Электронная библиотека » Алекс Беллос » » онлайн чтение - страница 3


  • Текст добавлен: 18 апреля 2022, 19:57


Автор книги: Алекс Беллос


Жанр: Личностный рост, Книги по психологии


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 14 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +

10 увлекательных головоломок. Умеете ли вы играть в слова?

[14]14
  У автора этот раздел состоит из словесных головоломок на английском языке. Естественно, здесь приводятся задания на русском языке. Мы старались сохранить оригинальную идею; часть головоломок мы придумали сами, а часть взяли в свободном доступе по адресу: http://www.treningmozga.com; http://2yxa.ru/golovolomka; http://detichaik.ru/nikitkina-stranica/golovolomki-s-bukvami-a.html. Прим. ред.


[Закрыть]

1. Добавьте либо в начало, либо в конец приведенной ниже последовательности букв одну букву так, чтобы получилось слово. Составьте не менее трех таких слов.

ОКО

Ответ


2. Составьте словосочетание из набора букв:

Л О С О Н Д О О В

Ответ


3. Назовите несколько слов, которые начинаются с четырех согласных. Затем найдите слово, которое оканчивается четырьмя согласными.

Ответ


4. Иван Иванов работает в компании АСОНД. Вот его визитка:

Видите ли вы здесь закономерность?

Ответ


5. Какое слово начинается с трех букв «г» и заканчивается тремя буквами «я»?

Ответ


6. (Детская задачка-анаграмма типа «Грамматика + математика = отгадай слово». Чтобы составить анаграмму, нужно переставить буквы в слове и получить новое.) Выполните следующие задания:

Липа + нота = животное

Том + вата = оружие

Рыба + соки = фрукты

Ответ


7. Как сделать из мухи слона? МУХА – муpа – туpа – таpа – каpа – каpе – кафе – кафp – каюp – каюк – кpюк – уpюк – уpок – сpок – сток – стон – СЛОH. Вот так за 16 ходов «муха» превратилась в «слона». В этих головоломках за один ход можно заменять лишь одну букву, причем порядок следования букв менять нельзя[15]15
  Такие головоломки называются метаграммами. Прим. ред.


[Закрыть]
.

Попробуйте по этим правилам совершить «путешествие во времени», превратив сначала МИГ в ЧАС, затем ЧАС в ГОД, ГОД в ВЕК и наконец ВЕК в слово ЭРА. Всего эта цепочка занимает 17 ходов. А теперь постарайтесь сделать «скачок во времени» и превратить слово МИГ в ЭРА за шесть ходов.

Ответ


8. Существует система присваивания числовых значений именам. В ней Дмитрий имеет значение 10, Василиса – 20, Петр и Глеб – по 5, а Ольга – 10. Какое значение в этой же системе у имени Дженнифер?

Ответ


9. Какая буква завершает эту последовательность?

О Т Р Е Я У

Ответ


10. Бессмыслица. При создании таких заданий берется любое крылатое выражение и все слова в нем заменяются на их научные (или вроде того) определения. В результате получается бессмыслица. Ваша задача – отгадать начальный вариант. Предлагаем решить две такие задачки[16]16
  Головоломок такого типа нет в тексте автора, но мы решили их включить, поскольку они оригинальны, остроумны и их решение требует чувства юмора. Взято с сайта http://www.smekalka.pp.ru. Прим. ред.


[Закрыть]
.

1) Условием выживания биологической особи является ее перемещение по криволинейной замкнутой траектории.

2) Торговля мелкими домашними животными, расфасованными в непрозрачную тару, изготовленную из прочной материи.

Ответ

Глава 2. Человек обходит атом. Геометрические задачи

Греческий математик Евклид, написавший книгу «Начала» примерно в 300 году до нашей эры, первым наглядно показал, какое удовольствие приносит логическая дедукция.

Несмотря на то что в «Началах» речь идет о геометрии, то есть о поведении точек, линий, поверхностей и тел, истинная значимость этого труда для истории человеческой мысли состоит в методе, введенном Евклидом для изучения этих концепций. Книга начинается с ряда определений, а пять сформулированных в ней основных правил можно принять в качестве постулатов. На основании исходных предпосылок Евклид делает все остальные выводы в «Началах» и на каждом этапе строго доказывает, как каждый очередной шаг вытекает из предыдущего. Сила этого метода – в стройной системе знаний, в которой истинность нескольких исходных утверждений гарантирует истинность выводов. Впоследствии на евклидову модель, описанную в «Началах», стала полагаться вся математика.

С практической точки зрения Евклид начинал с линейки и циркуля для построения линий и окружностей. Вот и все его инструменты. Каждая теорема в «Началах» – а их там сотни – доказана исключительно с их помощью.

Например, как разделить отрезок пополам?

Шаг 1. Установите ножку циркуля с иглой в одной конечной точке отрезка, а ножку с карандашом – в другой конечной точке отрезка и нарисуйте окружность.

Шаг 2. Сделайте то же самое, установив ножку циркуля с иглой в другой конечной точке отрезка.

Шаг 3. С помощью линейки проведите прямую линию между точками пересечения окружностей.



Каждая теорема в «Началах» представлена в виде задачи, а каждое доказательство – в виде решения. По существу, это книга головоломок – во всем, кроме названия. В следующей головоломке мне нравится то, что она словно дразнит Евклида, мастера концептуальной бережливости, за то, что в его пенале слишком много инструментов.

26. ТОЛЬКО ЛИНЕЙКА

У вас есть только карандаш и линейка. Как показано на рисунке, на линейке всего две метки. Можете ли вы провести отрезок, длина которого равна половине расстояния между ними? Другими словами, если расстояние между двумя метками составляет 2 единицы, проведете ли вы отрезок длиной в 1 единицу?

Измерения разрешается выполнять только с помощью линейки, не используя карандаш и бумагу.


Все задачи в этой главе геометрические в том смысле, что они позволяют изучить свойства линий, фигур и объектов и получить при этом удовольствие. Следующая задача взята из издания «Начал» XVIII века с примечаниями британского ученого Уильяма Уистона, преемника Ньютона на должности лукасовского профессора математики[17]17
  Одна из самых престижных академических должностей в мире; названа по имени ее учредителя Генри Лукаса, чье наследство по завещанию обеспечивало финансирование должности профессора математики в Кембриджском университете. Прим. ред.


[Закрыть]
в Кембриджском университете. Уистон обратил внимание на одну математическую странность, положенную в основу известной головоломки.

Ученый вычислил, насколько большее расстояние проходит голова человека, огибающего земной шар по окружности, по сравнению с расстоянием, пройденным ногами. Можете ли вы подсчитать это дополнительное расстояние исходя из предположения, что земной шар имеет сферическую форму?

Я выполню для вас эти расчеты, но нам понадобятся некоторые элементарные математические знания, а именно формула длины окружности, равная произведению радиуса и двух π, которую обычно записывают как 2π, где π примерно равно 3,14. Надеюсь, ее введение не уведет вас в сторону от удивительного, неожиданного результата. Потерпите немного, пока я буду делать вычисления.



На рисунке r – это радиус Земли, а H – рост человека. По формуле длина окружности земного шара (расстояние, пройденное ногами человека) равна 2πr, а длина окружности, обозначенной пунктиром (расстояние, пройденное головой), составляет 2πr(r + H), поскольку радиус пунктирной окружности равен радиусу Земли плюс рост человека. Таким образом, разность между длинами двух окружностей, которая показывает, насколько большее расстояние проходит голова человека, составляет:


2πr(r + H) – 2πr = 2πr + 2πH – 2πr = 2πH.


Члены уравнения 2πr сокращаются (запомните это!), а значит, ответ – 2πH, то есть 2 × 3,14 × рост человека.

Следовательно, если рост человека равен, скажем, 1,8 метра, то его голова проходит примерно на 11 метров больше, чем ноги.

Теперь понятно, почему Уистон посчитал этот ответ достаточно интересным и достойным внимания. Это действительно крохотное расстояние, если учесть, что окружность Земли – около 40 тысяч километров. Просто невероятно, что после путешествия вокруг Земли в тысячи километров голова человека проходит всего на 11 метров больше, чем его ноги, или 0,00003 процента от пройденного пути!

Путешественник Уистона стал источником вдохновения для следующей классической головоломки.


Ответ

27. ВЕРЕВКА, НАТЯНУТАЯ ВОКРУГ ЗЕМЛИ

Допустим, вокруг земного шара туго натянута веревка. Затем ее удлинили на 1 метр и поднимали над землей до тех пор, пока она не образовала окружность, в которой каждая ее точка оказалась на одинаковой высоте от земли.

На какой высоте теперь расположена веревка? Какого размера животное может под ней пройти?

На рисунке ниже показано, что это, по сути, такая же задача, как и предыдущая. Обе подразумевают сравнение двух окружностей, меньшая из которых – окружность земного шара. В случае с веревкой длина большей окружности превышает длину меньшей окружности на 1 метр.



В задаче с веревкой парадоксальность ответа впечатляет еще больше. Увеличив длину веревки на 1 метр, мы сможем поднять ее над землей на метра, то есть около 16 сантиметров. (Вот как я получил этот результат: пусть с – длина окружности земного шара, тогда длина большей веревки составит с + 1. Применив формулу длины окружности, получим два уравнения: 2πr = c и 2π(r + h) = c + 1. Эти уравнения дают 2πh = 1 или .)

Поразмышляйте немного над результатом. У нас есть веревка длиной 40 тысяч километров, удлиненная до 40 001 километра. Но этого на первый взгляд несущественного увеличения достаточно, чтобы поднять ее над землей на 16 сантиметров по всей окружности земного шара. Какое животное сможет свободно пролезть под этой веревкой? Кошка или маленькая собака.

Теперь вернемся к задаче о человеке, обогнувшем Землю. При вычислении дополнительного расстояния, которое проходит его голова, мы сократили два члена уравнения 2πr и получили 2π, умноженное на рост человека. Важно, что радиус земного шара r отсутствует в ответе, а значит, дополнительное расстояние, преодолеваемое головой, определяется исключительно ростом человека и не зависит от радиуса Земли. Другими словами, размер планеты никак не влияет на ответ. Путешественник Уистона мог бы обойти любой шар, и в каждом случае его голова прошла бы дополнительно 11 метров.


1. Человек обходит атом. Насколько большее расстояние пройдет его голова по сравнению с расстоянием, пройденным ногами?

2. Человек обходит футбольный мяч. Насколько большее расстояние пройдет его голова по сравнению с расстоянием, пройденным ногами?

3. Человек обходит Юпитер, длина окружности которого – около 400 тысяч километров. Насколько большее расстояние преодолеет его голова по сравнению с ногами?

4. Человек обходит Солнце, длина окружности которого равна около 4,4 миллиона километров. Насколько большее расстояние пройдет его голова по сравнению с ногами?


Во всех этих случаях ответ – всего 11 метров (разумеется, без учета сопутствующих физических препятствий). Аналогично, если бы веревка опоясывала атом, мяч, Юпитер или Солнце, увеличения ее длины на 1 метр было бы достаточно для ее поднятия на 16 сантиметров. Просто поразительно!

Уильям Уистон пробыл на должности лукасовского профессора всего восемь лет до того, как был изгнан из Кембриджского университета за еретические воззрения (он отвергал идею Святой Троицы, утверждая, что Иисус не равен Богу). Уистон так и не вернулся в мир университетской науки; он читал лекции по математике и естественным наукам в лондонских кафе, в ходе которых часто отвлекался на религиозную полемику.

Самый крупный вклад Уистона в науку связан с той ролью, которую он сыграл в последующем принятии закона о долготе. Он убеждал британское правительство объявить о денежном вознаграждении тому, кто найдет способ определять координату долготы судна в море, и создать для этих целей специальную комиссию. Уинстон надеялся выиграть эти деньги, но все его попытки решить поставленную задачу потерпели неудачу. Поэтому вполне уместным кажется то, что самым крупным вкладом этого ученого в математическую науку стала головоломка о путешествии вокруг Земли.


Я отдаю предпочтение задаче Уистона, в которой человек обходит земной шар, чем ее более поздней версии, где веревка парит над землей, поскольку, несмотря на очевидную абсурдность обеих ситуаций, первый сценарий кажется менее надуманным. Если бы такая веревка действительно существовала и вы бы удлинили ее на 1 метр, то, прежде чем думать о том, как поднять ее в воздух по всей длине, вы потянули бы веревку вверх в одной точке, чтобы посмотреть, на какую высоту она поднимется. Особенно если бы цель состояла в том, чтобы провести под веревкой какое-нибудь животное!

Новая задача

5. Допустим, у вас есть веревка, натянутая вокруг земного шара, и вы удлинили ее на 1 метр. Поднимайте веревку вверх в одной точке до тех пор, пока она не натянется. На какую высоту она поднялась? Какое животное сможет под ней пройти?

Не пытайтесь решить задачу, поскольку это по силам только людям с определенным уровнем математической подготовки. Я привел ее исключительно из-за оригинального решения. Попробуйте догадаться, как это делается, а затем сверьтесь с ответами в конце книги. Но сначала все же решите следующую задачу.

Подсказка: вам понадобится знание теоремы Пифагора, которая гласит, что во всех прямоугольных треугольниках квадрат гипотенузы равен сумме квадратов двух катетов. (Гипотенуза – это сторона, расположенная напротив прямого угла.) Но вы ведь это знаете, не так ли?



Ответ

28. ГИРЛЯНДА ИЗ ФЛАЖКОВ ДЛЯ УЛИЧНОГО ПРАЗДНИКА

На вашей улице длиной (от начала до конца) 100 метров будет проходить праздник. У вас есть 101-метровая гирлянда из флажков. Один ее конец вы прикрепляете к основанию фонарного столба в начале улицы, а другой – на расстоянии 100 метров у основания фонарного столба в конце улицы; середину гирлянды крепите к верхушке шеста, расположенного на полпути вниз по улице.

Какова высота шеста, если исходить из того, что гирлянда не провисает и не растягивается?

Следующие три головоломки касаются поведения катящихся кругов. Если вы никогда не размышляли над такими идеями, то ваша голова может пойти кругом. Однако я гарантирую, что ответы приведут вас в полный восторг. Вероятно, эти головоломки станут понятнее, если побывать в Японии.


«Начала» сделали Евклида выдающимся логиком, корифеем строгого дедуктивного мышления. Сегодня это звание разделяет, а может, даже затмевает Шерлок Холмс.

Вымышленный детектив стремился к евклидовой строгости («Сколько раз я говорил вам: “Отбросьте все невозможное, а то, что останется, и будет ответом, каким бы невероятным он ни казался”?»), но не был столь же силен в математике.

В одном из первых дел Шерлока Холмса под названием «Случай в интернате», изучив отпечатки велосипедных шин, сыщик делает вывод о том, куда направился велосипед. Он объясняет Ватсону ход своих рассуждений: «Отпечаток заднего колеса всегда глубже, потому что на него приходится большая тяжесть. Вот, видите? В нескольких местах он совпал с менее ясным отпечатком переднего и уничтожил его. Нет, велосипедист, несомненно, ехал от школы».

Я не уверен, что понимаю эти рассуждения. Безусловно, заднее колесо скрыло след переднего, но в каком направлении ехал велосипедист? Создатель Холмса сэр Артур Конан Дойл упустил одну важную деталь. Определить направление движения велосипеда по отпечатку шины действительно возможно.


Ответ

29. НА ВЕЛОСИПЕД, ШЕРЛОК!

В каком направлении – слева направо или справа налево – ехал велосипедист, оставивший эти следы?


Холмс был прав в том, что сначала необходимо определить, какой след оставлен каким колесом. Но это можно сделать, не зная глубины отпечатка велосипедных шин.



А вот еще одна загадка о движении велосипеда. Ответ вы можете понять интуитивно. Одно изображение покажется вам правильным, а другое нет. Но удастся ли вам объяснить почему?


Ответ

30. НЕЧЕТКАЯ МАТЕМАТИКА

Фотограф снимает движущийся велосипед. Велосипед едет по горизонтальной дороге либо слева направо, либо справа налево – направление не имеет значения. Колесо – это белый диск, на котором изображены два пятиугольника.

Какое из двух изображений на рисунке – фотография, сделанная фотографом?


Соль этой головоломки в том, что предсказать движение катящейся окружности сложнее, чем кажется на первый взгляд.

Следующая задача взята из теста на проверку общих способностей (SAT), который в 1982 году прошли 300 тысяч американцев. Только три ученика решили ее правильно. А вы сможете?


Ответ

31. ХОЖДЕНИЕ ПО КРУГУ

Радиус окружности A равен 1/3 радиуса окружности B. A совершает один оборот вокруг B и возвращается в исходную точку. Сколько раз окружность A обернется вокруг своего центра за это время?

а) ;

б) 3;

в) 6;

г) ;

д) 9.

А теперь обратимся к головоломке, которая заставит вас размышлять совершенно иначе.


Ответ

32. ВОСЕМЬ ЧИСТЫХ ЛИСТОВ БУМАГИ

На столе лежат восемь квадратных листов бумаги одинакового размера. Их края образуют следующий рисунок, причем только лист под номером 1 виден полностью.

Можете ли вы пронумеровать все остальные листы с учетом того, что 2 означает второй уровень, 3 – третий и т. д.?

Впервые о задаче с чистыми листами бумаги я узнал из блестящей книги Кобона Фуджимуры The Tokyo Puzzles («Токийские головоломки»).

В 1930–1970-х годах Фуджимура был королем головоломок в Японии. Он написал и опубликовал много книг, в том числе несколько бестселлеров, а в 1950-х даже организовал собственную еженедельную телепрограмму о головоломках. Популярность Фуджимуры явилась предвестником современного бума японских головоломок, вершиной которого стал международный успех судоку в 2000-х годах (об этом я расскажу подробнее чуть дальше в этой главе).

Японцы склонны более игриво относиться к числам, чем жители стран Запада, – во всяком случае, так мне показалось во время двух визитов в Японию. Японские школьники рассказывают таблицу умножения с такой же радостной непринужденностью, как и детские стишки. В прошлом популярным развлечением в этой стране были игры с числами на билетах метро. Кроме того, в Японии ментальную арифметику[18]18
  Высокоэффективная программа развития умственных способностей при помощи арифметических вычислений на счетах (абак, соробан). В отличие от обычной арифметики упражнения на счетах задействуют оба полушария головного мозга, что способствует их гармоничному развитию. Прим. ред.


[Закрыть]
превратили в зрелищное состязание. Овладение навыками вычислений на счетах – популярное внеклассное занятие, а для лучших мастеров в этом деле проводятся турниры. В 2012 году я побывал на национальном чемпионате по счету на счетах, кульминацией которого стала игра, в ходе которой участники состязания должны были на воображаемых счетах сложить 15 чисел, демонстрируемых им менее чем за две секунды. Это было напряженное и захватывающее соревнование!

Вот еще одна головоломка Фуджимуры, которая мне очень нравится.


Ответ

33. КВАДРАТ ИЗ ДВУХ ПОЛОВИНОК

Большой квадрат разделен на 16 квадратов меньшего размера. На рисунке изображены два способа разделить большой квадрат на два одинаковых фрагмента.

Существует еще четыре способа сделать это. Сможете ли вы их найти?

Следует уточнить, что разрезать квадрат можно только по внутренним линиям, а также что две полученные фигуры должны быть идентичными. Иными словами, если бы квадраты были изготовлены из картона, вы могли бы полностью совместить их, наложив один на другой в горизонтальной плоскости. Однако если ради этого вам придется перевернуть хоть одну фигуру (то есть повернуть верхней стороной вниз), то они не будут считаться идентичными.


И наконец, головоломка Фуджимуры с кривыми линиями. Возможно, для ее решения вам понадобится формула площади круга, равная произведению числа π на квадрат радиуса круга, или πr2.


Ответ

34. КРЫЛО И ЛИНЗА

На рисунке изображена четверть круга, в которой заключены два полукруга меньшего размера. Докажите, что площадь фигуры А, имеющей форму крыла, равна площади фигуры В, имеющей форму линзы.


Эта головоломка мне нравится не только визуально, но и потому, что напоминает о японской традиции XVII–XIX столетий. В те времена на гробницах и в храмах выставлялись деревянные таблички с начертанными на них задачами по геометрии. Такие таблички назывались сангаку и обозначали подношения божествам, а также публично объявляли о последних достижениях. Сангаку превращали математику в общественное событие, источник развлечения и восхищения. Я видел табличку сангаку в храме в Киото. На ней были изображены круги, треугольники, сферы и другие фигуры, красиво разрисованные белым и красным цветами. Геометрические фигуры образуют гармоничную, артистичную композицию, передающую эстетику, совершенно не свойственную сугубо дидактическим рисункам в западных учебниках геометрии. Как правило, сангаку содержит финальный чертеж задачи и лаконичную подпись внизу, как на табличке из храма в Нагое, созданной в 1865 году (см. рисунок ниже). Автором задачи считается пятнадцатилетний мальчик по имени Танабе Сигетоси.



Ответ

35. КРУГИ САНГАКУ

На рисунке изображены круги пяти размеров. В порядке увеличения можно насчитать шесть белых кругов, семь темно-серых, три светло-серых, один круг, обозначенный пунктирной линией и вписанный в треугольник, а также один круг, нарисованный сплошной линией.

Сколько радиусов белого круга можно разместить вдоль радиуса круга, обозначенного пунктирной линией?


Задача поражает своим изяществом. Трудно понять, с чего следует начать. Но как только вы найдете способ выразить радиус определенных кругов через радиус других кругов, обнаружите поистине прекрасную головоломку.


Автор следующей задачи – японский подросток еще младше Сигетоси. В 1847 году сангаку тринадцатилетнего Сато Наосуэ появилась в храме, расположенном почти в 500 километрах от Токио. Эта головоломка сложнее предыдущей, поскольку, как почти во всех задачах с прямоугольными треугольниками, для ее решения нужно знать теорему Пифагора.


Ответ

36. ТРЕУГОЛЬНИК САНГАКУ

На рисунке изображены круги трех размеров: два черных, три белых и один серый. Докажите, что радиус серого круга вдвое больше радиуса черного круга.


В Японии существует традиция устилать пол дома татами. Сплетенные из соломы, эти маты такие мягкие, что по ним можно ходить босиком. Обычно татами прямоугольной формы, а их длина в два раза больше ширины.


Ответ

37. ШАГАЯ ПО ТАТАМИ

На рисунке слева изображена схема размещения татами. Предположим, вы идете из точки A в точку B по краю татами. Если вам необходимо найти самый длинный путь, можно начать передвигаться по самому длинному отрезку – например, по верхнему краю, как показано на рисунке в середине, или по нижнему, как на рисунке справа.

Однако существует и более длинный маршрут. Сможете ли вы найти его?


Если вам когда-нибудь понадобится уложить татами, вы должны знать, что есть два способа это сделать – один приносит удачу, а другой нет. Первый сводится к укладыванию трех матов в виде буквы T. Суть второго – уложить четыре татами так, чтобы они сходились в одной точке углами в виде знака +. В схемах на удачу четыре мата никогда не сходятся в одной точке. На основе этого предубеждения созданы весьма занимательные головоломки.


Ответ

38. 15 ТАТАМИ

Устелите пол комнаты пятнадцатью татами размером 2 × 1 метр, соблюдая правило, согласно которому углы четырех татами не должны сходиться в одной точке.


При решении этой и следующей задачи используйте карандаш с резинкой, чтобы стирать неправильные варианты.

Признанный лидер среди изобретателей головоломок в Японии – инженер-химик Ноб Йошигахара, переживший в свое время взрыв в Хиросиме, оставивший на его теле следы от ожогов. К моменту своей смерти в 2004 году он стал одним из самых известных головоломщиков в мире. Йошигахара вел соответствующую рубрику в газете, был коллекционером, писал книги, разрабатывал игрушки, организовывал международные конференции. Друзья из всемирного сообщества любителей головоломок помнят его как харизматичного, великодушного и веселого человека. Копий его наиболее успешной игры – «Час пик», в которой игрок должен передвигать пластиковые легковые и грузовые автомобили по сетке дороги, – продано свыше десяти миллионов по всему миру.

Йошигахара также придумал головоломку «Числовое дерево», с которой начинается эта книга. Кроме того, он ввел новое условие в задачи об укладке татами. На рисунке ниже прямая линия (выделенная жирным) проходит с одной стороны комнаты к другой. В следующей головоломке ни одна линия не должна пересекать комнату от края до края.



Ответ

39. ТАТАМИ НОБА

Устелите пол комнаты пятнадцатью татами размером 2 × 1 метр так, чтобы ни одна прямая линия не пересекала комнату от одного края до другого. Четыре татами могут сходиться в одной точке углами.

Комнаты не всегда бывают прямоугольными! В представленной ниже задаче на месте двух угловых квадратов расположены лестницы.


Ответ

40. КОМНАТА С ЛЕСТНИЦАМИ В УГЛАХ

Если в комнате, взятой из двух предыдущих задач, вырезать противоположные углы, пол в ней можно выстлать четырнадцатью татами без щелей или нахлестов, как показано на рисунке ниже. (Татами можно укладывать в любом положении.) Давайте увеличим размер комнаты до 6 × 6 метров, вырезав углы под лестницы. Докажите, что в ней нельзя выстлать пол семнадцатью татами без щелей или нахлестов.


Впрочем, лестницы необязательно должны располагаться в углах комнаты. В следующей задаче положение двух лестниц выбрано случайным образом.


Ответ

41. КОМНАТА С ДВУМЯ ЛЕСТНИЦАМИ, РАСПОЛОЖЕННЫМИ В СЛУЧАЙНОМ ПОРЯДКЕ

Архитекторы решили, что не хотят размещать лестницы в противоположных углах комнаты размером 6 × 6 метров. При условии, что квадраты на полу комнаты окрашены подобно клеткам на шахматной доске (как на рисунке), а также что одна лестница расположена на белом, а другая на сером квадрате, докажите, что можно выстлать пол комнаты семнадцатью татами без щелей и нахлестов. Татами покрывают два смежных квадрата и могут размещаться как угодно, если только не закрывают два квадрата, где расположены лестницы.


В этой задаче вам необходимо доказать, что всегда можно покрыть весь пол комнаты, а не просто привести пример, при каких условиях это происходит.

Когда я опубликовал следующую задачу в своей колонке в Guardian, несколько архитекторов высмеяли ее простоту, поскольку решение представляет собой распространенную конструктивную особенность британских домов. Подобная реакция лишь подтверждает, что одним людям решение головоломок «взрывает» мозг, тогда как другим кажется слишком очевидным.


Ответ

42. ГОЛОВОЛОМКА С ДЕРЕВЯННЫМИ БЛОКАМИ

На рисунке представлен вид сверху и спереди трехмерной деревянной конструкции с плоскими сторонами. Нарисуйте хотя бы один ее вид сбоку.


Все видимые ребра отмечены сплошными линиями, а скрытые должны обозначаться пунктиром. Так, например, изображенный ниже объект, состоящий из двух квадратных граней с квадратными отверстиями и общим ребром, не может быть решением головоломки, поскольку при обозначении скрытых ребер в его виде сбоку, сверху и спереди использовались бы пунктирные линии, как показано на рисунке. Безусловно, на изображении вида сбоку вполне могут быть пунктирные линии, которыми отмечены скрытые ребра. Однако вид сверху или спереди не может иметь скрытых ребер, потому что это противоречит условиям задачи (на изображениях вида сверху и спереди нет пунктирных линий).



Две следующие головоломки предлагают нам войти в дом.

Кольца Борромео – удивительный предмет с любопытным свойством: несмотря на то что все три его кольца сцеплены между собой, удаление любого одного из них приводит к потере сцепления между двумя остальными, как показано на рисунке далее. (Если изготовить кольца из жесткого материала, то при их наложении друг на друга каждое разворачивается в несколько ином направлении, чем остальные, а значит, представленный ниже рисунок своего рода обман.) Мне нравится парадоксальность ситуации: никакие два кольца не сцеплены, но все вместе они неразделимы. Кольца Борромео – популярный символ взаимозависимости трех частей; они используются в христианской иконографии, например для обозначения Святой Троицы.

Эти кольца названы в честь итальянского семейства Борромео, жившего в эпоху Возрождения. Три сцепленных кольца изображены на семейном гербе этой фамилии, хотя сама идея трех объектов, связанных таким образом, возникла раньше. Валькнут – эмблема викингов в виде трех сцепленных треугольников – в настоящее время чаще всего встречается на татуировках, кулонах и футболках поклонников музыки хеви-метал.


Кольца Борромео состоят из трех связанных элементов, которые полностью распадаются при исключении одной части. Аналогичная идея лежит в основе следующей головоломки.


Кольца Борромео


Валькнут


Ответ

43. КАРТИНА НА СТЕНЕ

Обычно, чтобы повесить картину на двух гвоздях, веревку цепляют за оба гвоздя, как показано на рисунке.

Преимущество такого способа состоит в том, что, если один гвоздь выпадет, картина продолжит висеть, поскольку будет держаться на втором гвозде.

Сможете ли вы придумать способ так обернуть веревку вокруг гвоздей, чтобы картина падала на пол при извлечении одного из них? (В случае необходимости веревку можно удлинить.)


Кольца и предметы домашнего обихода естественным образом приводят нас к математической идее кольца для салфеток. Именно такая фигура получится, если просверлить цилиндрическое отверстие в шаре таким образом, чтобы центр отверстия проходил через центр шара.

Следующая головоломка особенно интересна тем, что в ней очень мало данных.



Ответ

44. ПРИМЕЧАТЕЛЬНОЕ КОЛЬЦО ДЛЯ САЛФЕТОК

Высота кольца для салфеток – 6 сантиметров. Чему равен его объем?

Решение этой головоломки предполагает большое количество рутинной работы, но пусть вас это не пугает. Я помогу вам начать ее решать. Поверьте, это потрясающая задача.

Объем кольца для салфеток равен разности между объемом шара и объемом подлежащей удалению центральной части в виде цилиндра с выпуклыми верхней и нижней поверхностями – куполами.



Высота цилиндра составляет 6 сантиметров. Пусть r – радиус шара, h – высота купола, a – радиус поперечного сечения цилиндра, который также является радиусом основания купола. Далее вам понадобятся только формулы объема, которые я с удовольствием привожу ниже.


Формула объема шара: πr3


Формула объема цилиндра: πa2 × 6 см, или 6πa2


Формула объема каждого купола:


Мы уже близки к решению. Объем кольца для салфеток равен объему шара минус объем цилиндра минус двойной объем купола. С помощью теоремы Пифагора мы можем выразить a через r, а также h через r. Следовательно, можно записать объем кольца для салфеток в виде выражения, в котором r – единственная переменная. Это будет длинное выражение, содержащее множество r и π.

Чего же вы ждете?!


Историк Геродот писал, что геометрия была изобретена в Египте при измерении площади участков пахотной земли, затопленной Нилом. Вычисление площади квадратов и прямоугольников до сих пор остается одной из первых задач, которые мы изучаем в геометрии. Для этого необходимо умножить одну сторону на другую, смежную.

Эта простая процедура – все, что вам нужно для решения головоломки под названием Menseki Meiro («Неразбериха с площадями»), придуманной японским изобретателем Наоки Инаба.

Далее вы увидите пример такой головоломки и сможете разобраться в ее сути. Ваша задача – найти отсутствующее значение. Обозначенные на рисунке расстояния не соответствуют реальным размерам фигур, поэтому получить ответ посредством измерения не получится.



Красота этой головоломки в том, что решить ее вы должны геометрически, с помощью целых чисел. Не разрешается портить свою работу уравнениями или – боже упаси! – дробями. Для того чтобы справиться с задачей, дополните большой прямоугольник так, как показано на рисунке ниже. Площадь прямоугольника A должна составлять 20 см2, так как равна 4 × 5 сантиметров. Это означает, что сумма площадей прямоугольника A и нижнего прямоугольника равна 20 + 16 = 36 см2, что эквивалентно площади большого прямоугольника слева. Поскольку прямоугольники имеют одинаковую высоту, у них должна быть и одинаковая ширина, а значит, отсутствующее значение – 5 сантиметров.


Страницы книги >> Предыдущая | 1 2 3 4 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации