Электронная библиотека » Александр Прищепенко » » онлайн чтение - страница 13

Текст книги "Шипение снарядов"


  • Текст добавлен: 17 декабря 2013, 18:51


Автор книги: Александр Прищепенко


Жанр: Военное дело; спецслужбы, Публицистика


сообщить о неприемлемом содержимом

Текущая страница: 13 (всего у книги 17 страниц)

Шрифт:
- 100% +

Главный элемент – катушка. Ее наматывают эмалированным проводом (ПЭВ, ПЭВТЛ) диаметром 0,5–0,8 мм. Каркасом служит обрезок трубки из диэлектрика (подойдет та, что прилагается к пакету с соком или корпус шариковой ручки, главное – чтобы стенки были потоньше) и два диска-ограничителя из любого диэлектрика. Всего надо намотать примерно 500 витков, стараясь, чтобы обмотка была плотной (ее можно уместить в 12–15 слоев).

Другой важный элемент – конденсатор. Как и при намотке катушки, здесь возможна импровизация, но ориентир указать стоит: у автора под рукой оказался японский, полярный, емкостью 4700 мкФ. Допустимое напряжение зарядки должно быть не менее 400В.


Заряжать конденсатор можно и от сети – через диод. Не забудьте для ограничения тока включить последовательно резистор сопротивлением не менее килоОма, иначе «накроются» и диод и конденсатор. 220 В – эффективное напряжение, а пиковое значение его в сети выше. До пикового значения в конечном итоге зарядится конденсатор, и этого должно хватить для удачного опыта, но всегда может потребоваться резерв, поэтому разумно предусмотреть зарядку по схеме удвоения напряжения.

Энергию накопителя коммутируйте на катушку проводом, укрепленным на пластмассовой штанге. При перерывах в работе штангу оставьте в положении, закорачивающем конденсатор (как на фотографии), иначе вас, вернувшегося полным идей за лабораторный стол, может для начала «дернуть» остаточным напряжением. О метаемом теле. Подойдет и обрезок гвоздя, но большую энергию поле отдаст кольцу, поскольку на единицу массы дипольный момент кольца выше. Хорошо «летят» шайбы стального крепежа. Кольцо вставьте внутрь трубки на центраторе – подходящем по диаметру стержне из любого диэлектрика, заостренном на карандашной точилке. Не надо усердствовать, насаживая кольцо, иначе оно может вообще не полететь или «захватить» центратор с собой.

Ну вот и все. Напряжение зарядки будет возрастать достаточно медленно, и контролируя его тестером, вы сможете выбрать значение, при котором решили стрелять. Яркая вспышка, хлопок разряда, за которыми последуют частые щелчки укатившегося безвозвратно кольца, будут вашими первыми впечатлениями. Немного терпения – и вам удастся добиться того, на что не была способна установка «водяной» кумуляции: пробить метаемым телом алюминиевую фольгу…

…Профессор В. Соловьев с кафедры боеприпасов МГТУ попросил о помощи в реализации новой идеи. В то время правительство СССР было обеспокоено угрозой, исходящей от американских крылатых ракет, разворачиваемых в Западной Европе (рис. 4.13). Лететь они могли на небольшой высоте, «копируя» рельеф местности, так что обнаружить их было непросто. Но проблемы возникали и с уничтожением обнаруженной ракеты: если поражающие элементы пробивали ее корпус, чувствительные датчики формировали сигнал подрыва ядерного заряда, с которого при полете над территорией противника снимались все ступени предохранения. Взрыв с энерговыделением в сотни килотонн не оставлял шансов выжить тому пилоту или расчету, который попал бы в такую цель. Откуда-то возникла оценка (в ее правильности автор испытывал сильные сомнения), согласно которой поражающий элемент должен иметь скорость пять, а лучше – семь километров в секунду: тогда он пробьет корпус ракеты и вызовет детонацию взрывчатого вещества ядерного заряда в одной точке. Взрыв произойдет, но сборка с плутонием не будет обжата со всех сторон (автоматика ядерного заряда просто не успеет сработать за время, пока произойдут эти события). Вместо шара сборка в этом случае превратится в нечто, напоминающее хлебный каравай и цепная реакция из-за потерь нейтронов разовьется не полностью[80]80
  Не стоит думать, что такие взрывы совсем уж безопасны: эксперимент с зарядом номинальной мощностью в сотни килотонн показал, что, при «одноточечном» его инициировании, энерговыделение понижается почти на четыре порядка, но и это – железнодорожный вагон взрывчатки! Однако окажись поблизости другой заряд, также «заведенный» в одной точке – выход энергии существенно возрастет, потому что многие нейтроны от начального, «неполного» взрыва инициируют затухающие цепи деления. Подобное развитие событий в хранилище ядерных боеприпасов (рис. 4.14) может быть катастрофичным. Чем большая доля в энерговыделении приходится на термоядерные реакции, тем менее опасен заряд в этом отношении.


[Закрыть]
.

Однако поражающий элемент должен быть компактным телом, а не тонкой кумулятивной струей, потому что вероятность того, что струя инициирует детонацию малочувствительного ВВ, которым снаряжен заряд, невелика.

Скорости метания компактных тел, превышающие 5 км/с, получают с помощью легкогазовых пушек и рельсотронов.





Рис. 4.13

Верхние снимки: дальность полета крылатой ракеты AGM-86A, (свыше 1500 км) позволяла ударной авиации применять ее вне зоны воздействия средств ПВО. Крылатая ракета BGM-109 морского базирования (на снимке – ее старт с подводной лодки) могла лететь более чем на 500 км дальше. Как AGM-86A, так и BGM-109 комплектовались зарядом W-80 modi. Даже если бы проблема формирования высокоскоростного поражающего элемента и была бы решена, за ней встала бы другая, не менее сложная: чтобы избежать ядерного взрыва, надо было попасть не в любой важный узел ракеты, и даже не просто в термоядерный заряд, а – в запал этого заряда. На вооружении бомбардиров-шиков В-52 состояли также ракеты AGM-69A SRAM (Short Range Attack Missile, снимок в центре) – существенно меньшей дальности, но более скоростные. Эти ракеты комплектовались зарядами W-69 (ниже) с энерговыделением 170–200 кт


Рис. 4.14 Хранилище ядерных авиабомб В-61


…Надеюсь, читатель не забыл о «Хохдрукспумпе», не слишком лестно охарактеризованной в главе 2. Когда необходимо достичь скоростей, сравнимых с первой космической, бесполезно дополнительными пороховыми зарядами «подкачивать» в ствол газы, потому что тепловая скорость их молекул становится сравнимой со скоростью снаряда и при соударениях с его дном они уже не сообщают сколь-нибудь значительный импульс. В легкогазовой пушке продукты сгорания пороха не воздействуют непосредственно на метаемое тело, а толкают перед собой слой более легкого газа (водорода или гелия), в котором скорость молекул выше, что дает возможность разогнать метаемое тело (правда, очень и очень легкое – доли грамма) до скоростей порядка 10 км/с. Но и сверхлегкий снаряд приходится разгонять долго, поэтому длина легкогазовых пушек достигает десятков метров и место им – в лабораториях, а не на поле боя.

Рельсотрон также весьма громоздок (рис. 4.15), так что в боеприпасах, где экономят каждый грамм и каждый миллиметр, необходим разгон поражающего элемента с куда большим ускорением. Идея Соловьева заключалась в том, чтобы обойти газокинетический барьер, обусловленный недостаточной тепловой скоростью молекул в газах взрыва, применив магнитное поле для разгона, значительно более «жесткого», чем в рельсотроне.






Рис. 4.15

Верхний ряд: слева – схема рельсотрона (рэйлгана). Пондерромоторные силы действуют в течение всего времени разгона и «выталкивают» скользящий по шинам и сохраняющий с ними контакт поддон со снарядом. Сооружение «домашнего» рэйлгана (правее) вполне доступно читателю и можно рассчитывать на достижение скоростей в десятки метров в секунду для тела массой в граммы. В рекордной же установке 31 января 2008 года достигнута скорость 2,5 км/с для снаряда массой чуть более трех килограммов. Учитывая, что энергия зависит от квадрата скорости, а энергоемкости «домашних» и «специальных» конденсаторов – одного порядка, нетрудно понять, почему размеры такого сооружения – циклопические (в центре). Выстрел рейлгана – феерическое зрелище (на нижнем левом снимке – полет его снаряда, видна носовая ударная волна), но близки к истине авторы книги «Артиллерия» (М; Воениздат, 1938 г.), подсчитавшие, что для энергообеспечения тактически значимого режима огня «электропушки» необходима небольшая электростанция


Если внутрь сжимаемого лайнера (см. рис. 4.9) поместить хорошо проводящее тело, то и оно испытает действие огромных пондерромо-торных сил магнитного поля – совсем другого порядка по сравнению не только с «домашней» пушкой Гаусса, но и рельсотроном – и может приобрести значительную скорость. Причем, если в выстреле «домашней» пушки существенную роль играют ферромагнитные свойства метаемого тела, то в ИВМГ плотности энергии такие, что ферромагнетизмом можно пренебречь. Для тех ИВМГ, которые можно было собрать в МВТУ, оценки давали массу метаемого тела (его стали называть «стрелочкой», хотя по форме оно напоминало капельку) чуть более грамма. Были идеи и как подавить нестабильности – до радиусов сжатия в несколько миллиметров, чего для метания было вполне достаточно.

Стрелочки изготовили из самого тугоплавкого металла – вольфрама. Это мало повлияло на результат: на блоке из алюминия, служившим мишенью, осталась лишь неглубокая вмятина от близкой детонации заряда ИВМГ. Напрашивалось предположение, что стрелочка еще в процессе метания испарилась, будучи нагрета вихревыми токами, индуцированными сильным магнитным полем (проводимость вольфрама втрое ниже, чем меди, и глубина проникновения поля (скин-слоя) для микросекундного времени сжатия превышает сотню микрон).

Тогда в приповерхностный слой вольфрама с помощью установки ионной имплантации внедрили частицы углерода, а поверх – еще и десятимикронный слой очень хорошо проводящего серебра. Это позволяло надеяться, что почти все магнитное поле и ток будут сосредоточены в слое серебра. Серебро, конечно, должно было испариться, а углерод – хоть как-то воспрепятствовать теплопередаче в вольфрам. Участники опытов с восхищением рассматривали блестящие, высокотехнологичные стрелочки. Потом прогремел взрыв и в алюминиевом блоке было, наконец, обнаружено долгожданное отверстие. В него радостно тыкали иголками, наивно пытаясь что-то нащупать. Даже небольшой кусочек вольфрама должен контрастно выделяться на фоне алюминия, но рентгеновский снимок мишени (рис. 4.16) показал: кратер «чист», и чуть искривлен, что указывало на потерю устойчивости образовавшего его тела. Стрелочка летела, расходуя себя, испарения не удалось избежать, его только замедлили. Провели еще один опыт: стрелочкой выстрелили в блок оргстекла, снимая ее полет скоростной камерой. На проявленной пленке увидели, как нечто оставляет за собой конус из помутневшего от ударной волны оргстекла, а потом все поле съемки закрывали трещины. И эти снимки сохранились, но разобраться в них, не являясь специалистом, непросто; они позволили определить скорость того, что поначалу оставалось от стрелочки, – 4,5 км/с и дистанцию, на которой от нее не оставалось ничего – несколько сантиметров. Дальнейшее «дожимание» конструкции привело к тому, что эффект высокоскоростного удара стал существенным даже в броне, но стрелочки все равно испарялись в преграде без остатка. Газокинетический барьер вроде и удалось обойти, но за ним стоял другой, «выстроенный» вихревыми токами.


Рис. 4.16

Слева – рентгенограмма алюминиевой мишени. Кратер образовала летящая с высокой скоростью вольфрамовая стрелочка, без остатка испарившаяся в полете. В центре – срез броневого листа с кратером от попавшей в него, летевшей под углом и с высокой скоростью стрелочки. Мишень не пробита, но высокоскоростной удар вызвал откол элементов брони (также обладающих определенным поражающим действием). Справа – образование кратера в жидкости. При высокоскоростном ударе броня течет как жидкость, и вокруг кратера образуется «валик», который виден и на срезе броневого листа


Следует быть корректным и отметить, что подобные опыты были проведены за пару десятков лет до описываемых событий группой А. Сахарова – и с тем же результатом: алюминиевое кольцо испарилось спустя пару микросекунд после метания. Правда, ВМГ, использовавшийся в тех опытах для ускорения кольца, был другого типа…

…Предложенный в 50-х годах спиральный ВМГ (СВМГ) выглядит примитивным устройством (рис. 4.17): труба со взрывчаткой внутри да установленная соосно проволочная спираль. При взрыве труба растягивается в конус и, последовательно закорачивая при расширении виток за витком, уменьшает индуктивность спирали.


Рис. 4.17

Схема спирального взрывомагнитного генератора.


Металлическая труба 1, заполненная взрывчатым веществом 2, окружена обмоткой 3. При подрыве газы растягивают трубу в конус, основание которого движется по виткам обмотки, замыкая их и приближая точку контакта к индуктивной нагрузке 4, куда и вытесняется магнитный поток. В растянутой взрывом части трубы видны продольные канавки. Это – зарождающиеся нестабильности


Как и в случае кумулятивного заряда, простота СВМГ обманчива. Ну, взять хотя бы ту же трубу: при взрывном расширении в ней не только не допустима ни единая трещинка (иначе магнитный поток «упорхнет»), но и поверхность ее должна оставаться достаточно ровной (иначе поток хоть и не «упорхнет» весь, но в каждой ложбинке будет помалу отсекаться). «А как же нестабильности?» – слышится вопрос Настырного. Они, конечно, не могут не появиться (присмотритесь к трубе на рис. 4.17 – ее изображение заимствовано из подлинной фотографии), но начальные диаметры спирали и трубы различаются примерно вдвое и нестабильности не успевают достаточно развиться, пока расширяющаяся часть трубы достигает витка.

Поскольку усиление тока пропорционально отношению начальной и нагрузочной индуктивностей, казалось бы, естественно наматывать всю обмотку с наименьшим возможным шагом. Это – простое, но ложное представление: для устройств с большими временами работы и значительными отношениями начальной и нагрузочной индуктивностей роль сохранения магнитного потока в усилении превалирует и приходится жертвовать индуктивностью обмотки (рис. 4.18).

Теоретическое рассмотрение приводит к экспоненциальным законам возрастания шага и уменьшения индуктивности генератора с длиной спирали. Обычно изоляция провода постоянна по толщине, а значит, и рабочее напряжение рационально делать постоянным. В СВМГ с правильно подобранными обмоточными данными экспонециально возрастает и ток, а экспонента как функция замечательна тем, что и ее производная – тоже экспонента, так что осциллограммы как тока, так и его производной (приводимые далее) будут выглядеть подобно, пока происходит усиление.


Рис. 4.18

Магнитная энергия пропорциональна первой степени индуктивности и квадрату тока, но индуктивное сопротивление ограничивает ток, поэтому получение максимальной энергии от СВМГ возможно лишь при оптимальном соотношении этих величин.

Пусть ток запитки и начальный шаг намотки двух СВМГ одинаковы. Для СВМГ с постоянным шагом обмотки (вверху) это означает, что энергия запитки у него больше, поскольку его индуктивность выше, чем у СВМГ, шаг обмотки которого увеличивается по мере приближения к нагрузке. Но вот преимущество в усилении тока – за «нижним» вариантом: за равный промежуток времени труба «отсечет» (показано синим пунктиром) то же число витков (начальные шаги намотки равны), но нагрузки, при примерно равных наведенных ЭДС, будут существенно различаться: в «нижнем» случае остаточная индуктивность меньше. К тому же, в «нижней» обмотке меньше потери потока, так как меньше длина провода остатка сжатого контура.

Если для энергии в контуре прибавка от «повышенного» тока превалирует над убылью индуктивности вследствие «разрежения» ее витков, то, по мере дальнейшего движения конуса, преимущество «нижнего варианта» возрастает (каждый из последующих его участков будет начинать с большего начального тока и лучше его усиливать) и он имеет все предпосылки не только компенсировать начальное энергетическое преимущество «верхнего», но и многократно превзойти его. Главное – не «переборщить», все более «круто» профилируя обмотку (и уменьшая при этом индуктивность), иначе можно «добиться», что ВМГ вообще перестанет усиливать энергию и даже начнет терять ее, несмотря на значительный генерируемый ток


Из экспоненциального закона изменения индуктивности следует, что в любой момент работы СВМГ (хоть в первую, хоть в последнюю микросекунду) суммарная индуктивности спирали и нагрузки должна уменьшаться на определенную и одинаковую долю за одинаковое время (например, на 10 % за микросекунду). Нагрузка упомянута не случайно: в начале работы, когда индуктивность спирали еще велика, вклад нагрузки в общую индуктивность генератора незаметен. Положение меняется к концу работы: если индуктивность нагрузки недостаточна (или чрезмерна), то ее наличие существенно «отклонит» закон изменения индуктивности от оптимального. Удобно рассматривать зависимость логарифма индуктивности от длины – это будет отрезок прямой (рис. 4.19). Если нагрузка «встроена в закон» (согласована), усиление продолжается вплоть до закорачивания расширяющейся трубой последнего витка.

Подобрать соответствующие теории обмоточные данные спирали непросто. Расчет соленоидов с переменным по длине шагом намотки (а иногда – и переменного диаметра) ненадежен из-за трудности учета взаимной индуктивности витков и граничных эффектов. Так что приходится возбуждать в последовательно подбираемой по секциям обмотке электрические колебания и, измеряя их период, решать эту проблему «в лоб» (рис. 4.20).


Рис. 4.19

СВМГ и в самый последний момент своей работы «не должен знать», что впереди уже не осталось ни одного витка, а только нагрузка (осциллограмма справа внизу, производная тока в этот момент резко падает до нуля). Но, когда «очень нужно», нагрузку все же меняют. На начальных стадиях работы, пока индуктивность спирали велика, это не сказывается, но в конце отклонения от выбранного закона становятся заметны и СВМГ начинает быстрее терять поток и снижать усиление (осциллограмма справа вверху)


Когда нагрузку необходимо изменить, мучительно не хочется менять что-нибудь в уже доказавшей свою эффективность, подобранной с таким трудом обмотке. Перейти на меньшую индуктивность нагрузки – не проблема, просто надо добавить к спирали одну-две секции с большими шагами намотки, продолжив зависимость рис. 4.19 до согласования с новой нагрузкой (при этом, если не требуется большее усиление, можно «отбросить» такое же число секций с наименьшими шагами намотки). Хуже (но чаще случается), если индуктивность новой нагрузки больше, чем согласованное со спиралью значение, тогда ту же зависимость придется продлевать в сторону меньших шагов и все более вероятной станет встреча с «перескоком» (рис. 4.21), транжирящим драгоценный магнитный поток.


Рис. 4.20

Схема прибора для измерения индуктивности и осциллограмма ударно-возбужденных колебаний.

В металлической трубке 1 размещены два элемента: коммутатор 2 и конденсатор 3. На трубку надет конус со скользящим контактом, имитирующий расширяемую взрывом трубу СВМГ. Когда коммутатор срабатывает, возникают колебания в контуре, включающем эти два элемента и исследуемую индуктивность. Вычислить индуктивность по их периоду не составляет труда (из этого значения вычитается собственная индуктивность прибора, определенная в режиме, когда он был «закорочен»). Начав процесс измерений с нагрузки, можно изменять шаг витков секций, подбирая требуемый закон изменения индуктивности соленоида по его длине


Но бывает и так, что нагрузка – вообще ни в какие ворота, и тогда ее согласуют, используя взрывной трансформатор (рис. 4.22). Внимательный читатель задастся вопросом, есть ли смысл подключать трансформатор к СВМГ, в котором магнитный поток только теряется: можно просто «разорвать» контур первичного тока, соединив точки разрыва с нагрузкой. Так иногда и делают, когда требуется только высокое напряжение, но если нужно существенно усилить энергию (пусть даже за счет снижения напряжения), без СВМГ не обойтись.




Рис. 4.21

Несовпадение осей: обмотки (красная) и расширяющейся трубы (синяя) приведет к «перескоку»: синим пунктиром показано, как конец витка (слева вверху) будет замкнут расширяющейся трубой раньше, чем его нижняя часть, поток в которой будет потерян для дальнейшего сжатия. «Перескок» приводит к «провалу» в усилении (осциллограмма вверху справа). Но такая ситуация – еще не катастрофа. А вот если величина начального тока слишком велика, то напряжение между трубой и обмоткой, развивающееся при работе СВМГ, может превысить электропрочность изоляции проводов, пробой «отсечет» область, где сосредоточена большая часть потока, и конечное усиление тока будет просто жалким (нижняя осциллограмма)

СВМГ с правильно подобранными намоточными данными и согласованной нагрузкой – эффективный усилитель, ведь если в имплозивном ВМГ усиление заканчиваются после того, как диаметр лайнера уменьшился в несколько раз, то отношение начальной индуктивности спирали к индуктивности нагрузки может достигать многих тысяч, а усиление тока и энергии – до трех порядков (есть и такие схемы, где усиление практически не ограничено). По мере роста коэффициента усиления СВМГ, КПД преобразования им химической энергии ВВ в энергию токового импульса снижается, но только когда усиление приближается к тысяче, имеет смысл задуматься, что рационально увеличить для дальнейшего его повышения: габариты СВМГ или размеры источника запитки, такого, как конденсатор.

…В военной науке, конечно, существовала конкуренция, но общая обстановка была благожелательной: если конфликт интересов не просматривался, то бескорыстная помощь считалась сама собой разумеющейся. В конце 1982 года меня попросили провести опыты по «замагничиванию» объемно-детонирующего облака.


Рис. 4.22

Схема взрывного трансформатора, допускающего согласование СВМГ с любой нагрузкой. К СВМГ, подключен коаксиал из центрального проводника 1 и цилиндра 2 из тонкой фольги. В конечной фазе цилиндрическая детонационная разводка 3, формирует в кольцевом заряде 4 сходящуюся детонационную волну. Взрывом токовый контур разрывается при продавливании фольги цилиндра 2 в пазы между ребрами изоляционной катушки 5. При этом за время в сотни наносекунд «освобождается» магнитный поток, что ведет к индуцированию на разрыве напряжения (вспомним ощущения юного Ади Сахарова!). Напряжение это, которое иногда достигает миллиона вольт, и прикладывается к нагрузке 6. Пока газы взрыва (окислы углерода и азота), сжатые до огромных (граммы на кубический сантиметр) плотностей, еще не разлетелись, они хорошо изолируют катушку 5


…Применение вместо предложенной германскими оружейниками угольной пыли горючих жидкостей (а на первых порах – даже сжиженных газов) позволило реализовать режим объемной детонации их смесей с воздухом не в шахте с прочными стенками, а на открытом пространстве. Правда, при этом развивается давление, в десятки тысяч раз уступающее давлению детонации конденсированных ВВ, но энерговыделение – выше, поскольку окислитель для реакции берется из воздуха, да и размеры облака огромны (оцените из кинограммы рис. 4.23, насколько они превышают размеры авиабомбы)[81]81
  Если читатель заинтересуется эффективностью таких боеприпасов, однозначно ответить ему нельзя. На близких расстояниях объемная детонация вчистую проигрывает традиционным ВВ. Например, для полутонной объемно-детонирующей бомбы радиус облака превышает два десятка метров ив 10 м от его внешней границы давление в ударной волне все еще равно лишь половине значения, характерного для взрыва равной массы тротила на 30 м, но спадает давление УВ от объемного взрыва медленнее и на расстоянии в 50 м уже превышает «тротиловое» более чем в три раза.


[Закрыть]
.


Рис. 4.23

Двухтактный (диспергирование, а затем инициирование снаряжения) взрыв объемно-детонирующей авиабомбы ФАБ-5000ДС (она – слева, на врезке). Для замедления падения и придания корпусу перед подрывом положения, близкому к нормали, бомба снабжена парашютом 1. Вес жидкого снаряжения (2) – 193 кг. Диспергирует снаряжение заряд взрывчатого вещества 3. По сигналу датчика 4 подрывается диспергирующий заряд (на высоте порядка десятка метром над землей) и выбрасываются инициаторы аэрозольного облака


После подрыва диспергирующего заряда горючее распыляется, но реакция в нем вначале не происходит и лишь по достижении облаком значительного объема и перемешивании снаряжения с воздухом инициируется детонация (слабая в сравнении с аналогичным процессом в конденсированных ВВ: бризантного (дробящего) эффекта она не обеспечивает). Такие боеприпасы называют двухтактными (взрывное диспергирование + подрыв образованного облака), во Вьетнаме их использовали для расчистки посадочных площадок для вертолетов: «выметая» растительность в радиусе нескольких десятков метров, они не оставляли воронок. Позже их применяли по живой силе и для разрушения домов – весьма чувствительных к действию ударной волны целей – а также в системах разминирования (рис. 4.24): от ударной волны срабатывают механические взрыватели мин.


Рис. 4.24

Система взрывного разминирования MICLIC (на основе объемно-детонирующего заряда) в действии


… Однажды журналистам – людям энциклопедических знаний – удалось заснять в многострадальном Бейруте, как улицу после взрыва засыпало обломками зданий. На такое, по их мнению, был способен лишь «вакуум», созданный бомбой, к которой соответствующая кликуха впоследствии прочно «приклеилась». Действительно, если ударную волну сзади не «поджимает» какого-либо вида поршень, то за сжатием следует разрежение. Иначе и быть не может, ведь, как указывал еще Михайло Васильич Ломоносов, «…все перемены в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимается, столько присовокупится к другому…». Кадры киносъемки воздействия ударной волны ядерного взрыва подтверждают правоту Михайлы Васильича (рис. 4.25): на внешней поверхности гигантского купола, образованного волной, воздух сжимается, «забирая» с собой тот, что находится позади фронта. Это вызывает ветер – массопоток в направлении распространения волны (видно, как скоростной напор гнет деревце). Далее идет отток побывавшего сжатым воздуха к центру взрыва и направление ветра меняется на обратное (опять же – смотри на деревце, лишившееся листвы). Однако в фазе разрежения – всего лишь падение давления на десяток-другой процентов по сравнению с нормальным. Так что, если «замахнуться на вакуум», то необходимы численные оценки импульса, сообщаемого преграде в фазе разрежения, за представлением коих не исключена встреча с потоком слюнного аэрозоля, сопровождаемого ревом: «Я видел – я знаю!». Однажды автор по недомыслию стал рассуждать о конвективных потоках воздуха в ответ на восхищение гражданина, наблюдавшего за подъемом дымного облака после взрыва и высказавшего твердое убеждение, что такое мог сделать только «атом». Дидактические усилия завершились советом автору при выборе дальнейшего маршрута руководствоваться направлением на () [82]82
  Китайский товарищ, имя которого часто упоминается в русской разговорной речи.


[Закрыть]
.

В боеприпасах среднего калибра двухтактный принцип работы неэффективен, поскольку вес инициирующих облако зарядов не может быть существенно уменьшен – это приведет к затуханию детонации, а инициаторы «нормального» веса займут практически весь отведенный под снаряжение объем. Фугасное снаряжение в этом случае представляет смесь горючего (включающего и металлическую пудру) с конденсированным ВВ. Эту смесь инициирует обычный взрыватель и детонирует она, как слабая взрывчатка, но при разлете продукты взрыва смешиваются с воздухом, сразу загораются (рис. 4.26) и подпитывают своим горением тоже не слишком мощную ударную волну. Тротиловый эквивалент однотактных боеприпасов существенно меньше, чем двухтактных, но они воздействуют на цели еще и потоком тепла от горения, за что их именуют термобарическими.


Рис. 4.25

Изменения давления и массопотоков воздуха в ударной волне. Направление ее распространения на рисунке – справа налево

Применить боеприпасы объемного взрыва было задумано в совершенно новой для них области: радиоэлектронной борьбе. Просители – специалисты по помехам – надеялись получить при «замагничивании» облака значительную эмиссию РЧЭМИ. Мнение у автора об этой идее восторженным не было, потому что существенное поле в облаке создать было нельзя: из ВМГ небольших размеров не «выжмешь» большого тока, так как нагрузка – проволочная петля диаметром в несколько дециметров – «непосильна» для него. Да и в качестве источника помех система «генератор-облако» вряд ли подходила, потому что время ее излучения (микросекунды) недостаточно для такого применения.



Рис. 4.26

Кинограмма подрыва экспериментального термобарического заряда. Горение начинается еще в процессе взрывного диспергирования снаряжения


Опыты начались в подмосковном Красноармейске с первых недель 1983 года. Спешки не было, в неделю проводили один – два эксперимента. Излучение от «замагниченного» объемного взрыва измеряли рупорными антеннами, и результат был предсказуем: интегральная мощность порядка киловатт, время генерации – микросекунды. Организаторы сессии признавали, что этого недостаточно, но считали, что обоснование финансирования их работ такой результат обеспечит.

Перерывы в опытах дали возможность обдумать ситуацию. Плазма объемного взрыва выполняла роль конвертера (преобразователя) энергии. Магнитное поле «закручивало»[83]83
  Хотя поле в этих опытах было значительно более сильным, чем магнитное поле Земли, оно не «закручивало» электроны полностью, а лишь искривляло траектории, пока длился их свободный пробег между столкновениями.


[Закрыть]
электроны этой плазмы, заставляя ее излучать по тому же механизму, что и комптоновские электроны – при генерации ЭМИ ЯВ. Расчеты показали, что число электронов (и проводимость) не имело смысла повышать: поглощение плазмой ею же эмитированного РЧЭМИ было и без того существенным, его «выпускал» лишь приповерхностный слой детонирующего облака. Рост же напряженности магнитного поля «уводил[84]84
  Чем «сильнее» поле, тем меньше радиусы траекторий «закручиваемых» частиц, а длины излучаемых волн близки к значениям этих радиусов.


[Закрыть]
» спектр излучения из радиочастотного диапазона в бесполезный тепловой. Словом, в каком виде ни «закачивай» энергию в облако – преобразует оно ее в РЧЭМИ тем хуже, чем больше получает. От такого конвертера стоило избавиться.

Однако сам по себе ВМГ излучателем служить не может: магнитное поле, которое он генерирует при срабатывании – квазистационарно. Правда, ранее во ВНИИЭФ его все же пытались «заставить»: подключили взрывной трансформатор, а к нему – антенну. Но и на выходе трансформатора длительности получаемых импульсов были великоваты (около микросекунды), основная энергия реализовалась для волн длинами в сотни метров, что требовало примерно таких же по размерам антенн. Для имитации ЭМИ ЯВ такое циклопическое сооружение (рис. 3.59) сгодиться могло, но в качестве оружия – вряд ли.

Для того чтобы излучение было мощным, поле должно меняться не просто быстро, а так, чтобы характерное время его изменения соответствовало бы длине волны, сравнимой с размерами устройства. Если эти размеры оценить в дециметры, время, за которое должно существенно измениться поле (чтобы оценить его, надо поделить характерный размер на скорость электромагнитной волны), составляет наносекунды – на три порядка меньше, чем в ИВМГ! Безбожно завышая оценку скорости для любого, самого тончайшего лайнера (10 км/с)[85]85
  Скорость расширения в вакууме ничем не «нагруженных» продуктов детонации конденсированного ВВ – 13 км/с.


[Закрыть]
, получим и минимальный радиус сжатия: десятки микрон (104{мсек} 10 9{сек}=10 5{м}) – нереально малое значение, поскольку нестабильности «не допустят» такого.

Но ведь можно сжимать поле не лайнером, а токопроводящей ударной волной, такие процессы происходят во Вселенной и известны астрономам. Особенность ударного сжатия в том, что, начиная с некоторого предела, плотность энергии в ударной волне увеличивается только за счет температуры, а плотность вещества не растет.

Ясно, что чем плотнее «упаковано» атомами вещество, тем сильнее оно «сопротивляется» увеличению плотности при сжатии. Например, такая в высшей степени упорядоченная структура, как монокристалл, сжимается УВ с давлением в миллион атмосфер всего вдвое. Повышение же температуры в мощной ударной волне приводит к тому, что молекулы вещества за фронтом волны сначала диссоциируют, а потом – ионизуются и составлявшие их атомы: вещество, в исходном состоянии бывшее диэлектриком, может, будучи ударно-сжатым, превратиться в проводник[86]86
  Скачок проводимости в некоторых ударно-сжатых веществах не связан с термической ионизацией.


[Закрыть]
.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации