Текст книги "Шипение снарядов"
Автор книги: Александр Прищепенко
Жанр: Военное дело; спецслужбы, Публицистика
сообщить о неприемлемом содержимом
Текущая страница: 10 (всего у книги 17 страниц)
Рис. 3.37
Слева – разработанное по программе «Плоушер» для мирного применения термоядерное устройство с зарядом ствольного типа в качестве запала. Справа вверху – скважина для подземного ядерного испытания. Чтобы исключить прорыв радиоактивных газов, ее устье изрядно укреплено. Вверху видны аэростаты с регистрирующей аппаратурой. Ниже – воронка, образовавшаяся после одного из экскавационных (предназначенных для выемки грунта) взрывов, проведенного еще во времена, когда испытания, сопровождающиеся радиоактивными выбросами, не были запрещены. Фото предоставлено архивом Национальной лаборатории в Лос-Аламосе
Рис. 3.38
В создании первых образцов советского ядерного оружия решающую роль сыграла информация разведки. Однако бомба РДС-1 (слева) не была слепой копией «Жирного», из тех, при создании которых дюймовые резьбы винтов и гаек скрупулезно переводятся в метрические (достаточно взглянуть на антенны системы предконтактного подрыва: у РДС-1 и «Жирного» они отличаются). Да и ядерный заряд РДС-1 (справа) «облагорожен» по сравнению с американским аналогом
…Вопросы безопасности становились все более актуальными, по мере того как возрастало количество изготовленных зарядов и они «расползались» по базам хранения в войсках. Разрабатывались специальные контейнеры для ядерных боеприпасов, защищающие опасное содержимое при ударах и пожарах (рис. 3.39), но было понятно, что в самом угрожающем случае – когда такой контейнер похитят – его запоры вряд ли станут непреодолимым препятствием для тех, чьей целью является ядерный шантаж. Поэтому в контейнерах хранились неполностью укомплектованные изделия, а установка на них важнейших элементов и введение допускающих взведение заряда кодов – производились непосредственно перед санкционированным применением (рис. 3.40). Последние же сигналы, запускающие работу всех электронных систем изделия, поступают уже с борта самолета, находящегося над целью.
Рис. 3.39
Вверху слева – британский контейнер с ядерной авиабомбой WE-177. В первых образцах британского ядерного оружия одна из мер безопасности предусматривала заполнение полости в сборке с делящимся веществом стальными шариками. Тем самым исключалось достижение критичности при несанкционированной имплозии. Перед санкционированным применением холостая заглушка из сборки удалялась, шарики высыпались и вместо заглушки монтировался боевой элемент. Правее – контейнер хранения американского ядерного заряда. В зарядах W-47, которыми комплектовались боеголовки ракет Polaris А1 и А2, через плутониевый шар проходила проволока из сплава, содержавшего интенсивно поглощающий нейтроны бор: в такой сборке цепная реакция развиться не могла. Перед подрывом заряда проволока сматывалась электродвигателем; возвращение в сборку поглощающей нейтроны проволоки не предусматривалось. Нижний ряд: слева – советская боеголовка 15Ф54 в раскрытом контейнерах хранения, справа – контейнер для боеголовки 9Н65
Процедуры, повышающие безопасность ядерного оружия, тщательно продумываются и совершенствуются и в настоящее время, хотя собственно ядерные заряды новых конструкций по известным причинам не появляются уже около двадцати лет. И, надо признать, что работу над проблемой безопасности никак нельзя назвать бесполезной (рис. 3.41). Разработана «гидроядерная» методика[65]65
При гидроядерном эксперименте, в натурном заряде снижают его надкритичность при срабатывании, например – заменяя большую часть оружейных плутония или урана на инертные по отношению к делению уран-238 или плутоний-240. При имплозии сборки, гидродинамические характеристики которой после такой замены остаются прежними, ядерное энерговыделение эквивалентно взрыву нескольких килограммов обычного ВВ, но измерения нейтронного потока и других параметров позволяют надежно экстраполировать эти данные на взрыв номинальной мощности.
[Закрыть], позволяющая предсказывать поведение зарядов в различных ситуациях, не доводя дело до мощных взрывов.
Рис. 3.40
На верхнем снимке – сержант ВВС США проводит экскурсию для полного (четырехзвездного) генерала. Судя по тому, что лючки обслуживания ядерной авиабомбы В-61 открыты, даются пояснения процесса подготовки к боевому применению. В британской авиабомбе WE-177 для этого необходимо (средний ряд): заменить холостые заглушки (красного цвета) на боевые, содержащие детонаторы и замыкающие важнейшие контакты; подать по кабелям в изделие кодированную последовательность электрических сигналов, делающую возможным взведение. Нижний ряд: поворот боевого ключа (слева), а также установка высоты подрыва – следующий этап приведения бомбы в боевую готовность. При сбросе, современная ядерная бомба подает сигнал на самописец навигационной системы самолета, что позволяет при «разборе полета», определить, где именно было сброшено изделие
…Приходилось автору внимать шуршащему шепотку: «Дык я в том самом подразделении срочную служил…» или: «Так я ж первый курс того самого училища закончил…» и засим – таким откровениям в ядерной области, что терзался автор восхищенно: каким же вселенским был бы рывок человеческих знаний, останься конфидент служить, как сейчас говорят «контрабасом»[66]66
Контрактником
[Закрыть], а уж если б более, чем один курс «того самого училища» закончил… Также никуда не деться от мыслей о причинах, помешавших собеседнику совершить образовательный подвиг, а паче – о ничтожности своих собственных знаний. Так, назначение далеко не всех деталей на фотографиях разобранной ядерной бомбы В-61 (рис. 3.42, 3.43) может объяснить автор…
…Только уничтожая города, войну не выиграть, примеры Германии и Японии свидетельствовали, что этим можно ослабить сопротивление, но не сломить его окончательно. Понятно, что поначалу, когда ядерных зарядов насчитывалось немного, нацеливать их предполагали только на очень важные объекты. Таким объектом с полным правом мог считаться и ударный авианосец – корабль, чье боевое значение не уступает ценности иного промышленного центра. Для выяснения «военно-морских» возможностей ядерного оружия в июле 1946 года на тихоокеанский атолл Бикини была стянута эскадра старых кораблей: японских, германских, американских.
Рис. 3.41
17 января 1966 г. над испанской деревушкой Паломарес столкнулись два самолета Стратегического авиационного командования ВВС США: бомбардировщик В-52 и заправщик КС-135. С падающего В-52 аварийно сбросили четыре не взведенных термоядерных боеприпаса. Это были бомбы B-28F1 (мощностью по 1,1 Мт), предназначенные для применения с внешней подвески и отличающиеся от уже знакомых читателю B-28TN наличием хвостового отсека с двумя парашютами – вытяжным и основным. Ни одного взрыва (даже неядерного) при приземлении и приводнении бомб не произошло, хотя изделия получили повреждения, и утечка из них радиоактивных материалов сделала необходимой рекультивацию почвы в местах падения. За несколько лет до этой аварии при пожаре произошел взрыв (неядерный) боеголовки W-40 зенитной ракеты «Бомарк». В этом случае имело место рассеяние очень ядовитого плутония, что потребовало снятия и захоронения значительного слоя почвы на месте аварии
Рис. 3.42
Верхний снимок: авиабомба В-61 (учебная) на внешней подвеске истребителя-бомбардировщика. Ниже – её неполная разборка. Не разобранными остались неконтактный взрыватель (в носовой ее части), аппаратура проверки (в чемоданчике). Не разобран и ядерный заряд, что, возможно, методически и верно, потому что бомбы эти снаряжаются устройствами нескольких типов, например (для решения тактических задач), – зарядом деления, предусматривающим переключение энерговыделения в пределах от 300 т до 170 кт тротилового эквивалента. Для изделия, предназначенного для действия по стратегическим целям, энерговыделение термоядерного заряда (правый нижний снимок) достигает 340 кт. В этом заряде запал деления и термоядерная ампула заключены в оболочку, внутренняя поверхность которой хорошо отражает рентгеновское излучение, концентрируя его на ампуле. С 1963 года были разработаны полтора десятка модификаций этой бомбы, а всего было произведено 3155 штук. 1265 бомб В-61 до сих пор состоят на вооружении. Более того, планируется разработка новой модификации В-61-12, с зарядом, энерговыделение которого будет меняться в столь широких пределах, что станет возможным его универсальное использование – как для решения стратегических, так и тактических задач
Испытания начались с конфуза: с самолета В-29, летевшего на высоте более 9 км, сбросили бомбу и… промахнулись более чем на шестьсот метров относительно точки прицеливания. В результате большой авианосец «Саратога» оказался в 4 км от взрыва с энерговыделением в 23 кт и повреждений не получил. Некоторые сразу задались вопросом, какова будет вероятность поражения авианосца в бою, когда он будет маневрировать, а не смиренно ожидать своей участи подобно несчастному городу, причем его самолеты постараются «пощупать» приближающийся бомбардировщик. Экипаж бомбера тоже можно понять: изображать что-то, напоминающее пикирование, зная, что произойдет внизу – чревато, причем настолько, что вряд ли помогло бы в этой ситуации даже проникновенное слово духовного пастыря или комиссара. Так в ходе испытаний проявилось то, что сейчас уже считается общеизвестной истиной: мощность заряда нет смысла неограниченно наращивать, она должна соответствовать маневренности и защищенности цели, точности средства доставки и обеспечивать безопасность тех, кто его применяет.
Рис. 3.43
Элементы заряда одной из модификаций авиабомбы В-61. Специалисты Национальной лаборатории в Лoc Аламосе, где он создавался, не указали их назначение, но можно предположить, что позолоченные, вставляющиеся один в другой, сферические элементы – детали сборки деления, а цилиндрические принадлежат термоядерному узлу
…Между тем, испытания продолжались. Для «усиления эффекта», следующий взрыв произвели на глубине в 30 м, принайтовав заряд тросами к барже. Правда, баржа в боевых условиях вряд ли может служить носителем ядерного оружия, но получилось очень красиво (рис. 3.44). Кое-какие корабли затонули сразу, а «Саратога», дрейфовавший в 500 м от взрыва, бортом к нему, оставался на плаву в течение 7,5 часов. Рассуждать, стал ли экипаж, окажись он на «Саратоге», в течение долгих часов созерцать, как тонет родной корабль, или все же прекратил бы поступление воды, задним числом бессмысленно. В 1990 году подводная экспедиция обследовала «Саратогу» (рис. 3.45). Корабль лежал на ровном киле, были видны прогибы обшивки корпуса, вызванные ударной волной в воде, исчезла сорванная воздушной ударной волной огромная дымовая труба, по которой до войны можно было без труда опознать красавец-корабль. Нашим корабелам повезло в том отношении, что не довелось им строить авианосцы, потому как после подобных испытаний пришлось бы «чистосердечно признаться»: мол, выполняя задание японской разведки, специально сконструировали мы для корабля трубу с большой парусностью. Судите нас строже, граждане судьи!
Рис. 3.44
Натурные испытания ядерного оружия на морских целях
Есть у автора и личные впечатления от последствий воздействия поражающих факторов ядерного оружия на корабли. В 90-х годах наша группа прибыла на остров Коневец в Ладожском озере. Обратил на себя внимание корабль (рис. 3.46), севший на дно недалеко от берега. Это был старый германский тральщик Т-219, переживший два ядерных взрыва при натурных испытаниях в октябре 1957 г. на новоземельском полигоне.
Рис. 3.45
Изображенный на картине, лежащий на дне, потопленный ядерным взрывом авианосец «Саратога» (вверху) и фотография того же корабля в его лучшие времена
Находясь сначала в восьмистах метрах, а потом – почти в километре от взрывов заглубленных на 30 м зарядов с энерговыделением по 30 кт, тральщик остался на плаву и его затем перевели по системе каналов с Новой земли на Ладогу. Там корабль потопили, стреляя по нему крылатыми ракетами с инертными боевыми частями. Каждому, кто осмотрел корабль, дырки от попавших ракет были очень заметны, а вот повреждения, характерные для воздействия поражающих факторов ядерного взрыва (деформация бортов, надстроек, повреждения рангоута), не очень. Правда, в ходе ядерных испытаний по тральщику ударили волны сравнительно удаленных взрывов, а потом он получил прямые попадания ракет, но стоит учесть и разницу в стоимости ракет и ядерного заряда: в пятидесятых годах первые были куда дешевле.
Рис. 3.46
Бывший германский тральщик Т-219, использованный как мишень при испытаниях ядерного оружия, а затем – крылатых ракет
Нет ничего удивительного в том, что анализ результатов этого и других испытаний привел к тому, что началась «специализация» ядерного оружия, его характеристики приводились в соответствие с условиями боевого применения.
Постепенно оргастическое упоение зарядами огромной мощности сменилось трезвыми расчетами. Поскольку радиус поражения возрастает пропорционально корню квадратному из энерговыделения, при помощи логарифмической линейки не составляло труда прикинуть, что несколько боеголовок, пусть даже и меньшей суммарной мощности (ведь каждая из них должна иметь свою систему инициирования и прочее) обеспечивают большее действие у цели, чем одна мощная, того же веса. «Забрасываемый вес» поделили между несколькими боевыми блоками, на первых порах – просто рассеиваемыми. Для поражения цели большой площади и такое решение годилось, но огромный скачок в эффективности произошел, когда каждый из блоков (рис. 3.47) стали нацеливать[67]67
У читателя может сложиться неверное мнение, что каждый из боевых блоков имеет собственную систему наведения. На самом деле, нацеливает блоки ступень разведения, на жаргоне называемая «автобус». Траектория «сошедшего с автобуса» блока, как правило, уже не корректируется. Исключение составляют маневрирующие блоки.
[Закрыть] на специально для него предназначенный объект.
Оптимизировались и эффекты: при ударе по слабозащищенным целям, подрывать заряд следует на небольшой, зависящей от энерговыделения, высоте – тогда ударная волна с необходимыми для поражения параметрами формируется на большей площади. Для уничтожения же прочного подземного бункера необходим «заглубленный» подрыв (рис. 3.48), и это требовало разработки специальных конструкций – надо только представить себе, какие огромные нагрузки испытывает довольно сложный заряд, когда боеголовка, на скорости в несколько километров в секунду, внедряется в грунт, а то и в бетон.
Рис. 3.47
На верхнем левом снимке – боевая ступень советской ракеты средней дальности 15Ж53 «Пионер УТТХ». Из трех боевых блоков 15Ф542 (индекс их ядерного заряда – АА-74) установлен только один и его плохо видно, зато хорошо видны сопла двигателей, обеспечивающих маневры «автобуса» (ступени разведения). Ракеты 15Ж53 уничтожены в соответствии с договором между СССР и США, однако у российской МБР 15Ж65 «Тополь М» боевая ступень во многом аналогична «пионерской». Боевой блок входит в атмосферу с такой скоростью, что не просто образует ударную волну: температура сжатого воздуха столь высока, что происходит ионизация. Благодаря свечению плазмы, маневры разведения боевых блоков хорошо видны на левом нижнем снимке, сделанном камерой с открытым затвором (правее – результат компьютерного моделирования течения воздуха при движении блока). Понятно, что сфотографированы макеты боевых блоков, но и холостая болванка, летящая с гиперзвуковой скоростью, при прямом попадании поразила бы точечную цель вроде ракетной шахты. Однако подобное завершение полетного задания крайне маловероятно, современные системы наведения такую точность не обеспечивают, и ядерный заряд служит для компенсации промаха, который тем значительнее, чем больше дальность стрельбы. Представить «компенсацию» поможет аналогия: внизу справа – сделанный с экрана микроскопа снимок проросших на травленой подложке структур CoFeB.
Точность характеризуется круговым вероятным отклонением (КВО) – радиусом круга, в который, при стрельбе на максимальную дальность, боевой блок попадет с вероятностью 50 %. Поражение цели – также задача, описываемая теорией вероятностей: например, при наземном подрыве боевого блока с энерговыделением около 500 кт на расстоянии 160 м от шахты, выдерживающей давление ударной волны в 70 атмосфер, вероятность поражения – 90 %. Максимальные дальности стрельбы МБР 15Ж65 и морской ракеты UGM 133А «Трайдент» D5 (ее боевая ступень – на правом верхнем снимке) одинаковы (10500 км), однако D5, стартовый вес которой – 59 т (на 25 % больший, чем у «Тополя»), несет восемь блоков, в то время как «Тополь» – один. Правда, мощность боевого блока «Тополя» (550 кт) выше, чем у «Трайдента» (475 кт для заряда W-88). Поскольку плотность энергии в ударной волне убывает пропорционально квадрату расстояния, такое соотношение обеспечивает «Тополю» выигрыш 8 % в дальности компенсации промаха по цели равной стойкости. Однако зарядам W-88 требуется компенсировать куда меньшие промахи (КВО каждого из блоков «Трайдента» – 90 м, в то время как блока «Тополя» -400 м) и это придает ракете D5 способность поражать намного лучше защищенные цели
Рис. 3.48
Примерно так выглядит поражение цели проникающей боеголовкой ракеты средней дальности «Першинг 2», предназначенной для уничтожения высокозащищенных целей (таких, как пункты боевого управления). При значительном заглублении (справа вверху) огненный шар не образуется. При меньшем заглублении (внизу слева), плазма прорывается через слой метаемого взрывом грунта
Появилось оружие сверхмалой мощности (рис. 3.49) для сухопутных войск – чтобы они могли сами поражать важные и высокозащищенные цели (рис. 3.50), а не бежали от них в кошмаре быть испепеленными «своим» же огненным шаром. Появилось оно и для кораблей – чтобы гарантированно уничтожить подкравшуюся подводную лодку (рис. 3.51), а не изводить себя многочасовыми прослушиваниями глубин океана, чередующимися с бомбометанием.
Рис. 3.49
Калибр советского ядерного снаряда 35B3 с энерговыделением, эквивалентным одной килотонне тротила – всего 152 мм. Особенность работы ядерного заряда на носителе с малым подлетным временем – минимальное время приведения в готовность к подрыву. Все потребности в электроэнергии заряда и блоков его автоматики обеспечиваются витковым взрывомагнитным генератором (об устройстве ВМГ – в следующей главе), который срабатывает от детонационного импульса неконтактного радиолокационного взрывателя. При сжатии созданного постоянными магнитами поля за микросекунды ВМГ генерирует токовый импульс энергией в несколько джоулей
…Автор полагает, что описывать конструкции ядерных зарядов нецелесообразно: во-первых, эта книга – не учебное пособие, а во-вторых – не надо забывать и о тех самых органах. Вполне достаточно напомнить: если шар из плутония окружить тяжелым материалом – повысится инерционность сборки и большее число ядер разделится; если же окружить его замедлителем – уменьшится потребное для взрыва количество плутония, но понизится мощность взрыва и разделится меньшая доля плутония.
Рис. 3.50
Выстрел ядерным снарядом. Энерговыделение эквивалентно взрыву 15 килотонн тротила
Если необходимо всемерно уменьшить диаметр заряда – можно практически отказаться от метания: слой ВВ сделать очень тонким, а сверхкритическое состояние получить за счет инициирования при взрыве фазового перехода (рис. 3.52), повышающего плотность плутония (правда, мощность взрыва и доля разделившихся ядер в этом случае минимальны). Рациональное решение, примененное в запале заряда W-87, – придать плутонию форму не шарового слоя, а эллипсоида вращения, вытянутого к полюсам (рис. 3.53), профилировав толщины слоев ВВ и плутония. Детонационная разводка подрывается одновременно у двух полюсов и имплозия «гонит» плутоний к центру: от полюсов – быстрее, ближе к экватору – медленнее, – с расчетом, что и не сферически-, а осесимметричная имплозия все равно сформирует из него шар. Такая схема, за счет увеличения длины заряда, позволяет минимизировать диаметр.
Рис. 3.51
Взрыв (с энерговыделением 10 кт) заряда W-44, которым комплектуется противолодочная ракета «Асрок»
Термоядерному заряду можно добавить мощности, использовав нейтроны синтеза для нецепного деления, или повысив долю реагирующего топлива, сделав термоядерный узел сферически-симметричным; заряду цепного деления, не имеющему узла радиационной имплозии – разместив в самом центре полого плутониевого шара термоядерное топливо, которое прореагирует, будучи сжато и разогрето взрывом.
Рис. 3.52
В отличие от статического, всестороннего сжатия, деформация вещества в ударной волне происходит в направлении ее распространения. При этом возникают напряжения вдоль других осей и, если они превосходят предел прочности, кристаллическая решетка ломается, что создает условия для возрастания плотности вещества. На полученном при большом увеличении снимке – фазовый переход: слева внизу – кристаллическая структура, справа вверху – аморфное вещество
Это – не всё, но достаточно, чтобы понять: технические возможности для создания зарядов различных размеров и мощностей есть. Однако истинная специализация оружия заключается в другом.
… Энергия в 202 МЭв, от каждого акта деления, следующим образом распределяется между продуктами этой реакции. Мгновенно выделяются:
– кинетическая энергия осколков деления;
– кинетическая энергия нейтронов;
– энергия гамма излучения.
Со значительным запаздыванием выделяются:
– энергия бета излучения продуктов деления;
– энергия гамма излучения продуктов деления.
Все то, что при ядерном взрыве проходит по «второму списку», вызывает радиоактивное заражение местности – явление, только на эмоциональном уровне вызывающее извращенное удовлетворение в ассоциации с образом ненавистного врага, но на самом деле – весьма опасное для обеих сторон.
Рис. 3.53
Слева – монтаж боевых блоков на платформе боевой ступени МБР LGM-118А «Пискипер». Заряд W-87 каждого из этих блоков весит 242 кг и при взрыве формирует ударную волну с такими же параметрами, как и взрыв 47 5 тысяч тонн тринитротолуола (чтобы перевезти это количество взрывчатки по железной дороге, потребовалось бы 8000 грузовых вагонов). В запале используется ВВ 1, содержащее 90 % октогена (циклотетраметилентетранитроамина), более мощного, чем гексоген, но менее чувствительного к удару и нагреву. Инициирование детонации в разводке запала производится одновременно только в двух точках электродетонаторами 2, сигнал на которые, так же как и импульсный поток нейтронов, запускающий цепную реакцию, формирует блок AFAF 3. Для минимизации размеров запала плутоний 4 окружен замедлителем 5 из бериллия, но применено газовое термоядерное усиление мощности. Промежутки между ампулой и запалом заполнены пенополистиролом 7. Конструкция термоядерного узла обеспечивает наиболее эффективную – сферическую – радиационную имплозию ампулы, состоящей из концентрических шаровых слоев: тяжелых урановых 8 (внутренний – полый) и тяжеловодородного соединения лития-6 95 %-ного обогащения (9). В одной из модификаций заряда внешняя оболочка и сердцевина ампулы сделаны из урана-235. Не только нейтрон с «термоядерной» энергией, но и любой (например – низкоэнергетичный, из запала) вызовет в такой ампуле деление, да не одно, а целую цепь! В результате заметно повышается мощность, поскольку возрастают параметры сжатия и доля топлива, вступающего в реакции. Корпус 10 (на жаргоне разработчиков – «арахис», хотя, на взгляд автора, он более напоминает грушу) отражает и максимально сберегает для радиационной имплозии излучение запала и включает, для дополнительного усиления взрывного эффекта, U238. Все эти решения позволили достичь для заряда W-87 очень высокого отношения энерговыделения к массе.
Помимо боевых блоков, на платформе размещаются ложные цели, а также генераторы помех – для противодействия РЛС противоракетной обороны противника
Энергия же факторов первого списка определяет могущество ядерного оружия. Если взрыв происходит в сравнительно плотном воздухе – почти две трети его энергии переходит в ударную волну. Львиную долю остатка забирает световое излучение, оставляя лишь десятую часть проникающей радиации (рис. 3.54), а из этого мизера лишь 6 % достается сотворившим взрыв нейтронам. Существенную энергию уносят с собой нейтрино, но они настолько неуловимы, что найти им и их энергии практическое применение не удается до сих пор.
Рис. 3.54
Проникающую (нейтронную и гамма) радиацию увидеть нельзя, но можно наблюдать вызываемые ею эффекты. Так, ионизация воздуха приводит к возрастанию его проводимости и, если недалеко от взрыва есть грозовые облака, электропрочность воздуха нарушается и следуют разряды молний
…Все было достаточно ясно с ударной волной (рис. 3.55): оптимизация поражения целей упрощалась, поскольку решения уравнений, описывающих движение вещества при взрывах, автомодельны (подобны) и характеризуются безразмерными, относительными параметрами. Например, можно текущие значения давления и радиуса задавать в виде отношений к соответствующим значениям в начале процесса, и решение будет описывать и явление радиусом в дециметр и в километр, так что получать необходимые численные данные для расчетов можно и на моделях (рис. 3.56)
Если стойкость цели по отношению к ударной волне известна – можно определить высоту подрыва заряда данной мощности, при которой площадь поражения целей будет максимальной, или – если носитель доставляет заряд с высокой точностью – минимизировать мощность заряда.
Рис. 3.55
Читатель, возможно, удивится, но изображенное на снимке называется… компьютером. Такие механические вычислители на заре ядерной эры имели командиры, чтобы рассчитывать эффекты ядерных взрывов
Правда, могла поджечь деревянные постройки и причинить тяжелые ожоги вспышка света (рис. 3.57), но то же самое делал и входивший в моду напалм (рис. 3.58)…
А вот непривычное «общественности», не превращающее цель в головешки или тривиальную груду развалин, конечно же, почиталось «варварством». Чтобы прикинуть, как это варварство использовать порациональнее, пригляделись к тому, что возмутительно уклонялось от созидания главных поражающих факторов – к ускользавшим из огненного шара нейтронам и высокоэнергетичному («жесткому») гамма излучению.
Рис. 3.56
МБР базируется в шахте, крышка которой весит многие десятки тонн (снимок вверху), и для получения данных о стойкости шахты по отношению к ударной волне необходим чрезвычайно мощный взрыв и колоссальные расходы на такой опыт. Однако автомодельность процессов газовой динамики дает возможность оценить стойкость на макете: на нижнем левом снимке – «обдутая» копия шахты МБР LGM-118A в масштабе 1:8 в воронке от модельного взрыва. Данные в этом случае получены при подрыве всего нескольких тонн обычного ВВ (правее)
Рис. 3.57
Эффекты воздействия светового излучения ядерного взрыва в Хирошиме. Там, где на кимоно этой японки был темный рисунок, поглощено больше лучистой энергии, нагрев прилегавший к телу ткани вызвал тяжелые ожоговые поражения. Ткань светлых оттенков отразила значительную часть излучения, послужив защитой
Выход гамма излучения можно повысить, окружив заряд конвертером – веществом, ядра которого интенсивно испускают гамма-кванты под действием нейтронов, но на поле сражения прямое действие гамма излучения уступает по боевому эффекту и ударной волне, и свету. Оно может, например, причинить неприятности электронике, но – в огромных дозах (десятках миллионов рад[68]68
Эффекты, производимые излучениями разных видов в тех или иных веществах отличаются, поэтому различны и единицы, в которых измеряются дозы облучения. Рад – энергетическая единица, соответствующая поглощению одним килограммом вещества энергии в 0,01 Дж. Более известная единица – Рентген – определяется ионизационным эффектом гамма квантов в воздухе: при такой дозе в килограмме воздуха образуется заряд в 2,58–10 -4Кулон. Бэр (биологический эквивалент рентгена) – доза любого вида излучения, производящая такое же действие в биологическом объекте, как 1 рентген. Перевести одну единицу в другую, не зная характеристик вещества и излучения нельзя. Так, например, ионизационный эффект облучения нейтронами может быть не прямым, а обусловленным продуктами их реакций, то есть – определяться изотопным составом облучаемого вещества. Отличается этот эффект и для нейтронов разных энергий.
[Закрыть]). От таких доз плавятся металлы, а ударная волна с куда меньшей плотностью энергии уничтожает цель без подобных излишеств.
Рис. 3.58
На фотографии слева – «гриб» не от ядерного взрыва, а от срабатывания напалмовой «зажигалки». Явления похожи вследствие подобия конвективных течений газа. Такое течение возникает, когда в поле тяжести пузырь нагретого (и потому – более легкого) газа поднимается вверх, чуть-чуть поджимая перед собой «омывающий» его холодный воздух (ни о какой ударной волне, понятно, речи в этом случае нет). Ну а позади пузыря, в область разреженного его движением воздуха, втягиваются пыль и дым, образуя «ножку» гриба.
Напалм – горючее (бензин, авиационный керосин), загущенное солями жирных кислот, преимущественно нафтеновых и пальмитиновых, откуда и название: «На-Палм». Впервые применено во Второй мировой войне американскими войсками против японцев, оборонявшихся в многочисленных пещерах на островах Тихого океана. Смесь солей – сыпучий порошок, она вполне безопасна. Будучи разбавлена бензином, смесь приобретает консистенцию студня, и, когда этот «студень» воспламеняется, жар вокруг очень силен. Горящий напалм становится жидким, затекает в щели. Его «звездным часом» стала война в Корее, (1950 – 1953 гг.), где самолеты тактической авиации США штурмовали зажигательными баками густые цепи китайских «народных добровольцев», которые наступали, не считаясь с потерями от артиллерийского и пулеметного огня. Позже, во Вьетнаме, в напалм стали добавлять капсулированные шарики белого фосфора. Такую смесь нельзя было погасить – она самовоспламенялась (снимок справа), а ожоговые травмы от нее, из-за присутствия фосфора стали еще кошмарнее
Если же плотность энергии гамма излучения меньше, оно становится безвредным для сделанной из железа технике, вроде тех же пушек – а ударная волна и тут может сказать свое слово (рис. 3.59)…
Так что прямое гамма облучение существенного боевого эффекта не обеспечивает, чего нельзя сказать об эффектах вторичных, порожденных им же…
Рис. 3.59
Действие ударной волны по наземным целям можно усилить, поскольку при отражении ударной волны от грунта (ударно-волновой импеданс которого довольно высок) давление возрастает. Оптимальная высота подрыва зависит от энерговыделения заряда и стойкости целей. На теневом снимке подрыва всего 10 мг динитродиазофенола – отражение волны. Давление максимально в области, где падающая и отраженная волны сопрягаются. На снимке справа, за снятым обтекателем авиабомбы Мк-17 – устройство, обеспечивающее высотный подрыв
…Начинается все с Комптон-эффекта[69]69
Так (по имени первооткрывателя) называют эффект рассеяния гамма квантов на внешних электронах атома. Если импульс, сообщенный при этом внешнему (наименее связанному) электрону достаточен, он покидает атом, становясь свободным электроном отдачи. Частота кванта при таком взаимодействии падает – он теряет энергию.
[Закрыть] в ходе которого образуются электроны отдачи. Магнитное поле Земли, не сообщая заряженной частице кинетическую энергию, «закручивает» ее траекторию (рис. 3.60). Но движение, отличное от равномерного и прямолинейного, есть движение с ускорением – так учит нас школьный курс механики; хотя и не изучаемая подробно в школе, наука электродинамика учит еще и тому, что двигающийся с ускорением заряд излучает. Излучение это тоже электромагнитное, то есть представляет собой колебания электрического и магнитного полей – как и свет, со скоростью которого они распространяются. Характеристики электромагнитного импульса ядерного взрыва (ЭМИ ЯВ) отличаются от характеристик породившего его гамма излучения лишь количественно, но зато – на много порядков. Начнем с того, что в энергию ЭМИ переходит лишь 0,6 % энергии гамма квантов, а ведь их доля в балансе энергии взрыва сама по себе мала. Еще более различаются частоты колебаний: у ЭМИ – килогерцы-мегагерцы, у его «родителя» – на пятнадцать порядков бо́льшие.
Рис. 3.60
В иллюстрации Комптон-эффекта (слева вверху), вызывающего формирование ЭМИ ЯВ, многие объекты стилизованы: электромагнитные излучения изображены простыми синусоидами, хотя они представляют колебания напряженностей электрического и магнитного полей. Изображение атома несколько ближе к реальности: электроны в нем не представляют компактные частицы, вращающиеся по орбитам, а в соответствии с принципом Гайзенберга «размазаны» по ним (автор также попытался изобразить орбиты, соответствующие различным энергетическим состояниям). Принцип неопределенности следует из квантовой природы частиц: точности одновременного определения координаты и скорости частицы связаны константой. Характерный размер ядра на несколько порядков меньше размеров электронных орбит (а не в несколько раз, как на рисунке), но в ядре сосредоточена практически вся масса атома. Оно также может находиться в различных энергетических состояниях (основном или возбужденных).
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.