Текст книги "Шипение снарядов"
Автор книги: Александр Прищепенко
Жанр: Военное дело; спецслужбы, Публицистика
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 17 страниц)
«Дейтериевая» теория долголетия интересна еще и тем, что на ее примере можно иллюстрировать требования, предъявляемые ко всем научным гипотезам: они могут считаться верными, пока непротиворечиво объясняют все относящиеся к их «компетенции» объективные факты. По-другому это можно сформулировать так: «Утверждение верно только тогда, когда верны все следствия из него» (как нетрудно заметить, этот критерий был использован в дискуссии о «пулях синтеза»). Тем из читателей, кто в подобной ситуации услышит вещаемое солидным, бархатным голосом: «Исключения лишь подтверждают общее правило…», автор рекомендует не стучать костяшками пальцев по лбу изрекшего, сравнивая звук от аналогичного процесса, проделываемого с деревом – это невежливо. Культурный человек только поинтересуется, какое число «исключений» следует считать допустимым и что делать, если таковых станет больше, чем фактов, данной теорией объясняемых.
Некоторые соматические эффекты оказались вне рамок «дейтериевой» теории и потому она была отвергнута медициной.
…Итак, помимо сборки с делящимся веществом и заряда взрывчатки, боеголовка (рис. 3.20) должна быть оснащена высоковольтной системой инициирования детонаторов и системой нейтронного инициирования сборки, а программное устройство должно обеспечить срабатывание систем в определенной последовательности, в точно назначенные моменты времени (рис. 3.21). Читатель и сам догадывается, что электронным устройствам сильные удары противопоказаны, а уж какой удар ожидал бы их при встрече летящего с гиперзвуковой скоростью блока с землей… Для того, чтобы вся сложная электроника сработала прежде, чем превратится в подобие жижи, датчики давления, расположенные в головной части хорошо видной на макете (рис. 3.22) трубы, подают сигнал на подрыв (в боеголовке на рис. 3.21 для этой же цели используется не труба, а телескопический шток, в сложенном виде размещенный в серебристом контейнере и «надуваемый» пороховым зарядом при подлете к цели). Выбор головного зазора летящей боеголовкой занимает несколько сотен микросекунд, чего достаточно для срабатывания автоматики.
Рис. 3.20
Схема ядерной боеголовки, устройства автоматики которой размещены в отдельных блоках. Блок инициирования детонаторов – красного цвета, блок нейтронного инициирования реакции деления – белого. Советские блоки автоматики окрашивались в зеленый цвет и на жаргоне зарядчиков назывались «бочками». На врезке – «бочка», из экспозиции музея Академии ракетных войск
Рис. 3.21
Временная эпюра наиболее важных событий в ядерном заряде и блоках его автоматики. Рассмотрев рисунок справа, коллега автора ехидно спросил: «Получается, что остатки головной части летят с той же скоростью, с какой расширяется шар?» По мнению автора, рисунок основания для подобного заключения не дает, но, коль скоро такое мнение высказано, следует пояснить: скорость расширения молодого шара на порядки больше, он «вбирает» в себя остатки конструкции и через пару десятков наносекунд становится похожим на свою фотографию рис. 3.15а
Блок нейтронного инициирования должен быть расположен поближе к заряду: в этом случае больше разлетающихся во все стороны нейтронов поучаствуют в зажигании реакции деления. Кроме того, блок нейтронного инициирования должен быть по размерам больше, чем блок инициирования детонаторов, потому что к нейтронной трубке прикладывается напряжение в сотню с лишним киловольт – большее на два порядка, чем к детонаторам. Ну а снизить габариты высоковольтного устройства сложно – об этом факте читателю еще напомнят в следующей главе.
Рис. 3.22
Вверху: на полноразмерном демонстрационном макете малогабаритной МБР «Миджетмен» (не производившейся серийно) видна конструкция головного зазора ее моноблочной боевой части, тротиловый эквивалент которой должен был составить 600 кт. Внизу: боеголовка 9Н32М советской оперативно-тактической ракеты сухопутных войск «Луна-М» также снабжена устройством, обеспечивающим подрыв до того момента, когда ударные перегрузки могут повредить конструкцию ее ядерного заряда
Еще одна важная функция блока нейтронного инициирования – изменение энерговыделения ядерного взрыва. Понятно, что, получив боевую задачу, при постановке которой обязательно указывается мощность ядерного удара («перебор» может привести и к поражению своих войск), не начинают лихорадочно разбирать ядерный заряд на ракете или бомбе, чтобы оснастить его плутониевой сборкой, оптимальной для заданной мощности. В боеприпасах с переключаемым тротиловым эквивалентом просто изменяют напряжение питания нейтронной трубки. Соответственно, изменяется выход нейтронов и выделение энергии. Ясно, что при снижении мощности таким способом «пропадает зря» много дорогого плутония.
В серийном американском боеприпасе Мк-18 энерговыделение довели до 500 кт – только за счет реакции деления. В МК-18 был применен U235, которого в докритической сборке можно разместить больше, чем плутония. У сборки при этом будет выше инерционность, а значит, и актов деления в ней произойдет больше, чем в плутониевой. Мощность заряда деления можно и еще повысить, но ненамного: существуют ядерно-физические и гидродинамические ограничения допустимых размеров докритического шара.
В борьбе за рекорды энерговыделения с делением стали конкурировать реакции другого класса – синтеза.
Нельзя сказать, что даже энергия деления (рис. 3.23) избыточна для инициирования этой реакции, поэтому важно выбрать для нее наиболее «легковоспламеняющееся» топливо. Наименьшие энергии частиц требуются для «зажигания» реакции в изотопах водорода:
D + Т → Не4 + п + 17,6МэВ
которая на единицу массы реагентов обеспечивает выход в несколько раз большей энергии, чем реакция деления. Однако и дейтерий (D) и тритий (Т) при нормальных условиях – газы, достаточные количества которых сложно «собрать» в устройстве разумных размеров. Но оказалось возможным инициировать синтез в твердых гидридах изотопа лития-6 (Li6D и Li6T), «перевалив», с помощью заряда деления, необходимое для этого значение комбинации температуры топлива и времени его удержания при этой температуре. «Перевалить», кстати, оказалось не так просто: для этого плотности энергии разлетающегося во все стороны вещества заряда хватает не всегда, нужно сконцентрировать энергию взрыва. Имплозивный режим был реализован при сжатии топлива рентгеновским излучением, которое распространяется намного быстрее как потока вещества заряда, так и ударной волны.
Рис. 3.23
Слева вверху: схема американской авиабомбы Мк-15 mod3, с двухфазным («чистым») зарядом. Вес изделия – 3447 кг, энерговыделение – 3,8 Мт. Заряд включает: запал 1, массивный буфер 2, трубу 3, изготовленную из легкоионизуемого пенополистирола, ампулу с термоядерным топливом 4 и трубку 5 из U235 (при хранении заряда эта трубка служит для удаления гелия-3, – продукта распада содержащегося в топливе трития). Справа – последовательность событий при взрыве заряда. Выход рентгеновского излучения через прозрачный для него корпус запала и диффузия излучения (показано зеленоватым цветом) в пенополистирол («а»). Поток вещества, бывшего зарядом, сдерживается буфером, чтобы он не нарушил цилиндрическую симметрию сжатия ампулы. Давление рентгеновского излучения превышает миллиард атмосфер, а давление образованной им плазмы – еще почти на порядок выше. Топливо сжимается к оси ампулы и разогревается (происходит радиационная имплозия). В сжатом топливе (которое дополнительно «подогревает» деление в длинном сверхкритическом стержне, бывшим ранее трубкой 5), начинается термоядерная реакция («б»). Далее происходит расширение плазмы и начинается образование огненного шара ядерного взрыва («в»). Снимки слева внизу: авиабомба Мк-43 и ампула с буфером – элементы ее термоядерного заряда. При взрыве Мк-43, весящей 960 кг, энерговыделение достигало 1 Мт
По мере того как синтез самых «легкозажигаемых» изотопов разогревает топливо, в нем начинают протекать вторичные реакции с участием как содержавшихся в смеси, так и образовавшихся ядер:
D + D → T + р + 4МэВ; D + D → He3 + п + 3,ЗМэВ; Т + Т → Не4 + 2п + 11,МэВ;
Не3 + D → Не4 + р +18,4МэВ; Li6 +п → Не4 +Т + 4,8МэВ;
так что и литий не оказывается «балластом». При этом ядра ускоряются не напряжением, как в нейтронной трубке, а приобретают необходимую энергию при повышении температуры. Это – истинные термоядерные взаимодействия, а не похожие на них реакции срыва.
Сечения процессов, происходящих в ампуле, неодинаковы и, конечно, не все топливо успевает прореагировать. Энергетический вклад вторичных взаимодействий зависит от конструкции заряда и может оказаться существенным, но он намного меньше, чем могла бы дать реакция того же количества ядер дейтеротритиевой смеси, которая, к тому же, быстротечна настолько, что температура на фронте синтеза[59]59
У этой реакции много общего с детонацией химических ВВ, где энерговыделение также происходит в узкой области, прилегающей к фронту, только при термоядерной детонации скорость и другие параметры на много порядков выше. А вот при делении ядер длина свободного пробега нейтронов сравнима с размерами сборки, реакция не имеет выраженного фронта и охватывает сразу весь объем делящегося вещества (такой процесс принято называть «гомогенным взрывом»).
[Закрыть] существенно выше и достигает миллиарда градусов: продукты реакции в этой узкой области не успевают «уравнять» свою энергию в столкновениях с окружающими частицами.
Значительная часть энергии синтеза может пропасть для взрыва:
для реакции D+T более 80 % ее «ускользнуло» бы из огненного шара с быстрыми нейтронами, пробег которых в воздухе составляет многие километры. Эта часть энергии рассеялась бы в соответствующих размеров воздушной сфере, вызвав лишь слабое её возмущение, поэтому в образцах термоядерного оружия, которые рассчитаны на взрывной эффект, такого не допускают, реализуя еще и третью фазу, для чего ампула окружается тяжелой оболочкой из отвального урана, из которого также изготавливается и буфер. Нейтроны, испускаемые при рападе U238 имеют слишком малую энергию, чтобы вызывать последующие акты деления, но этот изотоп делится под действием «внешних» высокоэнергетичных нейтронов от термоядерных реакций. Нецепное деление в U238 дает прибавку энергии огненного шара, иногда превалирующую даже над вкладом термоядерных реакций.
В ампуле нет веществ, в которых при нормальных условиях может возникнуть цепная реакция, поэтому их количество не ограничено, а значит – у энерговыделения термоядерного заряда нет верхнего предела, вроде того, который существует для заряда деления. На каждый килограмм веса трехфазных изделий приходится несколько килотонн тротилового эквивалента – они существенно превосходят по удельным характеристикам другие классы ядерного оружия!
Неприятная особенность трехфазных боеприпасов – повышенный выход испускающих все виды радиации осколков деления. Нельзя сказать, что двухфазные заряды не загаживают местность нейтронами, вызывающими в практически всех элементах ядерные реакции, не прекращающиеся и спустя многие годы после взрыва[60]60
Это явление называют «наведенной радиоактивностью».
[Закрыть], а также – осколками деления своих «запалов», но все познается в сравнении, и трехфазные далеко превосходят их в этом отношении. Превосходят настолько, что некоторые боеприпасы выпускались в двух вариантах: «грязных» – трехфазных и «чистых». Последние предназначались для применения на территории, где предполагались действия своих войск, и ради обеспечения их безопасности, шли на снижение мощности. Так, например, американская авиабомба Мк-36 (рис. 3.24) выпускалась в двух идентичных по внешнему виду вариантах: «грязном» Mk-36Y1, с энерговыделением 9 тротиловых мегатонн, и вдвое уступавшем ему по мощности, «чистом» варианте Mk-36Y2.
Рис. 3.24
Авиабомба Мк-36 (верхний снимок) поступила на вооружение Стратегического авиационного командования ВВС США в 1956 году. Каждый из ее вариантов («чистый» и «грязный») производился в двух модификациях. В свое время на долю бомб этого типа приходилось более половины энерговыделения американского ядерного арсенала. Менее мощная авиабомба Мк-28 (нижний снимок, позже обозначение было изменено на В-28) производилась в пяти основных вариантах, а число модификаций конструкции достигло 20. Варианты отличались «чистотой» и энерговыделением (от 70 кт до 1,45 Мт). На снимке – B-28TN, это изделие не имело тормозного парашюта и предназначалось для подвески в бомбоотсеках самолетов В-52 и F-105
О «грязных» боеприпасах все знали и в 60-е годы в армиях, тогда знаменитых своим крайне высоким уровнем технической оснащенности, не только личный состав, но и средства обеспечения его мобильности снабжали противогазами[61]61
«Не в интересах правды, а в интересах истины» надо упомянуть о защитных свойствах противогаза. От проникающих излучений (нейтронного и гамма) он не спасет, фильтр задержит лишь пыль, иногда – весьма радиоактивную. Если противогаз не надет, пыль оседает в легких и облучает организм «изнутри», что очень опасно для здоровья, но не имеет значения для хода и исхода боя. При применении противником, например, нейтронного боеприпаса (о них – далее) надевший вовремя противогаз при прочих равных условиях получит ту же «нейтронную» дозу облучения, что и ненадевший.
[Закрыть] (рис. 3.25).
Понятно, что если ради снижения выхода осколков деления шли на понижение мощности, то и на запал (ядерный заряд) посматривали косо. Попытались от него избавиться, заменив деление сверхскоростной кумуляцией: головной элемент струи, состоявшей из термоядерного топлива, разогнали до сотни километров в секунду и – по топливу же – ударили (в момент столкновения температура и плотность возрастают значительно). Но на фоне взрыва килограммового кумулятивного заряда «термоядерная» прибавка энергии оказалась ничтожной, и эффект зарегистрировали лишь косвенно – по незначительному выходу нейтронов. Отчет об этих проведенных в США опытах был опубликован в 1961 году в сборнике «Атом и оружие», что при тогдашней параноидальной секретности само по себе свидетельствовало о неудаче.
Рис. 3.25
Оснащение конского поголовья противогазами – важный элемент обеспечения мобильности войск в условиях ядерного конфликта
Не «увенчались» и попытки использовать энергию взрыва «кружным путем». В 1989 году автор принимал участие в конференции «Мегагаусс-5», где обсуждались вопросы магнитной кумуляции. Привлек внимание доклад пожилого китайского ученого. Нагрузкой его спирального взрывомагнитного генератора (СВМГ)[62]62
СВМГ, устройство которого описано в гл.4, способен сформировать очень мощный импульс тока: образцы с характерными размерами в метры – до сотен миллионов ампер.
[Закрыть] служили две концентрические сферические сетки (рис. 3.26). Нагрузка автора не заинтересовала, в отличие от характеристик генератора. Китаец неплохо говорил по-русски (окончил в свое время, как и автор, МИФИ) и быстро выяснилось, что характеристики генератора от оптимальных далеки. Вероятно, разочарование слушателя раззадорило ханьца, потому что, отвечая на заданный автором уже из вежливости вопрос о нагрузке, он ответил, что сетка предназначена «для имплозии». Распаляясь, он ответил и на следующий вопрос – о начальной и конечной плотности сжимаемого вещества, после чего прояснилось многое, в том числе и то, что до «зажигания» синтеза (это слово никем из собеседников, понятно, не произносилось) очень далеко.
Рис. 3.26
Устройство для неядерного инициирования реакции синтеза.
1 – спиральный взрывомагнитный генератор, формирующий мощный импульс тока;
2 – сферический сетчатый токовый контур (чтобы не загромождать рисунок, концентрические сетки изображены схематично, окружностями);
3 – термоядерное топливо.
Протекание значительного тока при срабатывании СВМГ приводит к тому, что создаваемое им поле с большой силой «расталкивает сетки», при этом легкая внутренняя сетка сжимает термоядерное топливо
… Совсем «чистый» заряд создать не удалось и по сей день, да и с «нечистыми» есть проблемы: любое соединение, содержащее тритий, нестабильно, потому что этот изотоп сам по себе «разваливается» на бета-частицы и гелий-3. В нейтронной трубке трития немного и гелий-3 поглощается там специальными пористыми материалами, а вот ампулу сделать герметичной нельзя, иначе ее просто разорвет давлением этого газа. Кроме того, гелий-3 – очень ценный продукт, его применяют в ядерных исследованиях, например, для наполнения счетчиков тех же нейтронов, так что его следует не выпускать (тем более что он изрядно «загрязнен» тритием), а накапливать (рис. 3.27) и тщательно собирать. Количество трития убывает вдвое за дюжину лет, и чтобы поддерживать готовность многочисленных термоядерных зарядов к применению, необходимо непрерывно нарабатывать тритий в реакторах, а расходы на такие хлопоты по карману не каждой державе. Когда в 70-х годах для Королевских ВМС были приобретены в США ракеты «Поларис», британские специалисты предпочли на первых порах отказаться от американского термоядерного боевого оснащения в пользу разработанных в своей стране менее мощных однофазных зарядов деления.
Но то – сдержанные и экономные англичане. А там, где «ядерный меч» считался святыней, на которой не пристало экономить, множились заложенные в бомбы мегатонны (рис. 3.28).
Рис. 3.27
На контейнере М-102, предназначенном для заводского хранения термоядерного узла, имеется манометр для контроля давления гелия-3, выделяющегося при распаде трития
Рис. 3.28
Вверху – советская термоядерная бомба А602ЭН рекордной (более 50 мегатонн) мощности, не производившаяся серийно. После взрыва экспериментального образца на Новой земле, в Норвегии еще достаточно сильная ударная волна выдавила немало оконных стекол. Приборы метеостанций зафиксировали троекратное огибание планеты воздушными возмущениями. Конструкция допускала двукратное повышение энерговыделения, однако вероятность доставки бомбы к цели представлялась сомнительной: размеры чудовища весом 26,5 т не давали возможности даже закрыть бомболюк Ту-95В – новейшего по тому времени самолета.
Энерговыделение взрыва американской авиабомбы Мк-17 (нижний снимок) не превышало 15 Мт, но с этими бомбами (вес – 10,1 т) регулярно вылетали на боевое патрулирование и подолгу находились в воздухе бомбардировщики В-36
Происходил и обратный процесс: термоядерные реакции стали участвовать даже во взрывах небольшой мощности. Появились заряды деления без нейтронных трубок, но с шариком из дейтерида лития во внутренних полостях плутониевых сборок. Повышения температуры и плотности дейтерида при ударе движимого имплозией плутония для развития самоподдерживающейся термоядерной реакции недостаточно, но хватает для эмиссии запускающих деление нейтронов: реагируют ядра топлива, скорости которых, из-за статистического разброса, превышают среднее значение. Заряд с термоядерным источником (ТИ) проще и надежнее, но и опаснее: можно уповать на то, что во внештатной ситуации нейтронная трубка не сработает и взрыв не будет очень уж мощным, а вот ТИ делает такие надежды напрасными. По этой причине распространения заряды с ТИ не получили, но попытки «включить в работу» внутреннюю полость плутониевой сборки продолжались. Сначала полноценной термоядерной реакции добились в закачиваемой в полость дейтеро-тритиевой газовой смеси, а затем и смеси их твердых гидридов. Инициировал реакцию уже не удар плутония, а мощный поток излучения, вызванного делением. Практически все современные высокотехнологичные заряды снабжены узлом, повышающим энерговыделение за счет термоядерных реакций. Найдены и способы изменения энерговыделения усиливающего узла, даже при нахождении заряда на траектории: для этого изменяют пропускную способность каналов передачи радиации.
В пятидесятые годы единственным средством доставки ядерного оружия был самолет (рис. 3.29). Но если в ходе бомбардировочной операции Второй мировой фугасные бомбы валили на цель «большими тысячами», то ядерные были (да и остаются) штучной продукцией и случайности в виде появившихся некстати истребителей противника или точно наведенной зенитной ракеты требовалось исключить, как и пресечь предательские ссылки летчиков на какие-то там «неблагоприятные метеоусловия». В высоких кабинетах мечталось о чем-то таком, что прорвется к цели «через штормы, тайфуны и снег…» Грезились широкие массы трудящихся, с радостным пением:
Мы живем все радостней, все лучше,
Мы идем дорогою побед!
Сердце нашей партии могучей —
Ленинский Центральный комитет!
марширующих на рытье котлована под что-то жюльверновское, чтоб из него и на Луну можно было… Но опять слышались вредительские речи, что не доплюнуть из жюльверновской не только до Луны, но и – через Арктику, сколько бы ни работали пороховые заводы. А через Арктику – край, как хотелось…
…Увеличить дальность полета снаряда нельзя, не увеличив его скорости, а этому, помимо волны разрежения пороховых газов в стволе, препятствует сопротивление воздуха: по мере увеличения скорости оно непропорционально возрастает.
Рис. 3.29
Производившийся в 50-х годах бомбардировщик В-36 был самым большим в истории самолетом с поршневыми двигателями. Их у него было шесть (с толкающими винтами), а, кроме них – еще и четыре турбореактивных. В-36 мог нести различные образцы ядерного оружия, например – бомбы Мк-6 весом 3,9 т, энерговыделением до 160кт (слева внизу), но не только. В полетах на межконтинентальную дальность В-36 не могли охранять истребители сопровождения, поэтому было задумано придать ему собственный истребитель (XF-85, на правом нижнем фото), также разместив его (со сложенными крыльями) в бомбоотсеке. Сбросить такой истребитель, как бомбу, было нехитрым делом, а вот принять обратно… При возвращении из бомбоотсека выпускалась рама, за которую «карманный» истребитель должен был зацепиться выпускаемым из носовой части крюком (окрашен в черный цвет). Затем истребитель складывал крылья и его втягивали в бомбоотсек. Нечего и говорить, какого мастерства требовала такая операция от пилота XF-85, фактически сидевшего верхом на турбореактивном двигателе
Ракета-то расходует свои силы куда более экономно: в начале полета, она не теряет много энергии на преодоление сопротивления воздуха, потому что движется сравнительно медленно и проходит плотные слои атмосферы по кратчайшему – вертикальному – пути; скорость ее становится значительной в уже разреженном воздухе, на большой высоте. Тут-то ее траектории придается нужный для достижения заданной дальности наклон, заканчивают работу двигатели и далее «забрасываемый вес» пролетает до 90 % дальности по баллистической траектории.
Вес этот меньше, чем тот, который нес «Ланкастер» или «Либерейтор», но производит значительно больший «эффект», каковой пытались всемерно увеличить, экономя каждый килограмм, так что порой капсула выпирала из «юбки» боеголовки, в которой прятался шар запала[63]63
В советских морских ракетах, например в Р-29, капсулу не «выставляли», а «прятали» в корпусе, чтобы уменьшить длину «изделия».
[Закрыть] (рис. 3.30)
…Как-то автор посетил по служебным надобностям Китай. Там гордятся своим «ядерным щитом» и в военном музее выставлены макеты, иногда – даже снабженные иллюминаторами, чтобы простой люд мог увидеть, «как все устроено» (рис. 3.31). Один макет отличался от других благородным, с синеватым отливом, белым цветом покраски. Как я и предполагал, это была боеголовка морской ракеты «Цзюйлань» – морякам всего мира не чужд снобизм, и китайские тоже предпочли не красить свои изделия в цвет, который их коллеги у нас презрительно характеризуют как «зелень подкильная». На вопрос о характеристиках, мои сопровождающие самодовольно заулыбались: мол, кудыж-те, милок, бдительностьто нашу, китайску, оммануть!
Рис. 3.30
В 70-х годах Королевским ВМС были поставлены ракеты «Поларис», разработанные фирмой «Локхид миссайлс энд спейс» (США). Эти морские ракеты получили боевое оснащение собственной, британской разработки. Слева – платформа разведения боевых блоков ракеты «Polaris АЗТК». Термоядерная капсула боевого блока выступает из юбки, в которой размещен «запал» – заряд деления. Справа: после разделения боевых блоков, платформа подрывалась – этим создавалось множество обломков, среди которых маскировались от средств ПРО противника боевые блоки ракеты
Хотя «Цзюйлань» переводится с китайского, как «большая волна», донести до цели эта «волна» может небольшой вес, и конструкторы «вылизали» боеголовку. Прикинув пальцами размеры ампулы, автор брякнул: «Термоядерная, трехфазная, мощность…» Это была большая глупость – улыбки с лиц слетели, «сопровождавшие» стали весьма скупы на какие-либо пояснения. Они явно имели смутное представления о делении и синтезе ядер, иначе продемонстрированный способ оценки был бы для них самим собой разумеющимся…
Рис. 3.31
Слева макет китайской ядерной авиабомбы. Справа – макет (с иллюминатором) термоядерной моноблочной боевой части
…Как и при описании детонации, автор забежал вперед, рассматривая высокотехнологичные имплозивные заряды. А ведь первым примененным в боевых условиях был заряд «ствольного» типа – 6 августа 1945 г. В-29 сбросил бомбу Мк1 с таким зарядом на японский город Хирошиму и только спустя три дня – имплозивного «Жирного» на Нагасаки (рис. 3.32). Ствольный заряд (рис. 3.33) проще имплозивного: не нужна ему сложная схема синхронизации подрыва детонаторов, изготовление строго однородных сферических сегментов ВВ, их подгонка и многое другое, но низка и доля реагирующего при взрыве делящегося вещества.
Рис. 3.32
Слева – макет авиабомбы Мк-1 («Малыш», Little Boy) с зарядом ствольного типа, сброшенной 6 августа 1945 г. на Хирошиму. В центре – макет бомбы Fat Man (название обычно переводят как «Толстяк», но точнее – «Жирный»), взорвавшейся 9 августа 1945 г. над Нагасаки. Справа – «Гаджет», имплозивный заряд «Жирного»
В 70-е годы на ствольные заряды (рис. 3.34) позарились в тех странах, где это было «очень нужно», например – в Южноафриканской республике, чувствовавшей себя неуютно рядом с соседями, фигурировавшими вдоль ее границ (а чаще – в их пределах) с ППШ и автоматами Калашникова.
Ствольная схема применялась в артиллерии, потому что пушек, калибр которых допускал стрельбу первыми имплозивными снарядами, в войсках просто не было.
Рис. 3.33
Схема ядерного заряда авиабомбы Мк-1. Давление газов от горения бездымного пороха 1 разгоняет по стволу 2 поддон с собранной из колец стержнем 3 из U235. Движение поддона заканчивается вхождением стержня в трубу 4 (также из U235) и ударом по источнику нейтронов 5, что приводит к контакту полония и бериллия и необходимой для инициирования цепной реакции эмиссии нейтронов (до этого момента полоний и бериллий не контактируют, так что и нейтроны не эмиттируются). В момент инициирования трубка и стрежень из U235 образуют цилиндр со сверхкритическими параметрами
Стращали народ и «ядерным чемоданчиком» (рис. 3.35) с зарядом ствольного типа, правда – выглядевшим не слишком достоверно. Заряды, предназначенные для диверсионных целей, действительно были созданы, но высота такого «чемоданчика» превышает 200 мм, что вполне позволяет разместить внутри экономичную имплозивную сборку (рис. 3.36).
Рис. 3.34
Слева – корпуса ядерных авиабомб, изготовленных в Южно-Африканской республике. Вставший в 1989 г. на путь демократических преобразований Ф. де Клерк (президент ЮАР) распорядился демонтировать и уничтожить в присутствии представителей международной общественности 6 имевшихся бомб. Общественность констатировала, что заряды бомб были урановыми, ствольного типа.
Контраст такой политике гласности – поведение правительства Израиля, которое никогда не вносило ясность в вопрос о наличии в его распоряжении ядерного оружия. Мало того, в 1985 г. оно бестактно уволило техника Вануну, трудившегося в ядерном центре Димона. Вануну в отместку вскрыл утаиваемое от международной общественности, опубликовав характерную фотографию (справа). Если предположить, что сфотографированные детали имеют отношение к делящимся веществам, то общественность имеет основания для вывода: сборка – часть заряда имплозивного типа. Полость в никелированной (вероятно
– плутониевой) сердцевине закрывается ввинтной крышкой: туда, перед боевым применением, помещают изотопный источник. Источник этот инициирует цепную реакцию нейтронами, когда внутренняя поверхность сжимаемой взрывом плутониевой сборки ударом вминает золотую оболочку, на которую электролитически нанесен полоний, в шарик из бериллия. Шаровой слой темного цвета, скорее всего, предназначен для увеличения инерционности сборки. В отличие от ЮАР, в Израиле нет урановых месторождений, поэтому создание более сложного заряда из реакторного плутония было, возможно, вынужденным решением
Рис. 3.35
Конгрессмен Курт Уэлдон выпучив глаза от ужаса, демонстрирует макет «ядерного чемоданчика» со ствольным зарядом, который «мог попасть в руки террористов». Вполне вероятно, что выступление на пресс-конференции было игрой, рассчитанной на достижение политических целей, причем – весьма рискованной: случись в числе слушателей специалист – он мог бы рассмеяться, увидев макет, сработанный любителями. Размеры свинченного из обрезков водопроводных труб «ствола» чересчур малы, чтобы разместить в нем критическую сборку; вызывают улыбку и тумблер бытового назначения, а также создающие впечатление «сложности» лампа и конденсатор. Автор лично знаком с Куртом Уэлдоном и подозревает, что этот компетентный политик, председатель подкомитета Палаты представителей Конгресса США по делам вооруженных сил, знает, как выглядит, например, диверсионный ранцевый заряд В-54, длиной 44 см и весом 26 кг, оснащенный имплозивной сборкой
Но в узкую скважину, пробуренную на большую глубину, имплозивного «Жирного» не затолкать. Правда, и диаметр «Малыша» (рис. 3.33) не так уж мал, но при боевом применении бомба должна сама «снять» в полете последние предохранители, определить высоту подрыва, так что помимо заряда в ней размещено много обеспечивающей аппаратуры. Для скважинного заряда такая аппаратура не нужна (все запускающие заряд импульсы подаются по кабелям), поэтому даже термоядерное устройство (рис. 3.37), в котором ствольный заряд служит только запалом, выглядит весьма изящно, да еще раскрашено в яркие, радующие глаз цвета. Воронка от взрыва такого заряда тоже приметна, а вот радует она или нет – тут уж какой у кого вкус…
Рис. 3.36
Слева – имитация ядерного устройства SADM (оружия диверсантов Армии США), изготовленная фирмой WMD Training Devices как учебное пособие для агентов спецслужб. Справа – произведенный той же фирмой имитатор самодельного ядерного заряда имплозивного типа. Если «чемоданчик» выглядит правдоподобно, то о «заряде» этого сказать нельзя: его диаметр – чуть ли не минимально возможный. В СССР подобную продукцию признали бы вредительской, созданной специально для того, чтобы ввести в заблуждение неустанно бдящих в бессонном карауле героев незримых битв, потому что работоспособный самодельный заряд, слепленный террористами «на коленке», размерами скорее напоминал бы «Гаджет» (рис. 3.33). Изготовление же именно малогабаритного заряда – сложнейшая задача, для этого нужны специалисты наивысшей квалификации и уникальное оборудование, да еще необходимо где-то украсть плутоний высокой чистоты
…В СССР ядерные заряды с самого начала создавали по имплозивной схеме (рис. 3.38), а «доработанную» американскую документацию на «технологически отсталый» ствольный заряд, несмотря на ее явную историческую ценность (чего стоили только подлинники подписей на некоторых форматках!) Главный конструктор Н.Духов распорядился уничтожить. Думается, были у него и объективные причины для нежелания связываться со ствольной схемой: в ее простоте заключалась и опасность – при сильном ударе урановый цилиндр мог начать двигаться по стволу и без помощи порохового заряда. Ядерного взрыва при этом не произошло бы, но утрачено было бы изделие, из тех, что тогда считали по пальцам, а драгоценный изотоп оказался бы рассеянным по окрестностям. Нет сомнения, что поставившие ранее свою подпись на форматках (особенно – один из них, носивший пенсне[64]64
Глава Спецкомитета при Совете министров СССР, ведавший ядерным комплексом, популярный настолько, что воспевали его в песне юные ленинцы: «Сегодня праздник у ребят, Ликует пионерия! Сегодня в гости к нам пришел Лаврентий Палыч Берия!»
[Закрыть]), вновь потрудились бы подобным же образом, но уже – над документом, озаглавленным «Обвинительное заключение», а некоторое представление о самом справедливом и гуманном в мире советском правосудии Николай Леонидович имел…
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.