Электронная библиотека » Александр Прищепенко » » онлайн чтение - страница 8

Текст книги "Шипение снарядов"


  • Текст добавлен: 17 декабря 2013, 18:51


Автор книги: Александр Прищепенко


Жанр: Военное дело; спецслужбы, Публицистика


сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 17 страниц)

Шрифт:
- 100% +

В обеденный перерыв пришлось съездить домой за книгой Глесстона «Действие ядерного оружия», а после перерыва – попросить специалистов по ядерным реакциям отдохнуть и задать изобретателям вопросы, проверяя, правильно ли занесены в протокол ответы на них.

В: Вы утверждаете, что источником энергии у вас является синтез, неважно – «холодный» или «горячий»?

О: Да.

В: Согласны ли вы, что в каждом акте синтеза выделяется свободный нейтрон?

О: Да.

В: Верно ли, что энерговыделение при взрыве вашего устройства эквивалентно взрыву нескольких килограммов ВВ?

О: Да.

В: У меня в руках книга Глесстона, там приведены данные об энергии, выделяющейся в акте синтеза– 17 Мэв, что соответствует 2,7-ю 12 Дж, вы согласны?

О: Да.

В: А где лично вы находились при проведении опытов?

О: В блиндаже, метрах в десяти. А какое это имеет значение?

Имело это такое значение, что в каждом из опытов должно было выделиться по 1019-1020 нейтронов достаточно было поделить заявленное значение энерговыделения в опыте на энерговыделение в одном акте синтеза, чтобы в том убедиться. В десяти метрах от смертельной дозы нейтронов не мог спасти ни один блиндаж.

Все стали мусолить книгу, раздалось неуверенное беканье изобретателей, что, может, у них и «не выделялись нейтроны», на что последовал заготовленный ответ: «Тогда вам надо не размениваться на прикладные мелочи, а сначала заявить об открытии совершенно нового класса ядерных реакций». Далее диалог продолжался вполне предсказуемо.

– Мы не намерены вступать в споры об открытии, есть эффект – и всё!

– Тогда следует продемонстрировать на полигоне, как и чем проделываются дырки в бронеплитах, а не затевать дискуссии о так называемом холодном синтезе…

Конечно, на этом активность первопроходцев не иссякла, впоследствии до автора доходили отголоски скандалов на эту тему, но на заседания комиссий его больше не приглашали.

Механические поражения в результате взрывных эффектов ядерных реакций начинают превалировать над радиационными, если энерговыделение в сборке превысит несколько тераджоулей (что соответствует примерно килотонне тротилового эквивалента)[49]49
  Энерговыделение ядерного заряда характеризует энергию его взрыва и, по смыслу, должно выражаться в Джоулях, но принято использовать внесистемную единицу (тротиловый эквивалент): вес тринитротолуола, содержащего равное количество энергии. Применение такого сравнения без оглядки на различия процессов чревато ошибками: во-первых, оно возможно только на достаточном удалении, поскольку температура, давление и другие параметры вещества вблизи ядерного взрыва недостижимы для взрыва обычного ВВ; во-вторых, как предстоит узнать читателю, соотношение каналов распределения энергии (на формирование УВ, на проникающую радиацию и т. д.) неодинаково для взрывов в разных средах.


[Закрыть]
. Если бы даже «атомные пули» и были созданы, то такое мини-оружие по всем меркам было бы ядерным и после его применения остались бы неоспоримые улики: продукты реакций и наведенная нейтронами радиоактивность, а это дало бы противнику право ответить на «пулеметные» экзерциции полноценным ядерным ударом…

…Итак, поверхность сборки (рис. 3.9а), содержащей плутоний («черная сердцевина»), искусственно увеличивают, выполняя ее в форме шарового слоя (полой внутри) и заведомо подкритичной, даже – и для тепловых нейтронов, даже – и после окружения ее замедлителем (слой желтоватого цвета). Вокруг сборки из очень точно пригнанных блоков взрывчатки монтируют заряд (оранжевого цвета), также образующий шаровой слой. Читатель и сам догадывается, для чего нужен взрыв: чтобы рвать, метать, деформировать. Но чтобы сберечь нейтроны, надо и при взрыве хоть и уменьшить радиус сборки, но сохранить ее благородную форму шара, для чего подорвать слой взрывчатого вещества одновременно по всей его внешней поверхности, обжав сборку равномерно со всех сторон. Для этого служит детонационная разводка из поликарбоната – также в форме шарового слоя, плотно прилегающего к заряду взрывчатки.

…Предположим, у нас есть всего один детонатор, но кроме него – взрывчатка, по консистенции напоминающая пластилин, причем скорость ее детонации очень стабильна. Попробуем сначала одновременно «развести» детонацию только в две точки. Сначала просверлим в нужных местах два отверстия. Далее, взяв циркуль и, поочередно помещая его ногу в отверстия, произвольным, но одинаковым радиусом сделаем две засечки. Процарапаем или отфрезеруем (но на небольшую, меньшую, чем толщина разводки глубину) две прямые канавки, ведущие от отверстий к точке пересечения засечек. Плотно забьем и канавки и отверстия взрывчатым «пластилином», а в точке пересечения канавок установим наш единственный детонатор. Когда он сработает, детонация пробежит по канавкам абсолютно равные расстояния, а поскольку скорость ее высокостабильна – в один и тот же момент времени достигнет отверстий. В отверстия также забит взрывчатый «пластилин», в отличие от канавок, находящийся в контакте с основным зарядом, поэтому его детонация «заведет» и основной заряд – одновременно и в двух требуемых точках.


Рис. 3.9

Анимация: перевод сборки в сверхкритическое состояние при имплозии. Справа – «система многоточечного инициирования»: тонкая полоска целлулоида с обернутой вокруг нее нихромовой проволокой, взятой из «сгоревшего» паяльника. Эта полоска укладывается по периферии «заряда» и при подаче тока воспламеняет инициирует реакцию в бихромате по внешней поверхности

Для инициирования в трех точках задача усложнится. Вспоминаем планиметрию (правда, у нас поверхность не плоская, а сферическая, но – пойдем на такое упрощение): через три точки можно провести окружность одного-единственного радиуса (в центр ее и поместим детонатор), делать засечки произвольным радиусом уже нельзя. Для четырех точек – следующая ступень усложнения: одну из них (ближайшую к детонатору) придется соединять с детонатором не прямой, а ломаной канавкой, чтобы обеспечить равное с остальными тремя время пробега детонации.



Рис. 3.10

Слева – элемент детонационной разводки. Справа – детонационная линза, состоящая из взрывчатых веществ с разной скоростью детонации (у внешнего слоя она выше). Форма зарядов подобрана так, что если инициировать этот конус на вершине, то к его основанию придет детонационная волна сферической формы


А если точек – несколько десятков, да еще они должны равномерно покрывать всю сферическую поверхность заряда? Такая задача решается с применением методов геометрии Римана. Элемент разводки выглядит как на рис. 3.10, и не на всяком станке, даже – с числовым программным управлением, его можно изготовить, зато применение разводки позволило существенно уменьшить диаметры зарядов, по сравнению с первыми образцами, в которых для тех же целей использовались детонационные линзы. Кроме того, для заряда с разводкой необходимы всего несколько электродетонаторов в специальных, плоских розетках (рис. 3.11), в то время как для каждого «линзового» заряда их требуются десятки (рис. 3.12).


Рис. 3.11

Детали боевого блока: носовая часть и розетки электродетонаторов


…Как-то автору потребовалось сформировать сходящуюся к оси цилиндрическую волну. Конечно, восемь использованных им электродетонаторов не были «товарами народного потребления» из тех, что используют в забоях и штреках. Все восемь были соединены последовательно, но, несмотря на то, что запускающий их импульс максимально форсировали, данные скоростной съемки показали, что они не сработали одновременно (рис. 3.13). Для устройства автора такое катастрофой не явилось: исследуемое явление не было очень уж чувствительно к симметрии сжатия. Ядерный заряд в аналогичной ситуации слегка «недодал» бы энерговыделения: отклонение формы сборки от шаровой увеличило бы потери нейтронов.


Рис. 3.12

Макет, предназначенный для демонстрации экскурсантам принципа имплозии, оснащен несколькими десятками «детонаторов». Натурный заряд такого типа требует значительно большего энергообеспечения системы инициирования и менее надежен по сравнению с устройством, в котором используется многоточечная детонационная разводка


Первые «атомные» электродетонаторы срабатывали от накаливания током тончайшей проволочки: от нее воспламенялась, а затем детонировало инициирующее ВВ, передавая детонацию бризантному. Была до тонкостей «вылизана» технология изготовления таких детонаторов, и все равно готовые изделия «калибровали», выбирая те, которые минимально отличались друг от друга по параметрам. Такие образцы объединяли в «боекомплект» и хранили в специальных опломбированных контейнерах. Потом от детонаторов с мостиком накаливания отказались по соображениям безопасности: из-за наличия инициирующего ВВ они могли сработать при нагревании, да и токовые импульсы от разного рода наводок могли привести к подрыву и – в самом безобидном случае – к рассеиванию плутония, каковое к приятным обстоятельствам никак не отнесешь. Поэтому перешли на «безопасные» детонаторы: в них нет инициирующего ВВ, а формирует в бризантном ВВ ударную волну, трансформирующуюся в детонационную, канал высоковольтного разряда. Понятно, что для срабатывания таких детонаторов нужно больше энергии, чем для мостиковых, но – безопасность превыше всего!



Рис. 3.13


Верхний ряд, снимки 1 и 2: цилиндрическая имплозия. Там, где детонационные волны сталкиваются, давление и температура значительно выше, поэтому области столкновений на снимках ярко светятся. Измерив по фотографии расстояние между центром точки инициирования и границей такой области и зная скорость детонации ВВ, можно определить, какое время прошло с момента инициирования до столкновения волн. Электродетонатор, находящийся в позиции, соответствующей положению часовой стрелки «полтретьего», сработал раньше других (примерно на 0,4 микросекунды): для этой точки инициирования упомянутое расстояние больше среднего значения. Начавшаяся раньше детонация «успела» расширить свой сектор за счет соседей и раньше «толкнула» находящийся в центре объект, нарушив симметрию сжатия. От этого опыта остался и «свидетель» – медный электрод (справа), на обратной поверхности которого, в местах столкновения детонационных волн, заметны откольные явления.

Такие же наглядные снимки сферической имплозии получить невозможно, поэтому внутри метаемого взрывом шарового слоя размещается «башня» с множеством контактных датчиков различной длины (нижний левый снимок). Сжимаемый имплозией шаровой слой последовательно замыкает эти датчики, что дает возможность, зарегистрировав моменты замыкания, определить элементы движения слоя. Левее – детонаторы, применявшиеся в ядерных зарядах: вверху – мостиковый, ниже – высоковольтные, не содержащие инициирующего ВВ. Справа – контейнер для боекомплекта


…Остается доделать всякую ерунду: завинтить крышки, подключить кабели, ведущие к розеткам электродетонаторов (рис. 3.14)… Впрочем, что значит – «ерунду»? Операции при сборке «авиационной автоматики» только одной категории – «ответственные»! Выполняются они «тройкой». Один громко, с внятной артикуляцией, зачитывает пункт инструкции: «Затянуть гайку, позиция… ключом позиция… с моментом…». Второй повторяет услышанное, берет поименованные в соответствующих позициях инструкции гайку и ключ, снабженный измерителем момента, «затягивает». Третий контролирует правильность зачитывания, повторения, соответствие «позиций» и показания измерителя момента. Потом все трое расписываются в соответствующей графе за проведенную операцию (одну из многих тысяч подобных), и каждый знает: в случае чего – «следствие, протокол, отпечатки пальцев…» Таинство производило сильное впечатление на тех, кому довелось быть его свидетелями, в том числе – на С. Королева, который позже внедрил аналогичный порядок и в космической отрасли.

Работа заряда начинается с момента, когда мощный высоковольтный импульс одновременно подрывает все детонаторы. Огоньки детонации с постоянной скоростью (около 8 км/с) разбегаются по канавкам, а пройдя их – ныряют в отверстия и одновременно во множестве точек «заводят» заряд (рис. 3.96). Далее следует сходящийся внутрь[50]50
  Такой инициируемый одновременно во многих точках на внешней поверхности и распространяющийся внутрь заряда взрыв называют имплозией. Считается, что термин введен в обращение американскими разработчиками ядерных зарядов, но автору удалось обнаружить его в книге А. Штеттбахера «Пороха и взрывчатые вещества», изданной еще в 1919 году (в русском переводе – в 1936 г.). Там этим термином описывается схлопывание газов в область разрежения (пример такого процесса – лопнувшая лампочка).


[Закрыть]
взрыв (рис. 3.9в), который сдавливает сборку давлением более миллиона атмосфер. Поверхность сборки уменьшается, в плутонии исчезает полость (рис. 3.9 г), а плотность его – увеличивается, сжимаемая сборка «проскакивает» критическое состояние на тепловых нейтронах и становится существенно сверхкритичной на нейтронах быстрых.





Рис. 3.14

Верхний и центральный ряды – иллюстрации процесса монтажа первого имплозивного заряда «Гаджет» (заимствованы из подлинной американской инструкции). 1 – детали из плутония; 2 – полоний-бериллиевый источник нейтронов; 3 – герметизирующая прокладка рифленого золота; 4 – капсула из урана-238; 5 – сегменты ВВ; 6 – элемент шарового слоя из алюминия. Конструкция ядерного заряда «Гаджета» иная, чем изображенная на анимации (рис. 3.9): в нем нет замедлителя нейтронов, вместо него плутониевый шар окружен слоями отвального урана и алюминия. Импеданс алюминия повыше, чем у продуктов детонации ВВ, поэтому после имплозии давление ударной волны в нем повышается (рис. 1.15). Оно повышается еще раз при переходе волны в уран, одна только плотность которого выше, чем у алюминия более чем в семь раз! Массивный шаровой слой отвального урана повышает также инерционность сборки, «давая» плутонию больше времени для деления (торцевые поверхности капсулы 4 – сферические, одного радиуса с этим слоем). Нижний ряд, слева: процесс монтажа. Снимок явно инсценирован, предназначен для публикации в журнале, логотип которого виден внизу. На самом деле, ядерный заряд монтируют не «на коленке», а на станке, позволяющем поворачивать изделие в двух плоскостях, обеспечивая свободный доступ к любому из элементов (правее)


.. Не знаю, как решит читатель, по-моему – кинограмма рис. 3.9 выглядит довольно живописно. Но, как говаривал товарищ Семплеяров[51]51
  Персонаж романа М. Булгакова «Мастер и Маргарита».


[Закрыть]
: «Разоблачение совершенно необходимо. Без этого ваши блестящие номера оставят тягостное впечатление. Зрительская масса требует объяснения!»

«Зрительская масса» наверняка догадалась, что сфотографирован не взрыв настоящего ядерного заряда. Но на кинограмме – вообще не взрыв, а анимация. Вместо взрывчатого вещества использован оранжевый порошок бихромата аммония (с его помощью детям демонстрируют «вулкан»), «Плутоний» сделан из подкрашенного черной тушью поролона, а «замедлитель» – из термореактивного кембрика, сжимающегося при нагревании. В отличие от детонации взрывчатки, реакция в бихромате идет медленно и можно рассмотреть (и сфотографировать самой обычной, даже «телефонной», камерой), как фронт реакции «сходится» к сборке. Существенная некорректность модели в том, что «плутониевая» сборка становится «сверхкритичной» при сжатии ее нагреваемым кембриком, а не «взрывчаткой».

Но все описанное и смоделированное – детонация заряда, перевод сборки в сверхкритическое состояние – еще не ядерный взрыв. Ядерный взрыв начинается, когда через период, определяемый ничтожным временем незначительного замедления быстрых нейтронов, каждый из нового, более многочисленного их поколения добавляет производимым им делением энергию в более чем две сотни МэВ в и без того распираемое чудовищным давлением вещество сборки. В масштабах происходящих явлений прочность даже самых лучших легированных сталей столь мизерна, что никому и в голову не приходит учитывать ее при расчетах динамики взрыва. Единственное, что не дает разлететься сборке – инерция[52]52
  Инерционность сборки – важное условие развития цепной реакции. В неко-
  238
  торых ядерных зарядах плутониевый шар окружен слоем U, не участвующим в делении, но повышающим инерционность, за счет чего успевает прореагировать больше плутония. В 70-х, когда оптические квантовые генераторы стали достаточно мощными, в СССР появился проект энергетической установки, в которой плутониевый шарик массой в миллиграммы и радиусом в полмиллиметра, подвергался всестороннему их облучению. Испарение поверхности шарика носило взрывной характер, и плутоний сжимался до такой плотности, что достигалось сверхкритическое состояние. Надеялись, что энергия микровзрыва составит пару мегаджоулей, но она практически не выделялась: малоинерционный шарик разлетался прежде, чем в нем успевали достаточно развиться цепи деления. Необходимо было существенно увеличить размер шарика, но эквивалент энерговыделения в одном цикле поднялся бы при этом до десятка тонн тротила, что влекло за собой такое увеличение размеров взрывной камеры (ведь она должна быть неразрушаемой) и повышение мощности лазеров, что строить установку было признано бессмысленным.


[Закрыть]
: чтобы расширить плутониевый шар за десяток наносекунд всего на сантиметр, требуется придать веществу ускорение в десятки триллионов раз превышающее ускорения земного притяжения! В конце концов, вещество все же разлетается, прекращается деление, но не интересные события: энергия перераспределяется между тяжелыми, ионизованными осколками разделившихся ядер, другими испущенными при делении заряженными частицами, а также электрически нейтральными гамма квантами и нейтронами. Энергия продуктов реакций – порядка десятков и даже сотен МэВ, но только гамма кванты больших энергий и нейтроны имеют шансы избежать взаимодействия с веществом, из которого была сделана сборка и покинуть зарождающийся огненный шар ядерного взрыва. Заряженные же частицы быстро теряют энергию в актах столкновений и ионизаций. При этом испускается излучение, правда, уже не «жесткое» ядерное, а более «мягкое», с энергией на три порядка меньшей, но все же более чем достаточной, чтобы «выбить» у атомов электроны – не только с внешних оболочек, но и вообще все. Мешанина из «голых» ядер, «ободранных» с них электронов и излучения с плотностью в граммы на кубический сантиметр[53]53
  Попытайтесь представить, как хорошо можно «загореть» под светом, приобретшим плотность алюминия.


[Закрыть]
– все то, что было зарядом – приходит в некое подобие равновесия. Температура в совсем «молодом» огненном шаре (рис. 3.15а) – десятки миллионов градусов. Если шар захватывает сталь, она превращается в ветер[54]54
  «Железный ветер в лицо» ощущают политработники, строчащие книги с такими названиями, а регистрируют скоростной напор и турбулентные «завихрения» в стали специальные датчики.


[Закрыть]
.

Казалось бы, даже и «мягкое», но двигающееся с максимально возможной скоростью света излучение должно оставить далеко позади вещество, которое его породило, но это не так: в «холодном» воздухе пробег квантов кэвных энергий составляет сантиметры и двигаются они не по прямой, а при каждом взаимодействии переизлучаясь, меняя направление движения. Кванты ионизируют воздух, распространяются в нем как вишневый сок, вылитый в стакан с водой.




Рис. 3.15

При мощном ядерном взрыве ударную волну формирует расширяющаяся плазма нагретого радиационной диффузией воздуха; при взрыве малой мощности – то же делает «плазменный пузырь» из вещества, бывшего до взрыва зарядом (снимок «а», сделанный с выдержкой 10 не, в увеличенном по сравнению с остальными масштабе). Понятно, что возможен и промежуточный случай, когда эффективны оба механизма. «Усы», выступающие в нижней части – превращенные излучением в плазму тросы, поддерживавшие металлическую «этажерку», на которой был установлен заряд. Плотность ядер в конденсированном веществе (металле) тросов на много порядков больше, чем в окружающем воздухе, поэтому и плотность энергии, отдаваемой им распространяющимся излучением, выше. Эти взаимодействия сопровождаются высвечиванием разнообразных квантов. Используется накачка излучением и в рентгеновских лазерах). В дальнейшем рентгеновским излучением вокруг пузыря (он виден в центре снимка «б») из воздуха образуется полностью ионизованная плазма; затем плазменный пузырь распадается, а его остатки «подпирают» изнутри слой горячей плазмы («в»); далее эти остатки вырождаются в струи («г»), плазма огненного шара остывает, становится непрозрачной, но интенсивно излучает в видимой части спектра («д»); наконец – формируется ударная волна, а интенсивность излучения снижается. Подобраны наиболее наглядные снимки, полученные при различных испытательных взрывах


Такое называют радиационной диффузией. Тепловая энергия вещества пропорциональна четвертой степени его температуры, поэтому на этой стадии она «умещается» в небольшом объеме. «Молодой» огненный шар через несколько десятков наносекунд после завершения мощной[55]55
  В приводимом примере число делений в десятки триллионов раз больше, чем в эксперименте доктора Слотина. Оно соответствует делению примерно 5 кг Pu239 (это не означает, что заряд содержал именно столько плутония: его было существенно больше, остальной разлетелся, не разделившись). Тротиловый эквивалент такого взрыва – 100 килотонн.


[Закрыть]
вспышки делений имеет радиус три метра и температуру почти 8 млн. кельвинов. Но уже через 30 микросекунд его радиус составляет 18 метров, правда, температура падает – около миллиона градусов.

Шар пожирает пространство, а ионизованный воздух за его фронтом почти не двигается: диффундирующее излучение передать ему значительный импульс не может. Но оно накачивает в этот воздух огромную энергию, нагревая его и, когда энергия излучения иссякает, шар начинает расти за счет расширения горячей плазмы. К тому же изнутри шар распирает то, что раньше было зарядом. Полностью ионизованный воздух прозрачен, и на фотографиях можно увидеть (рис. 3.156) этот плазменный сгусток в центре. Расширяясь, подобно надуваемому пузырю, плазменная оболочка истончается. Ее, конечно, ничто не «надувает»: с внутренней стороны почти не остается вещества, все оно летит от центра. Через 30 микросекунд после взрыва скорость этого полета – более сотни километров в секунду, а гидродинамическое давление в веществе – более 150 тысяч атмосфер! Чересчур уж тонкой стать оболочке не суждено, она лопается, образуя «волдыри» (рис. 3.15в). Кстати, если все произошло на небольшой высоте, то плазма теряет форму шара, что видно из фотографий. Там, где вещество заряда ударяет в грунт, давление и температура умножаются по сравнению со значениями на «свободном» фронте. Такой удар способен поразить самые высокозащищенные цели, такие как шахты МБР.

Процесс захватывает новые слои воздуха, энергии на то, чтобы «ободрать» все электроны с атомов уже не хватает, уменьшается прозрачность фронта. Иссякает энергия ионизованного слоя и обрывков плазменного пузыря, они уже не в силах двигать перед собой огромную массу, вырождаются в струи (рис. 3.15 г) и заметно замедляются. Но то, что до взрыва было воздухом, движется, оторвавшись от шара, вбирая в себя все новые слои воздуха холодного – начинается образование ударной волны.

При отходе ударной волны от огненного шара, меняются характеристики излучающего слоя, и резко возрастает мощность излучения в оптической части спектра (так называемый «первый максимум»). При дальнейшем движении волны происходит сложная конкуренция процессов высвечивания и изменения прозрачности окружающего воздуха, приводящая к реализации и второго максимума, менее интенсивного, но значительно более длительного – настолько, что выход световой энергии больше, чем в первом максимуме.

Вблизи взрыва все окружающее испаряется, подальше – плавится, но и еще дальше, где тепловой поток уже недостаточен для плавления твердых тел, грунт, скалы, дома текут как жидкость под чудовищным, разрушающим все прочностные связи напором газа, раскаленного до нестерпимого для глаз сияния.



Рис. 3.16

«Постаревший» огненный шар превращается в облако радиоактивной пыли. Под местом взрыва произошло остекловывание песка, как это было и при первом испытании («Trinity Operation»). Образовавшийся новый минерал получил название «тринитит»


.. Наконец, ударная волна уходит далеко от точки взрыва, где остается рыхлое и ослабевшее, но расширившееся во много раз облако (рис. 3.16) из конденсировавшихся, обратившихся в мельчайшую и очень радиоактивную пыль паров. Нет, не воды. Или в самом общем случае – не только воды, а того, что побывало плазмой заряда, рекомбинировало, и того, что в свой страшный час оказалось близко к месту, от которого следовало бы держаться как можно дальше. Облако начинает подниматься вверх. Оно остывает, меняя свой цвет, «надевает» белую шапку конденсировавшейся влаги, за ним тянется пыль с поверхности земли (рис. 3.17)…





Рис. 3.17

Испытание Encelade французского термоядерного заряда энерговыделением 440 кт. Атолл Муруроа, 12.06.1971


…Среди читателей попадаются настырные, проверяющие все с карандашом в руке. Автор сделал многое, чтобы осложнить им задачу: энергию в МэВах надо перевести в джоули, потом – в тротиловый эквивалент, вспомнить правила действий со степенями. Но все же может найтись самый настырный, который получит результат, далекий от тех десятков и сотен килотонн тротилового эквивалента, о которых он читал в газетах, и, издевательски улыбаясь, потребует объяснений. Далее возможен такой диалог:

– А со скольких нейтронов, по вашим расчетам, начинается цепная реакция?

– С одного.

– Посмотрим, что получится, если реакция в сборке начнется с миллионов нейтронов.

– У вас про миллионы не написано.

– А покажите, где у меня написано, что он – один?

Вообще-то ситуация, которую описал своим расчетом Настырный, возможна: если не сработает или сработает не вовремя источник нейтронов, что повлечет строгую ответственность тех, кто был причастен (а может – и не причастен) к такому безобразию.

Чтобы такой жалкий результат не опозорил самоотверженно трудившийся коллектив, в сверхкритическую сборку в нужную микросекунду надо «брызнуть» нейтронами. Именно – в нужную, а не когда попало.

…Процесс перевода сборки из до критического в сверхкритическое состояние происходит за десятки микросекунд: казалось бы – быстро, но иногда (правда – редко) оказывается, что медленно. Случайный фоновый нейтрон может вызвать цепь делений и в докритической сборке, правда, затухающую, не сопровождающуюся заметным выделением энергии. Но если сборка перейдет критическое состояние пока такая цепь еще не угасла, начнется размножение нейтронов. Вначале, пока деление идет на медленных нейтронах, имплозия будет «сильнее», но, по мере роста сверхкритичности, «в дело» будут вступать все более быстрые (а значит, скорее размножающиеся) нейтроны и деление преодолеет имплозию, «разбросав» сборку. Произойдет «хлопок» – пиррова[56]56
  Эпирский царь Пирр в 279 г. до н. э. одержал победу над римлянами, но ценой таких потерь, что с тех пор его именем стали называть предприятия, вроде и успешные, но не оправдывающие понесенных затрат.


[Закрыть]
победа деления: уровень энерговыделения будет на порядки более низким, чем тот, который мог бы быть достигнут. Так что и при безупречной работе заряда и его автоматики существует малая вероятность того, что полноценного ядерного взрыва не произойдет. А будет он таким, если при переводе сборки из докритического в сверхкритическое состояние в ее делящемся материале не будет нейтронов, а вот когда максимум сверхкритичности почти достигнут – их окажется там очень много.

В первых ядерных зарядах для этого использовали изотопные источники: полоний-210 в момент сжатия плутониевой сборки (и только тогда) соединялся с бериллием и своими альфа-частицами (ядрами гелия-4) вызывал нейтронную эмиссию:

Ве9 + Не4 → С12 + п.

Но все изотопные источники – слабоваты, а самый интенсивный из них, легендарный[57]57
  Лишившись важнейшей роли в военном применении, полоний – 210 в начале ХХI века стал символом прогресса в техническом оснащении малопочтенного ремесла «ликвидатора», придя на смену ледорубу, которым был убит Троцкий, начиненной взрывчаткой коробке конфет, положившей предел земным дням украинского националиста Коновальца и разнообразным устройствам для введения ядов.


[Закрыть]
полоний – уж очень «скоропортящийся» (всего за 138 суток снижает свою активность вдвое), так что держать его в находящемся на хранении заряде было нельзя, приходилось монтировать «свежий» источник незадолго до боевого применения (рис. 3.14). Поэтому на смену изотопным пришли менее опасные (не излучающие в невключенном состоянии), а главное, более интенсивные ускорительные источники – нейтронные генераторы (рис. 3.18). За несколько микросекунд, которые длится формируемый таким источником импульс, «рождается» примерно столько же нейтронов, что и в мощном ядерном реакторе за такое же время.

«Сердце» генератора – вакуумная нейтронная трубка, в которой ускоряются ионы дейтерия (D) и бомбардируют мишень, насыщенную тритием (Т), в результате чего образуются нейтроны (п) и альфа-частицы:

D + Т → Не4 + п + 17,6МэВ

По составу частиц, и даже по энергетическому выходу эта реакция идентична синтезу – процессу слияния легких ядер. Синтезом происходящее в трубке в 50 годах считали многие, но позже выяснилось, что это реакция другого класса – «срыва». Когда разогнанный электрическим полем ион дейтерия попадает в ядро трития, то либо протон, либо нейтрон, из которых состоит дейтерий, «увязает» в ней. Если «увязает» протон, то нейтрон «отрывается» и становится свободным. Эти нейтроны разлетаются в разные стороны (в физике говорят: «пространственное распределение – изотропно»), «собрать» и направить их на сборку – сложно, да и особого смысла не имеет: трубка способна выдать столько нейтронов, что и при изотропном их распределении энергетические возможности сборки будут реализованы полностью.





Рис. 3.18

Верхний снимок – нейтронные генераторы, которыми комплектуются заряды W-76. Ниже слева – нейтронная трубка. В ее анодном узле 1, при приложении импульсного напряжения, происходит пробой 2 между анодом и поджигающим электродом. Изолятор между этими электродами – насыщенная дейтерием керамика (розового цвета), поэтому при разряде по ее поверхности образуется много ионов дейтерия, которые разлетаются внутри анодного узла, а затем и покидают его. Между анодным узлом и насыщенной тритием мишенью 3 (катодом), прикладывается напряжение более ста тысяч вольт. Выход ионов дейтерия из экранированной сеткой горловины анодного узла должен происходить в момент, когда это напряжение достигает максимума. Нейтронная трубка генерирует до десяти миллионов быстрых нейтронов на каждый джоуль ее энергообеспечения. Источник высокого напряжения – на нижнем левом снимке. Ток от аккумулятора преобразуется в переменный, а напряжение умножается до величины, обеспечивающей формирование ускоряющего ионы дейтерия импульса. Похожий умножитель можно видеть и в числе деталей разобранной авиабомбы В-61, на рис. 3.42. В современных ядерных зарядах системы взведения, инициирования детонаторов, программное устройство и система нейтронного инициирования объединены, как в блоке Мк-3 AFAF (Arming, Fusing And Firing System, правый снимок), обеспечивающем срабатывание ядерного заряда W-68. Энерговыделение этого заряда – 50 кт, но морская ракета «Посейдон» могла доставить к целям 10 боевых блоков с такими зарядами

Реагирующие в трубке дейтерий и тритий – изотопы широко распространенного в природе водорода (который любители научных терминов называют протием), но в их ядрах, помимо протона содержатся один (в дейтерии) или два (в тритии) нейтрона, а значит, они вдвое и втрое превосходят протий массами. Водороды способны образовывать твердые соединения с легкими металлами, например, литием и титаном. В тритиде титана и «удерживается» в трубке необходимый для реакции срыва изотоп. В таких соединениях, несмотря на наличие «балластных» ядер металла-носителя, плотность ядер любого из водородов намного выше, чем в сжатом до разумных давлений газе.

Доля дейтерия в природном водороде примерно впятеро меньшая, чем оружейного урана – в обычном, но массы их отличаются вдвое, а кинетика многих реакций – и того более. Так, электролитическое разложение дейтериевой воды протекает на порядок медленнее, чем воды легкой. На этом и основан один из методов разделения – значительно более эффективный, чем разделение уранов.


Рис. 3.19

Разрез природного ядерного реактора в урановой жиле месторождения Окла. За время «работы» реактора выделилось свыше 1018 Дж тепловой энергии, что привело к спеканию рудной массы

По составу изотопов (в их числе был и плутоний) установлено, что 2,6 миллионов лет назад там шла цепная реакция (замедлителем служила вода). Образовался и тритий, но за миллионы лет он распался без следа. Затем произошли геологические подвижки грунта, поднявшие жилу наверх, и воды стало недостаточно для развития цепной реакции, что «законсервировало» реактор. Слабым утешением автору может служить лишь то, что и великий Э. Ферми утверждал, что «ядерный реактор может быть лишь человеческим творением».

Тритий же, подобно Pu39, не существует в природе в ощутимых количествах[58]58
  Здесь Настырный может «схватить автора за язык»: в 1980-х годах в Габоне, на месторождении Окло (где руды очень богаты изотопом U235) был обнаружен уникальный природный «реактор» (рис. 3.19).


[Закрыть]
и его получают, воздействуя в ядерном реакторе мощными нейтронными потоками на изотоп литий-6, в результате чего в две стадии протекает реакция:

Li6 + n → Li7 → T + He4.


Дейтерий и тритий были изучены медиками. Не только радиоактивный тритий, но и стабильный дейтерий оказались опасными веществами. Например, подопытные животные, которым вводились соединения дейтерия, умирали с симптомами, характерными для старости (охрупчивание костей, потеря интеллекта, памяти и пр.). Этот факт послужил основой теории долголетия, в соответствии с которой смерть от старости и в естественных условиях наступает при накоплении дейтерия: через организм в процессе жизнедеятельности «проходят» многие тонны воды, других соединений водорода и более тяжелые дейтериевые компоненты задерживаются при этом в многочисленных мембранах и капиллярах, накапливаясь к старости. Теория объясняла и долгожительство горцев: в поле земного притяжения концентрация дейтерия действительно убывает с высотой. Об этих фактах упоминал читавший в МИФИ лекции по курсу разделения изотопов известный специалист В. Нещименко. Он понимал, что студент теряет способность воспринимать информацию, переписывая час за часом сложные математические выражения, и часто делал такие отступления.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | Следующая
  • 1 Оценок: 1

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации