Электронная библиотека » Александр Никонов » » онлайн чтение - страница 5


  • Текст добавлен: 21 апреля 2022, 15:49


Автор книги: Александр Никонов


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 17 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

А все зависит от точки зрения! Вы, стоящий неподвижно, не заметите никаких проявлений магнитного поля. А безумный Петр Жопов, если на бегу проведет эксперименты, заметит магнетизм своими приборами.

Вот вам простая аналогия. Если вы встанете так, чтобы толстое дерево загораживало вам солнце, вы солнца не увидите. А вот бегающий Петя, которому дерево солнце не загораживает, его увидит.

Результат эксперимента зависит от условий его проведения, от точки зрения экспериментатора. В науке такую точку зрения называют системой отсчета. Если вы сидите в движущемся поезде, то в вашей системе отсчета поезд неподвижен, поскольку вы движетесь вместе с ним с той же скоростью. А вот относительно системы отсчета Пети, который стоит на полустанке, и поезд, и вы очень даже подвижны и со свистом проноситесь мимо, оставив господина Петю со взъерошенными волосами. А нельзя стоять так близко от электрички!

В общем, электромагнитное поле есть единая природная реальность. Просто можно найти такую точку зрения для наблюдения за ней, что вам будет видна только одна грань этой реальности – магнитная либо электрическая.

К интересным делам мы сейчас переходим! Ох, к интересным!..

Смотрите. Вот мы толкнули магнит, висящий на веревочке. Он начал движение. А движущееся магнитное поле порождает рядышком поле электрическое. Которое, естественно, тоже движется (вслед за магнитом). Но движущееся электрическое поле должно, в свою очередь, порождать рядышком магнитное поле! А магнитное – снова неподалеку порождает электрическое. И так далее. Что это? Электромагнитная волна побежала вокруг во все стороны!

Вокруг силовых линий магнитного поля закручиваются силовые линии поля электрического, а вокруг тех – снова магнитного и так далее. А теперь мы раз – и остановили качающийся магнит! Генерация волны прекратилась. Но те волны, которые уже были сгенерированы ранее и успели убежать, все еще кругами разбегаются от нас в мировое пространство, постепенно затухая.


Распространение электромагнитной волны, ее электрической и магнитной составляющих


Можно и по-другому поступить – начать трясти или колебать электрический заряд. Тогда в пространстве вокруг него тоже начнет распространяться волна электромагнитных возмущений. Качающийся заряд колеблет вокруг себя поле совершенно точно так же, как дрожащая струна колеблет воздух, периодически толкая его вокруг себя. При этом мы слышим звук струны.

Звуки – это волны в воздухе, то есть периодически налетающие на нас уплотнения и разрежения воздуха. Мы этих периодических сгущений и разрежений прозрачного воздуха не видим. Но слышим. А электромагнитную волну можем засечь приборно.

И раз уж у нас речь зашла о разных волнах, им придется уделить некоторое внимание.

Сплошные волнения

Какие бывают волны?

Продольные и поперечные. Самые привычные для нас волны – на море. Вверх-вниз, вверх-вниз. Это поперечная волна, потому что среда колеблется поперек направления бега волны. Волна бежит по морю вдоль поверхности, к берегу, то есть горизонтально, а частички воды согласованно колеблются в перпендикулярном направлении – вверх и вниз. Такая же волна образуется, если колебать привязанную к дверной ручке веревку.

А есть волны продольные. Там колебания среды, по которой распространяется волна, происходят вдоль направления бега волны. Наиболее наглядный пример – растянутая пружина, толкнув которую мы запускаем волну уплотнений и разрежений витков.

Воздушные волны как раз продольные, в них распространяются сгущения и разряжения упругих молекул воздуха.

Какие еще есть характеристики у волны?


Продольная и поперечная волны


Звуковая волна


Скорость! Мы про это уже говорили. Скорость зависит от среды, в которой распространяется волна. Чем она плотнее, тем выше скорость волны.

Еще одна характеристика волны – амплитуда! То есть высота волны. Амплитуда – характеристика мощности. Чем выше амплитуда, тем мощнее волна, что понятно.


Две волны с разными амплитудами


Еще одной важнейшей характеристикой является длина волны или ее частота. Длина волны – это расстояние между ближайшими гребнями поперечной волны (или соседними областями сжатия в волне продольной). А частота – количество колебаний в секунду. Частота измеряется в герцах. 1 герц – это одно колебание в секунду. 50 Гц – 50 колебаний.


