женщин, способных переносить очень тяжелые грузы на голове. (Хеглунду пришла в голову мысль заняться такими исследованиями, когда однажды в обеденный перерыв несколько жен его местных лаборантов принесли еду для своих мужей.) Идя по дорожке бегового тренажера, эти женщины смогли нести на голове тяжесть, равную 20 % их собственного веса, и это не стоило им никаких дополнительных метаболических затрат. Если же организм шел на такие затраты, эти женщины могли переносить на голове груз, масса которого составляла 60 %, а иногда и 80 % веса их тела. Когда кенийки стояли на дорожке тренажера неподвижно, для их организма не имело никакого значения, имеется ли у них на голове какой-то груз, пусть даже очень большой. Казалось, когда они не двигаются, их организм не затрачивает никакой дополнительной энергии на поддержку груза. Хеглунд показал, что кости (и тела в целом) африканок со временем постепенно приспособились к тому, чтобы идеально поддерживать вес головы (и того, что на ней) наиболее эффективным способом с точки зрения расходования энергии. Возникла особая структура, выстроенная так, чтобы груз как можно меньше давил на мышцы. В ходе последующих экспериментов Хеглунд сравнил метаболические процессы этих женщин с данными чрезвычайно масштабного исследования, проведенного в американской армии: ученые измеряли метаболические затраты сотен новобранцев на переноску рюкзаков на спине. Как выяснилось, небольшие рюкзаки новобранцы-мужчины могли нести с меньшими метаболическими затратами (а значит, и прилагая меньше усилий), чем кенийки, которых изучал Хеглунд. Однако при повышении нагрузки это преимущество военных исчезало. Когда вес груза достигал 60 % массы тела, жительницы Кении несли эту тяжесть почти вдвое эффективнее бойцов. Заинтригованный этими данными, Хеглунд в течение нескольких лет еще дважды возвращался в Кению (он мог не беспокоиться о финансировании этих поездок благодаря Фулбрайтовской стипендии и грантам, полученным от американской армии), чтобы понять, какие же особенности механики организма дают возможность кенийкам так эффективно переносить тяжести. Он выяснил, что разгадка тайны – в маятникообразных движениях женщин, идущих с грузом на голове. Идеальный маятник, качающийся взад-вперед без всяких помех, сохраняет 100 % своей энергии: первое движение вниз под действием гравитации сначала преобразуется в потенциальную энергию по мере того, как под действием этого импульса груз, прикрепленный к нити маятника, движется по направлению к верхней точке дуги, которую этот груз описывает. Затем эта энергия высвобождается как кинетическая, и гравитация устремляет груз в противоположном направлении. Он снова достигает высшей точки (уже с другой стороны), и весь цикл повторяется. Но когда большинство из нас идет на оптимальной для себя скорости, мы при каждом шаге теряем 40 % нашей энергии в двух точках – там, где нога занимает самое верхнее положение, и там, где ступня соприкасается с землей. Африканки движутся точно так же, но, когда они добавляют в эту систему дополнительный груз, их походка определенным образом меняется (хотя сами женщины не могли этого объяснить, да и изменения не видны невооруженным глазом), тем самым позволяя им расходовать около 80 % энергии на движение вперед. Груз при этом, казалось, движется более плавно, особенно в низшей точке шага (когда нога соприкасается с землей). Когда женщины шли с грузом, лежащим на верхней части тела, их тело перестраивало эту схему так, чтобы нагрузка эффективно распределялась и чтобы человек мог двигаться вперед с минимальными усилиями.
[Закрыть].
* * *
Работы Каваньи, Тейлора и Хеглунда позволили дать научное объяснение тому, чего не хватало старомодным протезам Хью Герра. В нормальной ноге сухожилия и мышцы тела образуют хитроумную сеть, способную передавать энергию туда-обратно, накапливать и высвобождать ее. Когда Герр ходил на своих безжизненных подпорках, не могло быть и речи о каких-то имеющихся в них мышцах или сухожилиях, которые захватывают и перерабатывают энергию: эти штуки просто висели на нем мертвым грузом. Разумеется, вскоре осознание этого факта сыграло важнейшую роль в усилиях Герра и его коллег по коренному преобразованию сферы дизайна протезов.
Однако, приступив к изучению основ биомеханики, Герр тут же задался еще одним вопросом: может ли он использовать эти открытия для того, чтобы еще лучше взбираться на вертикальные поверхности?
В один ясный день, года через два после завершения своих аспирантских штудий в МТИ, Герр добрался до знаменитого колорадского каньона Эльдорадо, расположенного близ Боулдера, в иззубренных предгорьях Скалистых гор. Он был в отпуске. На нем был облегающий спортивный костюм из черной лайкры. Его ляжки балансировали на паре коротеньких металлических стержней, прикрепленных к ступням младенческого размера. Но больше всего в его облачении бросалось в глаза то, что змеилось из флуоресцентной желтой скалолазной укладки, опоясывающей его тело.
Вместо обычных страховочных тросов и металлических зажимов, которые использует большинство скалолазов, Герр присоединил к своей «упряжи» длинные эластичные нити, похожие на сплетенные в косички резиновые полоски. Другие концы нитей он закрепил на внутренней части рук, ближе к плечам. Он назвал этот наряд «костюмом Человека-паука». Для тех, кто все-таки не обратит внимания на эту супергеройскую тему, Герр внес в свое восхождение еще один элемент: он стал подниматься на отвесную скалу без всяких страховочных веревок.
Всякий раз, когда смельчак тянулся вверх в поисках новой опоры для руки, паутина резинок, соединяющих его трицепс с упряжью, натягивалась подобно набору синтетических сухожилий, заставляя его преодолевать это сопротивление с помощью трицепса и мышц спины. Эта паутина создавала дополнительное сопротивление и для пальцев, когда он раскрывал ладонь и тянул руку вверх, чтобы ухватиться за подходящий выступ или выемку. Вся потенциальная энергия, получаемая таким образом, накапливалась в его костюме Человека-паука благодаря искусственным сухожилиям, вытягивающим энергию из тех групп мышц, которые обычно пребывали в праздности во время восхождений Герра.
А затем, когда Герр подтягивался вверх, используя уже другую группу мышц, эластичная паутина постепенно отдавала накопленную энергию, помогая ему подниматься и вдвое уменьшая нагрузку на его плечи и бицепсы. Вскоре Герр уже оказался на высоте шестиэтажного дома.
На видео, которое было тогда снято, можно увидеть его партнера, никакого не инвалида, пытающегося угнаться за Герром, который первым достигает вершины и победно вскидывает кулак. Он по-прежнему был полон задора. И благодаря новым технологиям он развивал свои возможности еще дальше.
«Можно ли, присоединив к телу какой-то механизм, извлечь из тела больше работы, прежде чем оно устанет? – спрашивает Герр. – Я задался этим вопросом. Ответ – да. В сущности, вы как бы удваиваете мышечную массу, но общая нагрузка остается той же, поэтому вы можете сильно отсрочить наступление усталости. Попросту говоря, благодаря этому приему можно сделать человека вдвое сильнее».
У Герра возник и другой вопрос, на который его вдохновили приобретенные познания. Может быть, он сумеет использовать то, что известно о природных пружинах тела человека и других животных, для увеличения скорости бега? Чтобы это выяснить, он стал конструировать кроссовки нового типа. В каждой имелось по две пружины – на пятке и на носке. Герр соединил эти пружины углеродной полоской, идущей по всей длине подошвы обуви. Когда пятка бегуна ударяется о землю, пяточная пружина сжимается, накапливая потенциальную энергию. По мере того как ступня наклоняется вперед, постепенно перенося туда же вес тела, потенциальная энергия пяточной пружины распространяется под точками контакта стопы с землей, пока не достигнет носка. А затем, в тот момент, когда бегун отрывает носок от земли, передняя пружина отдает свою энергию, придавая бегуну дополнительный импульс, направленный вперед. Герр провел множество экспериментов и наконец определил оптимальные места размещения пружин для такого усиления энергии. Система позволяла не только увеличивать скорость бега и снижать метаболические затраты на бег, но и на целых 20 % уменьшать силу воздействия бега на суставы.
Герр предложил свои кроссовки компании Nike, которая отнеслась к его изобретению весьма серьезно, поскольку даже обратилась к гарвардцу Томасу Макмэхону, одному из тогдашних ведущих специалистов по биомеханике, чтобы он оценил идею. И хотя компания в итоге все-таки не стала заниматься этим продуктом, он произвел большое впечатление на Макмэхона. Так Герр нежданно-негаданно заполучил идеального наставника, способного вывести его творения на следующий уровень. В 1990 г. Макмэхон выстроил подробную физико-математическую схему, которая стала основой для всех дальнейших работ в этой сфере, поскольку сводила сложнейшую динамику человеческого передвижения в пространстве к довольно простым уравнениям, позволявшим делать точные предсказания насчет движения.
Макмэхон уговорил Герра записаться на курс, который он читал в Гарварде, а позже стал научным руководителем диссертации альпиниста. Макмэхон предложил не воспринимать все эти суставы, мышцы, сухожилия и связки ноги как отдельные детали, а рассматривать всю конечность как одну пружину. Благодаря такому подходу ахиллесово сухожилие и природные пружины свода стопы можно было считать просто звеньями единого прыгучего механизма. Метод сработал, поскольку, как и в случае цельной пружины, ту силу, которую развивает конечность, и степень сжатия конечности можно выразить через еще один упрощенный параметр – совокупную нагрузку со стороны различных частей тела, воздействующую на единичную точку в пространстве (и оказывающую на нее давление, направленное вниз или «вовне»). Физики называют эту штуку точечной массой.
Макмэхон показал: если известна точечная масса и угол, под которым, например, ступня соприкасается с землей, можно предсказать, сколько времени нога проведет на поверхности, прежде чем подскочить вверх, и насколько она при этом сожмется. Можно определить, с какой «взрывной» силой нога будет отрываться от земли и как центр масс движущегося человека будет перемещаться по воздуху между шагами. Верно и обратное: если измерить, сколько времени нога остается на земле между шагами, можно (узнав и некоторые другие параметры) рассчитать точечную массу.
Под руководством Макмэхона неутомимый Герр несколько месяцев разбирался в изящной и чарующей механике движения лошадей, скачущих галопом. Может показаться, что временами все четыре ноги животного одновременно находятся в воздухе: пожалуй, биомеханика лошадей позволяет им подойти к состоянию полета ближе, чем каким-либо другим четвероногим. Однако эта биомеханика долго оставалась тайной для человека. Как скакуны ухитряются сохранять равновесие? Герр пришел к выводу, что лошадь использует свои ноги в качестве податливых пружин, идеально откалиброванных для того, чтобы обеспечить оптимальную жесткость, которая способствует и высокой стабильности, и высокой скорости, создавая тонко выверенный баланс – максимизируя время пребывания в воздухе так, чтобы при этом животное все-таки еще могло контролировать свое движение. После кропотливой работы Герр построил математическую модель, которая смогла выразить собой разгадку этой тайны и объяснить, почему лошадиный бег так изящен.
Герр получил кандидатскую степень, смоделировав динамику передвижения целого ряда четвероногих животных – от мышей до слонов. Но в ходе этой работы Герр начал обдумывать более амбициозный проект, хотя многие в то время сочли бы его попросту неосуществимым. Годами Герру приходилось полагаться на жесткие, неуклюжие протезы, которые совершенно не позволяли проявлять подвижность, мощь и непринужденность, какими некогда обеспечивали его природные ноги. Он вынужден был карабкаться на скалы, чтобы ощутить вкус подлинной свободы движений. Теперь же Герр задумался, нельзя ли сконструировать устройство получше. Ему хотелось заполучить искусственные конечности, которые позволили бы ему ходить почти так же, как на обычных человеческих ногах, с которыми он родился.
* * *
Хью Герр поднимается с кресла в своем кабинете со стеклянными стенами, расположенном на третьем этаже Медиа-лаборатории МТИ, и ведет меня по узенькому мостику, откуда открывается вид на гигантское рабочее пространство. Держась за металлические перила винтовой лесенки, Герр аккуратно и без видимых усилий спускается вниз на паре механических ног, которые сделал он сам.
Вскоре мы оказываемся в колодце просторной лаборатории – мастерской чародея-механика, где громоздятся штабеля ящиков с инструментами, где длинные верстаки завалены молотками, дрелями и проводами, где полным-полно индивидуальных клетушек-ячеек для каждого бойца небольшой армии аспирантов и молодых инженеров, работающих с Герром. Целые заросли проводов свисают со столов, исчезая в невидимых приборах и двигателях, таящихся в металлических шкафах и коробках: чем-то это напоминает джунгли, захватившие форт. Если такой беспорядок – признак творческого таланта, то здесь явно не испытывают недостатка в идеях.
Мы находимся в самом сердце амбициозного проекта, руководимого Герром. Цель проекта – разгадать тайны человеческого движения и использовать эти знания для того, чтобы конструировать бионические части тела, способные воспроизводить это движение, а иногда и превосходить возможности, которые дала человеку природа.
Вслед за Герром я направляюсь к его новому 3D-принтеру, который он намерен использовать для печати протезов. Затем мы проходим мимо верстаков, на которых лежит масса отдельных искусственных рук и искусственных ног; эту картину кое-где разнообразят мониторы. Наконец мы останавливаемся перед одной из самых заметных и необычных достопримечательностей помещения – длинной дорожкой бегового тренажера, чуть приподнятой над полом. По форме она походит на изрядный фрагмент движущейся ленты, по которой мы ходим в аэропортах. На дорожку устремлены под разными углами более 30 камер: какие-то свешиваются с потолка, какие-то располагаются вокруг.
Перед тем как попросить очередного испытуемого встать на дорожку тренажера (или перед тем, как встать на нее самому), Герр прикрепляет сантиметрового размера метки-отражатели на все сколько-нибудь заметные – с анатомической точки зрения – участки тела. Этих отражателей как минимум несколько десятков. Когда испытуемый – или сам Герр – поднимается на тренажер и начинает идти, остается лишь нажать несколько кнопок, и камеры начнут собирать точнейшие сведения о том, как составляющие человеческой ноги взаимодействуют друг с другом, порождая движение: для этого отслеживается положение меток при их движении в пространстве. Эти данные передаются в компьютер для последующего анализа.
Такая информация позволяет Герру и его коллегам, к примеру, точно определять, как меняется с течением времени угол сгиба ног в коленях, как движение правого бедра отражает изменения, происходящие при этом с лодыжкой, как всё это связано с выгибом ступни.
Такие системы «захвата движения» (вероятно, сегодня самый знаменитый их поставщик – компания Vicon) произвели настоящий переворот не только в том, что касается исследований движения, которые проводят в последние годы Герр и другие инженеры, но и в целом ряде других сфер. Мультипликаторы используют их для того, чтобы записывать движения живых актеров и затем заставлять своих анимационных персонажей жизнеподобно шевелиться на экране[9]9
Вероятно, один из самых известных примеров здесь – британский актер Энди Сёркис, использовавший эту технологию для того, чтобы сыграть Голлума во «Властелине колец», гигантскую человекообразную обезьяну в «Кинг-Конге» и Верховного правителя Сноука из седьмого эпизода «Звездных войн» – «Пробуждения силы». Джеймс Кэмерон применил этот метод в своем фильме «Аватар» (2009), добившись очень впечатляющего эффекта.
[Закрыть]. Может быть, вы видели баскетболиста Леброна Джеймса в рекламе видеоигр компании EA Sports, где он отправляет мяч в кольцо и где все его тело покрыто маленькими мячами-отражателями? Таким способом аниматоры компании старались придать достоверность двойнику Джеймса, действующему в их игре. Но эта технология идет на пользу не только виртуальному спорту. Тренеры бейсбольных команд «Бостон Ред Сокс», «Сан-Франциско Джайентс» и «Милуоки Брюэрс» используют ее для записи движений своих питчеров при броске, а затем предлагают изменения, позволяющие добиться максимальной плавности движения и максимальной силы, которая при этом может вырабатываться. А в одной лаборатории Южного методистского университета (в Далласе) профессор биомеханики Питер Вейэнд работает с некоторыми из лучших спринтеров мира, анализируя механику движения их ног (и непосредственно в лаборатории, и изучая видеозаписи), пытаясь понять, что же делает их столь стремительными, а заодно и стараясь предложить изменения, которые могли бы оптимизировать их бег.
С помощью технологии захвата движения и компьютерного анализа Вейэнд показал, в частности, что скорость, которую развивают ведущие спринтеры, связана с силой и ритмом соприкосновения ступней с землей: именно благодаря этому особому сочетанию они могут совершать микро-прыжки на более значительные расстояния. Эта скорость имеет мало отношения к так называемой изометрической силе бегунов – иными словами, к тому, какую тяжесть они способны вытолкнуть вверх при помощи своих ног[10]10
Как отмечает Вейэнд, спортсмены вроде Усейна Болта ударяют ногой о землю в 1,5–2 раза сильнее, чем обычные бегуны: эта сила в 4–5 раз превосходит ту, которая соответствует массе их тела. «Причем, – отмечает Вейэнд, – эту силу они могут развивать уже через три-четыре сотых секунды после своего первого контакта с землей – гораздо быстрее, чем кто-либо еще». Когда исследователь просмотрел в замедленном режиме видеозаписи бега таких спринтеров, как Болт и Карл Льюис, он обнаружил, что их беговое движение как бы ориентировано на то, чтобы с необычайной силой вколачивать конечности в землю, но при этом как можно скорее отрывать ноги от поверхности. (И это имеет смысл, стоит лишь внимательнее присмотреться к соревнованиям. Спринтеры бегут по-особому: их тело вытянуто в струнку, они очень высоко поднимают колени, и ноги их стремительно движутся вверх-вниз, словно поршни.)
[Закрыть]. Скорость таких бегунов больше определяется ритмом их движений, а также углом, под которым их ступня соприкасается с землей, той силой, с которой она воздействует на поверхность, и тем интервалом, в течение которого она не отрывается от земли. Все эти факторы спортсмен может оптимизировать, совершенствуя свою физическую форму и постоянно тренируясь.
Герр нашел еще одну область применения для этой технологии. Когда он получил кандидатский диплом и всерьез начал заниматься дизайном искусственных ног, практически все имевшиеся на рынке протезы лодыжек и ступней представляли собой пассивные приспособления. Их разработчики встраивали внутрь пружинные механизмы, служившие амортизаторами при ходьбе, однако не предпринимали никаких усилий для того, чтобы воссоздать ту способность вырабатывать энергию, которой обладают мышцы людей, по-прежнему имеющих нижние конечности, дарованные им природой. Герру казалось, что для него такое дизайнерское решение неизбежно влечет за собой проблемы. И он пришел к выводу: начинать надо с лодыжки и ступни.
Герр внимательно изучил работы еще одного ученика Макмэхона. В 90-е годы Клэр Фэрли убедительно показала, что человеческая лодыжка представляет собой, по сути, основной сустав, с помощью которого мы регулируем жесткость всей ноги. А поскольку именно увеличение жесткости повышает «прыгучесть» ноги (и дает больший выброс энергии, когда это необходимо), Герр понимал: лодыжку можно рассматривать даже как основной «мотор» ноги. Изменяя уровень мышечной активации, а значит, жесткость и прыгучесть, лодыжка служит своего рода «регулятором громкости», позволяющим увеличивать или уменьшать силу и скорость нашей ходьбы.
«Изменения в лодыжечном суставе сказываются на общей жесткости ноги, – замечает Дэн Феррис, профессор биомеханики Мичиганского университета и бывший аспирант Фэрли: вместе с ней он написал несколько важнейших статей по биомеханике ноги и лодыжки. – Лодыжка управляет всей ногой».
Герру казалось очевидным, что именно пассивность «мертвого груза» искусственных лодыжек могла бы объяснить многочисленные и разнообразные страдания тех, кто пережил ампутацию нижних конечностей или их части. Даже с самыми лучшими моделями, имеющимися в продаже, большинство ампутантов ходили медленнее обычных людей и хуже удерживали равновесие. Их походка выглядела чудноватой, а приспособления, на которых они передвигались, часто вызывали проблемы со спиной. Вероятно, важнее всего здесь то, что, когда ходит человек с нетронутыми нижними конечностями, количество энергии, которую расходуют его икроножные мышцы, возрастает с увеличением скорости ходьбы. Герр полагал, что нехватка лодыжечной энергии в протезах – одна из главных причин, по которым ампутанты тратят при ходьбе на 30 % больше энергии, чем люди с неповрежденными нижними конечностями. Когда нет нормально функционирующей лодыжки, способной модулировать жесткость, упругость и прыгучесть ноги, ходьба значительно менее эффективна.
«Я стал думать о протезах, которые я предпочел бы носить, и о том, как важно, чтобы компьютер контролировал протез и позволял варьировать жесткость, когда человек идет и когда человек бежит», – вспоминает Герр.
И он решил создать математическую модель, которая бы точно описывала, каким именно образом взаимодействуют различные компоненты нижней части ноги. Чтобы это сделать, требовалось задать ряд фундаментальных вопросов насчет обычного поведения обычной ноги. К примеру, какое количество энергии вырабатывает нормальная икроножная мышца мужчины ростом 5 футов 9 дюймов [175 см] непосредственно перед тем, как ступня оттолкнется от земли? Или: как сокращение этой мышцы влияет на степень жесткости сухожилий, которые к ней прикреплены? Насколько жесткой становится лодыжка, когда человек пытается замедлить свое движение?
Чтобы получить данные, необходимые для ответа на такие вопросы, Герр вместе со своей группой несколько месяцев перелопачивал результаты предыдущих исследований, отбирая всё, что на тот момент было известно о динамике человеческой ноги и о взаимодействии структур, входящих в ее состав. Если научная литература на ту или иную тему оказывалась слишком скудной, Герр пытался заполнить пробелы, прибегая к помощи добровольцев-неинвалидов и используя технологию захвата движения, чтобы подробно охарактеризовать то, как они перемещаются.
Создавая свое всеобъемлющее математическое описание функционирования ноги, Герр приступил к разработке робопротеза, способного трансформировать всю эту математику обратно – в реальные движения. Чтобы воспроизвести природную способность лодыжки тормозить при ходьбе вниз по склону, Герр модифицировал одно из своих предыдущих изобретений, которое он создал для контроля жесткости коленного протеза. Это устройство состоит из скользящих стальных пластин, отделенных друг от друга маслянистой жидкостью, которая в магнитном поле становится более густой. Электросенсоры измеряют угол приложения и уровень силы, с которой пользователь протеза воздействует на лодыжку, и в соответствии с этими данными компьютер варьирует напряженность магнитного поля. А чтобы определять расположение лодыжки в пространстве и на основании этой информации менять угол наклона искусственной ступни (если, скажем, ступня на несколько мгновений зависла в воздухе при спуске по лестнице), Герр встроил в протезы такие же датчики, которые используются в системах наведения ракет.
Чтобы наглядно следить за своими достижениями, Герр создал собственного виртуального двойника. Изобретатель демонстрирует мне его на большом мониторе.
Это примитивное изображение туловища с ногами, которое бредет по экрану, словно пьяный или слепой. Хотя графика здесь самая простая, нижние конечности этой мультяшной фигурки состоят из сотен виртуальных сухожилий, мышц и костей, и каждый из этих элементов запрограммирован так, чтобы служить моделью той или иной части реальной человеческой ноги. Какой крутящий момент прикладывается суставом к лодыжке или колену? Каков уровень электрической активности в той или иной мышце? Как и когда сухожилия ноги захватывают и высвобождают энергию? Схематический рисунок человечка вбирает в себя все эти данные и отображает их на экране, показывая, как реальный человек (возможно, с завязанными глазами) будет ходить, соблюдая все физические законы движения.
Те же математические описания, определяющие, каким образом ходит виртуальная фигурка, задействованы в программах, контролирующих движение составных частей икроножно-ступневых протезов, которые в этот самый день носит Герр.
Поразительна сама мысль о том, что сейчас, когда я стою с ним рядом, крошечные микропроцессоры, спрятанные где-то внутри всех этих механизмов, невидимых сквозь штанины, способны каждую секунду выполнять невообразимо сложные расчеты, управляя поведением всех-всех частей бионических конечностей Герра. Изобретатель вывел эти формулы на основе измерений и наблюдений, производимых в реальном мире. При этом он исследовал не только то, как реальные человеческие конечности ведут себя по отдельности, но и то, как они взаимодействуют друг с другом. Так, жесткость механического лодыжечного сустава в каждый данный момент может зависеть, в частности, от того, с какой силой моторчики протеза, воспроизводящие природную икроножную мышцу, воздействуют на приводы, воспроизводящие ахиллесово сухожилие. Однако здесь может оказывать свое влияние и то, в какую сторону повёрнут коленный сустав и на какой угол он согнут: возможно, тем самым учитывается скорость, с которой нижняя часть ноги движется вперед или вниз. Короче говоря, в каждое мгновение приходится иметь в виду несметное количество самых разных факторов.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?