Волны с разными частотами (длинами волн)


Длина волны и частота – обратные величины, что совершенно понятно: чем больше длина волны, тем меньше частота, и наоборот. У волны с огромной частотой длина волны крохотная.

Волна – это не вещество и не загадочное поле. Волна – это процесс! Процесс колебания частиц среды, в которой распространяются волны. При этом сами свойства среды физиков, изучающих волны, не особо интересуют. Это может их заинтересовать, только если указанные свойства среды влияют на распространение волн в ней. А так физиков-волновиков интересуют только свойства самих волн – как таковых. Им интересно, как волны преломляются, как они огибают препятствия, как складываются друг с другом или гасят друг друга.

Выясняется, что вне зависимости от того, какое именно вещество колеблется, то есть по какой именно среде передаются волны, у всех волн, как у физического процесса, наблюдаются одни и те же свойства.

И самыми известными из этих свойств являются дифракция и интерференция.

Что такое дифракция? Это способность волн огибать препятствия или проходить сквозь щели. И не спрашивайте меня, каких волн – водяных или воздушных. Любых! Потому что, повторюсь, волновая физика изучает свойства процесса, а не свойства среды, в которой процесс происходит.

Посмотрите внимательно на два рисунка ниже. На верхнем на стенку с дыркой набегает слева сплошной волновой фронт. На нижнем – лежит поток частиц. Видно, что волна имеет свойство после прохождения дырки расширяться веером. А частицы просто пролетают прямо.

У волн, в отличие от потока частиц, есть свойство «загибаться», то есть слегка огибать препятствие и проникать в область геометрической тени. То есть, казалось бы, в каком-то месте за препятствием колебаний быть не должно, но волна эдак аккуратно за препятствие заглядывает и бежит там, где должна была быть волновая тень, если бы волны огибать препятствия не умели.



Различие в поведении волн и частиц


Если вас и вашего начальника будет разделять небольшая гора, и он, поднатужившись, крикнет из-за горы, вы его услышите, хотя гора вас затеняет от звука. Это произойдет потому, что волны имеют свойство препятствия огибать. (Конечно, гора должна быть при этом не слишком велика, а то звук просто ослабнет из-за расстояния.)


Голос вопящего за горой слышен из-за дифракции


Теперь самым внимательным образом посмотрите на картинку ниже. Здесь волны не проникают через дырку в стенке, а огибают столбик, на который мы смотрим как бы сверху.


Волна огибает столб, давая полосчатый рисунок


Вопрос: почему после огибания препятствия за ним получилась какая-то полосатая зебра? Да потому что волны, с двух сторон обогнувшие края столбика, встретились и начали складываться и минусоваться друг с другом. Если горбик одной волны совпал с горбиком другой, получилась волна вдвое выше. А если горбик одной волны совпал с провалом другой, они погасили друг друга – горбик заполнил провал. Вот и получается – где-то двойные волны, а где-то волн вовсе нет.

Сложение волн друг с другом называется интерференцией. И в данном случае интерференция у нас получилась из-за дифракции, то есть из-за того, что волны разделились препятствием, обогнули его, чуть изменив направление, и встретились, начав складываться друг с другом и вычитаться друг из друга.

Разумеется, складываться и вычитаться могут только волны одной частоты, в науке их называют когерентными. А если частоты разные? Тогда сложения не будет, а будет независимый бег волн – как на море. Представьте себе, как по морю катятся большие валы волн, а по их поверхности распространяется мелкая рябь, которая никак не мешает накату больших волн. Это разные волны существуют параллельно и сложиться не могут. А вот если частота (длина волн) совпадают – тогда могут.

А теперь вообразите, что у нас неподалеку от берега есть два источника когерентных волн. Ну, как будто мы одновременно бросили неподалеку друг от друга два совершенно одинаковых камушка, породившие одинаковые волны. Или волна проходит через две одинаковые дырки в экране и порождает два пересекающихся «веера» волн.

Здесь толстыми линиями нарисованы бугры волн, а тонкими линиями – впадинки. Места, где встречаются бугры, обозначены кружочками одного оттенка, здесь из-за сложения высота суммированных волн будет вдвое выше. А места, где встречаются бугор одной волны и впадинка другой, обозначены другим оттенком – здесь волна гасится, бугор поглощается впадинкой, и волнения нет.

Но поскольку волны расходятся кругами, на берегу будет наблюдаться удивительная картина – в одних местах, куда подбегают удвоенные волны, будет сильный прибой. А между ними – тишина и спокойствие, никаких волн! Этакий странный пунктирный прибой.


Сложение когерентных волн


Необычайно хитрые физики XVIII века пропускали солнечный свет через маленькую дырочку в плотной занавеске на окне и получали тонкий солнечный луч. Который затем пропускали через две маленькие щели в черном экране. Свет, пройдя через щель, расширялся конусом, огибая препятствие в виде краев щели (дифракция), и, распространяясь конусом дальше, встречался с соседним, точно таким же конусом. И оба лучевых конуса начинали складываться и вычитаться (интерференция).


Схема эксперимента, проведенная физиком Юнгом. Переменной волнистой линией показана интенсивность света, падающего на экран. В серединке она максимальна, затем темное место, затем светлое и так далее


Получилась типичная волновая картина – дифракция и интерференция. Что это значит? Это значит, что свет – волна!

Значит, спор между Ньютоном, который считал свет летящими маленьким частицами-корпускулами, и его оппонентами, которые говорили, что свет есть волна, разрешился в пользу волновиков. Свет обладает свойствами волн, значит, свет – волны, а не частицы! Поток частиц не обладает свойствами дифракции, и частицы не могут складываться между собой.

Как тебе такое, Исаак Ньютон!..

Ученые определили и скорость световой волны в вакууме, то есть в пустоте, она оказалась равна 300 000 км/с. Это самая большая скорость на свете, быстрее ничего не бывает. В других материалах скорость света меньше. Так, например, в алмазе по сравнению с вакуумом она падает более чем вдвое и составляет 124 000 километров в секунду.

Стала понятна и сущность цвета. Помните дисперсию белого луча, которую отрыл Ньютон? Белый свет в призме разлагается на 7 цветов радуги, то есть является смесью семи разных цветов. Чем же эти цвета отличаются друг от друга?

Оказалось, только частотой (длиной волны) и больше ничем.

Посмотрите на табличку ниже. Там приведены для разных цветов длины их волн в нанометрах и диапазоны частот в терагерцах.


Семь цветов радуги в физическом выражении


Что это значит? Это значит, что если световая волна длиной в 550 нанометров попадает нам в глаз, нам кажется, что зелененьким посветили. Наш глаз – уникальный инструмент, он умеет определять частоту световой волны и сигнализирует нам об этом чувственным образом, который мы воспринимает как цвет.

Почему кирпич красный? И почему мы вообще видим что-то? Подсветка помогает! Световые волны падают на разные предметы, отражаются от них и попадают на два наших датчика, которые называются глазами. Если предмет, например, кирпич, поглощает все световые волны, кроме красного, а красный отражает, отраженный красный попадает к нам в глаз, и мы восклицаем, потирая руки:

– О! Волна частотой примерно в 450 терагерц пришла!

А почему черное кажется нам черным? Потому что черный предмет поглощает весь диапазон видимого света – и красное, и оранжевое, и желтое, и зеленое, и голубое, и синее, и фиолетовое. И ничего почти не отражает. Вот и выглядит черным, как черт.

А почему тарелка – белая?

А потому что вещество тарелки обладает таким свойством – отражать все падающие на него лучи. И они все попадают нам в глаз. А смесь всех лучей – это белое.

И снова спросим: что же такое свет по сути своей?

А вот теперь можно слегка задуматься и задаться таким вопросом… Как известно, не все колебания воздуха человек в состоянии услышать – есть инфразвуки и ультразвуки, которые ухо «не берет». Может, и со световыми колебаниями то же самое?

Да!

Со световыми колебаниями ситуация такая же – есть ультрасвет и инфрасвет, которые глаз не улавливает. Называются они ультрафиолетовым и инфракрасным излучением. Солнце эти лучи исправно испускает, но мы их не видим.

Те колебания, частота которых превышает частоту фиолетового цвета, называются ульрафиолетовыми. А те, частота которых меньше частоты красного света, называются инфракрасными. Можно и по-другому сказать: коротковолновое излучение – это ультрафиолет, а длинноволновое – инфракрасное. То есть радуга на небе на самом деле имеет не семь цветов, а больше, просто другие цвета мы не видим.

Кстати, не все земные существа такие убогие, как люди. Пчелы, например, видят ультрафиолет, а змеи инфракрасное излучение.

Потемнение кожи, которое мы называем загаром, вызывается ультрафиолетовым излучением. Любопытно, что инфракрасное излучение тоже воспринимается нашей кожей – как тепло. Его поэтому так и называют – тепловое излучение.

Теперь, ознакомившись с качественными характеристиками, нам осталось только дать численные значения ультра– и инфрасвета. Ультрафиолетовый свет находится на частотной шкале «правее» фиолетового и простирается от 790 до 30 000 ТГц. А инфракрасный, соответственно, левее, и его значения лежат в значениях от 1 до 400 терагерц.

Раздумчивый читатель, который смотрит на два хода вперед, может в этом месте книги начать ожесточенно чесать затылок, организуя таким образом повышенный приток крови к мозгу для усиления умственной деятельности, ибо в голове его уже зреют два вопроса:

– А еще левее инфракрасного и правее ультрафиолетового бывают волны? И еще интересно, волнами чего является свет? Ну, в смысле, что колеблется-то? Морские волны – это колебания воды. Звуковые – воздуха. А тут? Ответит нам наконец автор или нет?

Ответит по порядку…


Да. И левее инфракрасных, и правее ультрафиолетовых колебаний тоже существуют волны. А почему бы им не быть?

И что же находится правее ультрафиолета с частотой выше ультрафиолета? Там находятся уже знакомые нам рентгеновские лучи. Оказывается, они – то же самое, что свет, только частоты другие, поменьше. Вредные для здоровья рентгеновские лучи имеют частоты от 30 000 ТГц до 600 000 ТГц. Те рентгеновские лучи, что подлиннее (меньше частота), называют мягким рентгеном. А высокочастотные рентгеновские лучи – жестким.

Еще правее располагается уже известное нам гамма-излучение. Оно не просто вредное, оно убийственное.

Теперь посмотрим в другую сторону. Какие волны лежат левее инфракрасных? А это хорошо нам знакомые радиоволны! Они условно делятся на:

– сверхдлинные (от 0 до 3 килогерц, длина этих волн – тысячи километров)

– длинные (с частотой от 3 до 30 килогерц и километровой длиной)

– средние (от 300 кГц до 3 мегагерц, гектометровые)

– короткие (от 3 МГц до 30 МГц, декаметровые)

– метровые (30 МГц – 300 МГц)

– дециметровые (300 МГц – 3 ГГц)

– сантиметровые, или СВЧ (3 ГГц – 30 ГГц)

– миллиметровые, или микроволны (30 ГГц – 300 ГГц)


Практически все эти волны человечеством так или иначе используются.

На сверхдлинных волнах были полуэкспериментальные попытки сделать дальнюю связь с подводными лодками, поскольку длинные волны хорошо проходят сквозь воду.

На длинных, средних и коротких волнах осуществляется обычная радиосвязь.

Метровые и дециметровые – это передача изображения в телевидении.

Сантиметровыми волнами разогревают пищу в печках СВЧ.

Миллиметровые волны пытаются использовать в медицине для лечения.

Как видите, природа всех этих колебаний, начиная с самого длинного и «ленивого» радиодиапазона с тысячекилометровыми волнами и заканчивая самым коротким и жестким проникающим излучением, одинакова. Часть этих колебаний мы можем воспринимать непосредственно своими органами чувств – я имею в виду тот короткий кусочек шкалы, который мы называем видимым светом. И теперь остается только ответить на вопрос, что же это за колебания, то есть что же именно колеблется, раз свет – это волна.

Тут я рекомендую вам вспомнить, с какого момента книги мы начали разговор о волнах. Не листайте книгу, я напомню ход событий… Мы сначала узнали, из чего собирается вещество. Оно собирается всего из трех частиц – электрон, протон и нейтрон. Две из них электрически заряженные. Мы полюбили таблицу Менделеева, где сгруппированы все возможные атомы, сделанные из трех указанных элементарных частиц. Мы узнали на примере воды и соли, как собираются из атомов молекулы. Затем выяснилось, что помимо вещества в мире существует еще и некое невидимое и неосязаемое поле. Оно неразрывно связано с веществом! Электрическое поле связано с электрически заряженными частицами. Магнитное поле порождается движением электрически заряженных частиц. А вообще-то разделять их бессмысленно, поскольку магнитные и электрические проявления поля – это как орел и решка у монеты. Не бывает отдельного магнитного и электрического поля. Это две стороны единого электромагнитного поля.

Затем мы подвесили на ниточке магнит, а потом заряд и качнули их, заставив двигаться, колебаться и распространять по своему полю волны.

Догадались? Те самые волны, которые в частотном диапазоне простираются от нуля до бесконечности – радиоволны, свет, ультрафиолет, рентген, гамма, – это просто электромагнитные волны. То есть колебания электромагнитного поля. Оно пронизывает всю вселенную. Просто где-то поле «гуще», а где-то истончается до нуля.

Ниже нарисована шкала этих волн, которую поэтически можно назвать «таблицей Менделеева для электромагнитных колебаний».


Полная шкала электромагнитных колебаний


Часть III. Сумасшедшая физика

Какой удар со стороны классика!

Все настолько прекрасно, что и желать больше нечего! Не так ли?

Мы знаем, как устроено вещество, с конструкторской точностью. То есть можем просто сделать игрушечный конструктор из трех деталек (протон, нейтрон, электрон) и собрать из него все атомы таблицы Менделеева – химические элементы. А из этих элементарных веществ далее собрать уже любую молекулу сложного вещества.

Мы также знаем, что в мире, кроме вещества, существует еще и поле. Точнее, поля. Невидимые, но реальные. Гравитационное, например, поле, которое обеспечивает нам стабильное присутствие на нашей планете, а нашей планете – вращение вокруг Солнца, что не только полезно, но и крайне приятно. А то бы мы все умерли.

Кроме гравитационного, есть еще электромагнитное поле, которое распространяют вокруг себя заряженные частицы (электрон да протон). Оно обеспечивает нам всю химию и вообще целостность всех предметов – атомы собираются в молекулы, а молекулы тяготеют друг к другу (дабы предметы не разваливались) только и исключительно с помощью электромагнетизма. Других причин нет.

И еще в мире существуют волны. А почему бы им не быть? Если что-то колеблется, оно толкает вокруг себя среду, в которой находится, распространяя по ней упругие колебания. Можно вызвать акустические колебания, то есть звуковые, если колебать, например, струну. А можно вызвать колебания электромагнитного поля, если колебать зарядики. Частота этих колебаний имеет диапазон широчайший, и мы почти всеми частотами можем пользоваться. Даже опасное рентгеновское излучение дозированно используем в медицинских целях – чтобы свои туловища просвечивать и искать разные болезни, проглоченные гайки и переломы. Ну, казалось бы, чего еще надо? Живи да радуйся! Все так хорошо в мире стало, так понятно…

Подобные благодушные настроения царили у физиков сто лет назад. Правда, тогда еще не был отрыт нейтрон, но свет в электрических лампах уже горел без всякого нейтрона, телефон работал, автомобили бегали, подводные лодки плавали, рентгеном людей просвечивали, а химики колдовали над своими колбами и получали приличные результаты. Умеем, когда захотим!

Тем неожиданнее случилась катастрофа…

Привычный мир физиков обрушился буквально в одночасье. Вот только что в физическом раю пели соловьи благолепия, пухли как на дрожжах жирные розы удовлетворенности, распространяя окрест благоуханные ароматы достижений. И вдруг бац – какая неприятность! Привычный рай трещит и разваливается на части, а из разломов начинают торчать невидимые ранее проблемы.

Весь XIX век физика развивалась такими бурными темпами и добилась таких успехов, что гордость физиков за свою вотчину была вполне обоснованной. Удалось создать стройную непротиворечивую картину мира, в основе которой лежала ньютоновская механика. Скорости, траектории, законы движения массивных тел… Все это можно было определить, просчитать и, зная все координаты, массы и скорости тел, предсказать, где они окажутся в любой момент времени в будущем.

Иными словами, мир представлялся фатальным. Что такое фатализм? Всеобщая предопределенность – чему суждено случиться, того не миновать, как ни пытайся. От судьбы не уйдешь. Написано тебе на роду утонуть, значит, утонешь… Именно такую «окаменевшую» и неизменяемую картину мира давала ньютоновская механика, в которой конечные координаты и другие параметры любого тела, любой частицы жестко детерминировались начальными условиями движения. Понятно, что на практике сведений обо всех частицах вселенной у нас нет, но в теории мир был именно таким – железно заданным формулами физических закономерностей.

Правда, о философской подоплеке своих механистических воззрений физики задумывались не особо, им просто нравилась та цельная картина мира, которая вырисовывалась к концу XIX века. Как движутся планеты, понятно. Законы распространения волн известны. Оптика позволяет делать очки и телескопы. Уравнения Максвелла, описывающие электромагнитное поле, уже написаны. Электротехника развивается бурными темпами. Плохо ли?

И когда о ту пору юный абитуриент пришел к своему профессору – физику Филлипу Жолли – и сказал ему, что мечтает связать свою жизнь с физикой, тот томно отмахнулся:

– Ах, молодой человек! Физика как наука в общем и целом завершена за исключением нескольких несущественных мелочей. Стоит ли вам портить себе жизнь? Займитесь лучше юриспруденцией или музыкой.

Этого юного абитуриента, который действительно отлично играл на фортепиано и даже был автором одной оперетты, звали Макс Планк. Это имя сегодня известно всем, кто учился в школе или хоть что-то слышал о физике.


Макс Планк


Макс Планк – человек, который, уцепившись за те самые «несущественные мелочи», о которых говорил благодушный Жолли, взломал здание старой физики – и сам испугался содеянного.

Макс Планк – человек, основавший здание новой физики – квантовой.

Макс Планк, придумавший кванты, – человек, который сам в кванты не верил.

Именем Макса Планка названа одна из самых фундаментальных констант современной физики, описывающая базис нашего мира, – «постоянная Планка». А на могиле Макса Планка вместо дат его жизни и смерти выбиты совсем другие цифры – значение постоянной Планка.

Планк прожил долгую нелегкую жизнь, пересекшую две мировые войны. Он пережил обоих своих сыновей, один из которых погиб в Первую мировую, а второй был в начале 1945 года повешен нацистами за участие в покушении на Гитлера. Дом Планка вместе с огромной библиотекой сгорел от попадания бомбы, и почти 90-летний старик, в чем был, вместе с женой пешком отправился в никуда.

Знал ли тот юный мальчик Макс, стоявший перед маститым профессором Жолли – уважаемым ученым, который родился в эпоху наполеоновских войн, сотрясавших Европу, – что ему самому, Максу Планку, придется пережить две огромные войны, потерять детей и перевернуть физику? Не знал, конечно. И знать не мог в принципе, ибо тот переворот в физике, коему Планк дал начало, убедительно показал человечеству: мир непредсказуем, вы можете изменить будущее! Случайность вшита в самую основу бытия.

Так что же сделал Макс Планк такого, во что и сам не поверил?


Одной из тех неразрешимых «мелких проблемок», которые стояли перед физиками конца XIX века и о которой говорил умудренный профессор Жолли молодому Планку, была проблема излучения так называемого черного тела. Черное тело – это придуманный физиками теоретический конструкт, вымышленный объект, который все излучения поглощает и ничего не отражает. При этом черное тело постепенно нагревается и потому переизлучает тепло уже в собственном диапазоне.

Дивиться тому, что физики взяли, да и выдумали что-то, в реальном мире не существующее, не стоит. Дело в том, что физика всегда оперирует некими идеальными моделями. Как и любая другая наука. Наука ведь не гонится за истиной, как вы, быть может, ошибочно предполагаете. Наука просто строит интеллектуальные модели. И проверяет их на соответствие реальности – работает или нет, можно с ее помощью делать предсказания или нельзя. Можно – хорошая теория, берем на вооружение. Нет – ошибочная.

Все научные теории без исключения имеют ограниченную область применения и строятся для решения практических задач. А так как человеческие хотелки и интересы все растут и растут, людям хочется получить и узнать больше и больше, область решаемых задач и исследуемых проблем вскоре начинает превышать возможности теории. И она перестает работать в новых условиях. Приходится строить более общую теорию, в которую старая теория входит частным случаем. Или же просто отказываться от старой теории, полностью меняя научную парадигму.

Так вот, в стройном здании физики позапрошлого века была одна теоретическая неясность. Исследуя излучения разных нагретых тел, физики заметили, что построенные ими красивые теории не стыкуются с отвратительной реальностью. Из теории получалось, что нагретое абсолютно черное тело должно излучать бесконечно большую энергию, что абсурдно. Теория давала сбой.

Пытаясь привести такую хорошую теорию к такой неприятной практике, буквально за волосы таща формулы к реальности, Планк сделал гениальное допущение. Оно выглядело очень искусственным, но зато сразу позволило решить проблему на бумаге. Макс Планк предположил, что энергия излучения, которое отдает нагретое тело, испускается не сплошным потоком, а порциями, которые Планк назвал квантами.

Предположение, конечно, глупое. Ну, что значит «излучается порциями»? Вот у нас есть бак, заполненный водой. Мы открыли кран, и она потекла – сплошным потоком. А почему излучение от нагретого тела должно «течь» не сплошным потоком, а каким-то пунктиром? Это же волны! Они бегут сплошняком! Что еще за «порции волн» такие дурацкие?

Однако введение этих порций в формулы дало хороший результат и позволило, что называется, подогнать решение к ответу, известному из практических наблюдений.

Работая над моделью излучения черного тела, Планк часто прогуливался по улице с сыном, не переставая думать обо всем этом. И однажды признался мальчику:

– Или то, что я делаю, абсолютная бессмыслица, или самое большое открытие в физике со времен Ньютона!

Планк, который стоял на позициях классической физики, очень расстраивался из-за того, что ему пришлось выдумать эти вот «рваные волны», которые излучаются непонятными порциями. Он рассчитывал, что кто-нибудь вскоре придумает что-то получше и исправит ситуацию, избавив мир от его дурацких квантов.

Увы! Кванты никак не хотели из теорий убираться, без них никак не получалось.

Неужели энергия тоже квантована, как и вещество? Поясню… Вещество, как мы уже знаем, делимо. Мельчайшей его порцией является элементарная частица. Может, и энергия тоже состоит из «частиц энергии»? Стоп! А при чем тут энергия, спросите вы, ведь речь у нас об излучении? Дело в том, что энергией в физике часто называют не только такую абстракцию, как энергия кинетическая или энергия потенциальная, но и вполне конкретное электромагнитное излучение. Оно считается энергией в чистом виде, так сказать… В общем, Планку формулы подогнать к реальности удалось, но по смыслу получилась какая-то ерунда, какие-то «куски волн», «куски излучения», похожие на частицы.

Пока классическая физика осмысливала получившуюся ерундень, по ней нанесли еще один удар. На сей раз постарался Эйнштейн.

Эйнштейн – не только икона современной физики, но и самый известный физик среди простого народа. Не потому, что народ понимает его теории, а потому что Эйнштейн был волосатый и озорной – любил фотографироваться, высунув язык.

Что же натворил Эйнштейн?

Не скрою, набедокурил он изрядно…


Макс Планк и Альберт Эйнштейн


В конце XIX века физиками был открыт так называемый фотоэффект. Очень интересное явление! Оно заключается в следующем: при освещении металлической пластины светом световые лучи выбивают из этой пластины электроны. Схема эксперимента дана ниже.

Неожиданностью в этом опыте было то, что энергия выбиваемых светом электронов совершенно не зависела от интенсивности светового потока! Слабенький он был или мощный, это влияло только на количество выбитых электронов. А вот их энергия зависела, как ни странно, от частоты света. И для любого материала катода всегда существовала такая низкая частота излучения, что фотоэффект прекращался. Это назвали «красной границей фотоэффекта», потому что чем ниже частота света, тем он ближе к красному.


Явление фотоэффекта. Берется стеклянная лампа хитрой формы, и из нее откачивается воздух. С разных сторон в стекло впаяны два электрода – катод и анод. На них подается напряжение от батареи. Однако никакого тока в сети нет, потому что цепь не замкнута. Но если начать облучать светом катод (К), световые волны станут выбивать из металла электрончики. Освободившись из металлического плена, они под действием притяжения со стороны положительно заряженного анода (А) летят к нему, образуя электрический ток и замыкая электрическую цепь


Еще любопытно, что никакой медленной «накачки» электронов энергией не было, электроны начинали вылетать из металла сразу после включения лампы, словно им не нужно было «раскачиваться», набирая энергию для вылета.

Вообще-то волновая теория света предсказывала совершенно другой результат – электроны должны сначала какое-то время накапливать энергию, причем их энергия должна была зависеть от интенсивности излучения (яркий источник света или тусклый), а не от его частоты, то есть цвета лучей. Это что же получается? Теория плохая? Но в других случаях она прекрасно работает. А тут чего-то спотыкается. Мы уже знаем: так бывает. Любая функция имеет область определения, а любая теория имеет границы своего применения. Ученые как раз вышли на эту границу. И значит, пришла пора расширять теорию!


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации