Электронная библиотека » Алексей Москалев » » онлайн чтение - страница 7


  • Текст добавлен: 13 ноября 2024, 13:25


Автор книги: Алексей Москалев


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 32 страниц) [доступный отрывок для чтения: 11 страниц]

Шрифт:
- 100% +
Особенности мозга долгожителей

Чтобы понять принципы старения мозга, интересно обратиться к изучению долгожителей, у которых многие изменения наступают позже.

Мозг и когнитивные способности столетних долгожителей действительно отличаются от мозга и способностей более молодых людей.

Во-первых, это сохранность нейронных связей. У многих столетних людей, несмотря на возраст, в мозге сохраняется плотность нейронных связей, сопоставимая с более молодыми. Это позволяет мозгу эффективнее обрабатывать информацию и дольше поддерживать когнитивные функции.

Во-вторых, у долгожителей активнее компенсаторные механизмы мозга. Даже при возрастных изменениях их мозг способен задействовать дополнительные области для выполнения привычных функций. Например, при решении задач активируются зоны мозга, обычно неактивные у молодых, или занятые другими задачами. Это компенсирует возрастное снижение активности некоторых участков.

Отмечается устойчивость долгожителей к накоплению амилоидных бляшек. У части долгожителей старше 90 лет в мозге намного меньше амилоидных бляшек, ассоциированных с болезнью Альцгеймера и возрастным снижением памяти, чем у обычных пожилых старше 80 лет. Их мозг более устойчив к накоплению этого нейротоксичного белка.

Особенности генов, влияющих на работу мозга, у долгожителей нередко более благоприятны. Например, повышена активность генов, отвечающих за защиту нейронов от стресса и повреждений.

Большинство столетних живут в традиционных «голубых зонах» долголетия, где люди ведут достаточно активный и здоровый образ жизни. Регулярные физическая и интеллектуальная активность, сбалансированное питание, позитивный взгляд на жизнь, социальные связи – все это способствует поддержанию здоровья мозга.

За счет образования, разнообразного опыта, хобби, общения на протяжении жизни, мозг формирует когнитивный резерв – запас прочности, позволяющий дольше сохранять ясность ума даже при возрастных изменениях. Часто таким большим когнитивным резервом отличаются именно долгожители.

Однако стоит отметить, что универсального рецепта долголетия мозга нет. У разных долгожителей свои комбинации генетических, эпигенетических факторов и особенностей образа жизни. Но в целом активность, позитивный настрой и здоровые привычки однозначно помогают поддерживать мозг в форме до глубокой старости.

Чекап старения мозга

Существует несколько методов обследования и тестирования, которые могут помочь оценить состояние мозга и выявить возможные признаки его раннего или ускоренного старения.

Когнитивные тесты. Это серия заданий и вопросов, которые проверяют различные аспекты умственной деятельности – память, внимание, скорость реакции, логическое мышление, речевые навыки. Примеры таких тестов – Монреальская шкала оценки когнитивных функций (MoCA), Мини-тест умственного состояния (MMSE), тест рисования часов. Снижение результатов по сравнению с нормой для определенного возраста может указывать на ускоренное старение мозга. Такие тесты можно найти в сети Интернет или пройти в гериатрических кабинетах и клиниках. В нашем Институте биологии старения ННГУ разработаны компьютерные онлайн тесты на когнитивный возраст, их можно пройти бесплатно, отсканировав QR-код ниже:



Нейровизуализация. Это методы, позволяющие заглянуть внутрь мозга и оценить его структуру и активность. МРТ (магнитно-резонансная томография) дает детальное изображение анатомии мозга, позволяя выявить уменьшение объема мозговой ткани, расширение желудочков и другие возрастные изменения. ФМРТ (функциональная МРТ) и ПЭТ (позитронно-эмиссионная томография) показывают активность различных областей мозга при выполнении заданий, что может выявить нарушения функциональных связей при старении.

ЭЭГ (электроэнцефалография). Этот метод регистрирует электрическую активность мозга с помощью электродов, расположенных на коже головы. ЭЭГ может показать изменения в ритмах мозговых волн, характерные для старения, такие как снижение альфа – и бета-ритмов и увеличение медленных волн.

Генетические тесты. Некоторые генетические варианты, такие как аллель ε4 гена APOE, особенно в гомозиготе, связаны с повышенным риском развития болезни Альцгеймера и ускоренным старением мозга. Генетическое тестирование может помочь выявить эти факторы риска, хотя наличие таких вариантов не гарантирует развитие заболевания или их отсутствие – того, что оно не разовьется.

Сенсорные тесты. С возрастом могут ухудшаться зрение, слух, обоняние, вкус и осязание, что отчасти связано с изменениями в мозге. Проверка остроты зрения, аудиометрия (тест слуха), тесты на обоняние и вкус могут дать косвенную информацию о состоянии соответствующих областей мозга.

Тесты на сон. Нарушения сна, такие как бессонница, апноэ во сне, изменения циркадных ритмов, часто сопровождают старение мозга. Полисомнография (запись различных параметров во время сна), актиграфия (мониторинг двигательной активности) и дневники сна могут выявить эти нарушения. Некоторые гаджеты позволяют выявлять храп, который часто сопряжен с апноэ.

Анализ биомаркеров нейродегенерации. Некоторые вещества в плазме крови, спинномозговой жидкости или других биологических образцах могут отражать состояние мозга и процессы старения. Например, повышенный уровень бета-амилоида и тау-белка в крови или спинномозговой жидкости является признаком болезни Альцгеймера.

Существует несколько биохимических маркеров в крови, которые могут указывать на ускоренное старение мозга и повышенный риск возрастных когнитивных нарушений. Вот основные из них.

1. Гомоцистеин. Повышенный уровень непротеиногенной аминокислоты гомоцистеина в крови связан с окислительным стрессом, нейровоспалением и повреждением сосудов мозга. Высокий гомоцистеин является фактором риска болезни Альцгеймера и сосудистой деменции.

2. Маркеры воспаления. Хроническое воспаление низкой интенсивности считается одним из механизмов старения мозга. Повышенные уровни маркеров воспаления, таких как ультрачувствительный C-реактивный белок (СРБ), интерлейкин‑6 (ИЛ‑6), фактор некроза опухоли-альфа (ФНО-α), могут указывать на ускоренное старение мозга.

3. Инсулин и глюкоза. Резистентность к инсулину и нарушения регуляции глюкозы (диабет 2-го типа) связаны с повышенным риском когнитивных нарушений и деменции. Высокие уровни инсулина и глюкозы натощак, а также повышенный гликированный гемоглобин (HbA1c) могут быть маркерами ускоренного старения мозга.

4. Липидный профиль. Нарушения липидного обмена, такие как высокий уровень общего холестерина, липопротеинов низкой плотности (ЛПНП) и триглицеридов, а также низкий уровень липопротеинов высокой плотности (ЛПВП), связаны с повышенным риском сосудистых заболеваний мозга и когнитивных нарушений.

5. Гормоны щитовидной железы. Как гипотиреоз (низкий уровень гормонов щитовидной железы), так и гипертиреоз (высокий их уровень) могут влиять на когнитивные функции и ускорять старение мозга. Уровни тиреотропного гормона (ТТГ), свободного тироксина (Т4) и трийодтиронина (Т3) могут помочь выявить эти нарушения.

6. Витамин B12 и фолиевая кислота. Дефицит этих витаминов может приводить к повышению уровня гомоцистеина и нарушениям в работе нервной системы, а также кроветворения. Низкие уровни витамина B12 и фолиевой кислоты в крови связаны с ускоренным старением мозга и повышенным риском деменции.

7. Маркеры окислительного стресса. Окислительный стресс считается одним из ключевых механизмов старения мозга. Повышенные уровни маркеров окислительного стресса, таких как малоновый диальдегид (МДА), 8-гидрокси‑2-дезоксигуанозин (8-OHdG), и снижение антиоксидантов (глутатион, супероксиддисмутаза) могут указывать на ускоренное старение мозга.

8. Нейротрофические факторы. Снижение уровней нейротрофических факторов, таких как нейротрофический фактор мозга (BDNF), фактор роста нервов (NGF), глиальный нейротрофический фактор (GDNF), может указывать на ухудшение нейропластичности и регенеративных процессов в стареющем мозге.

9. Ферритин. Это белок, который запасает железо в клетках. Повышенный уровень ферритина в крови может указывать на избыток железа в организме, что связано с окислительным стрессом и повреждением тканей, в том числе мозга. Высокий ферритин является фактором риска когнитивных нарушений и деменции. Его повышенные уровни сигнализируют о системном воспалении. Считается, что лимитирующим фактором размножения бактериальной инфекции является железо, поэтому клетка пытается его «спрятать» в ферритин при инфекции.

10. Трансферрин. Это белок, транспортирующий железо в ткани организма. Снижение насыщения трансферрина железом (низкий процент насыщения трансферрина) может указывать на дефицит железа, что также негативно сказывается на работе мозга, так как железо необходимо для синтеза нейромедиаторов и миелина, а также доставки кислорода в мозг.

11. Гемосидерин. Это комплекс железа и белков, который образуется при разрушении эритроцитов и может накапливаться в тканях при избытке железа. Отложение гемосидерина в мозге (особенно в базальных ганглиях) характерно для некоторых нейродегенеративных заболеваний, таких как болезнь Альцгеймера и болезнь Паркинсона.

12. Гепсидин. Это гормон, регулирующий всасывание железа в кишечнике и его распределение в организме. Повышенный уровень гепсидина может приводить к функциональному дефициту железа в мозге, даже при нормальных показателях ферритина в клетках и трансферрина в крови.

13. Церулоплазмин. Это белок, участвующий в транспорте меди. Он также окисляет железо, что необходимо для его связывания с трансферрином. Снижение уровня или активности церулоплазмина может приводить к накоплению свободного железа в мозге и окислительному стрессу. Кстати, давно замечено, что старение органов и тканей, в том числе и мозга, сопровождается накоплением свободного железа, без которого не проходят процессы повреждения свободными радикалами белков, ДНК и мембран. Поэтому я бы не принимал без показаний биодобавки железа, да и избыток красного мяса с этой точки зрения смотрится неблагоприятно. Избыток железа также мешает усвоению меди и наоборот.

14. ADMA (асимметричный диметиларгинин) и SDMA (симметричный диметиларгинин) могут отражать риски ускоренного старения мозга. ADMA ингибирует синтез оксида азота (NO), который важен для сосудистой функции и нейропротекции. Повышенные уровни ADMA и SDMA связаны с увеличением окислительного стресса, отражают проблемы с эндотелием сосудов и почечным выведением. Эти метаболиты также могут способствовать воспалительным процессам, ухудшающим когнитивные функции.

Помимо уже упомянутых биомаркеров, есть еще несколько важных показателей крови, которые могут дать информацию о состоянии мозга и процессах его старения.

1. Нейронспецифическая енолаза (NSE) – фермент, присутствующий в нейронах и нейроэндокринных клетках. Повышение уровня NSE в крови может указывать на повреждение или гибель нейронов, что наблюдается при черепно-мозговых травмах, инсультах, нейродегенеративных заболеваниях.

2. Белок S100B, выделяемый астроцитами (глиальными клетками мозга) при их активации или повреждении. Повышенный уровень S100B в крови является маркером повреждения гематоэнцефалического барьера и может наблюдаться при травмах мозга, инсультах, нейровоспалении.

3. Аутоантитела к белкам мозга. Присутствие в крови аутоантител к различным белкам мозга (например, к основному белку миелина, глиальному фибриллярному кислому белку, рецепторам нейромедиаторов) может указывать на аутоиммунные процессы, затрагивающие мозг, такие как рассеянный склероз, аутоиммунные энцефалиты.

4. Микро-РНК – малые некодирующие молекулы РНК, которые регулируют экспрессию генов. Изменение профиля микро-РНК в крови (например, miR‑29, miR‑107, miR‑155) может отражать процессы нейровоспаления, нарушения синаптической пластичности, накопления патологических белков в мозге при нейродегенеративных заболеваниях.

5. Нейротрансмиттеры и их метаболиты. Хотя нейромедиаторы действуют преимущественно в мозге, их уровни и соотношения в крови могут косвенно отражать состояние нейромедиаторных систем. Например, снижение соотношения серотонина к триптофану может указывать на депрессию, а повышение гомованилиновой кислоты (метаболита дофамина) – на болезнь Паркинсона.

6. Маркеры митохондриальной дисфункции. Митохондриальная дисфункция является одним из механизмов старения мозга и нейродегенерации. Повышение в крови уровней лактата, пирувата, соотношения лактат/пируват могут указывать на нарушения энергетического обмена в мозге.

7. Маркеры оксидативного стресса. Окислительный стресс вносит вклад в повреждение и старение мозга. Помимо уже упомянутых МДА и 8-OHdG, информативными маркерами могут быть окисленные формы белков (карбонилированные белки), липидов (изопростаны, оксистеролы), а также соотношение окисленного и восстановленного глутатиона.

8. Нейротрофические и ростовые факторы. Помимо BDNF, NGF и GDNF, о которых мы уже говорили, важную роль в поддержании здоровья мозга играют и другие факторы, такие как инсулиноподобный фактор роста‑1 (IGF‑1), васкулоэндотелиальный фактор роста (VEGF), эритропоэтин. Снижение их уровней может указывать на ухудшение нейрогенеза, нейропластичности и кровоснабжения мозга.

Важно понимать, что многие из этих биомаркеров не являются специфичными только для мозга и могут изменяться при различных системных заболеваниях и состояниях. Поэтому их интерпретация должна проводиться в контексте клинической картины, данных нейровизуализации и других обследований.

Кроме того, для некоторых маркеров (например, микро-РНК, нейротрансмиттеров) пока не разработаны стандартизованные методы определения и референсные значения, что ограничивает их широкое применение в клинической практике. Тем не менее, по мере накопления научных данных и совершенствования методов диагностики, эти биомаркеры могут стать ценными инструментами для персонализированной оценки состояния мозга и мониторинга эффективности терапии.

Важно отметить, что интерпретировать эти биомаркеры нужно в комплексе, с учетом индивидуальных особенностей и наличия других факторов риска. Не все изменения однозначно указывают на патологическое старение мозга, и для постановки диагноза необходимы дополнительные обследования и наблюдение в динамике.

Регулярный контроль этих биомаркеров и своевременная коррекция выявленных нарушений (например, нормализация уровня гомоцистеина, контроль диабета, восполнение дефицита витаминов) могут помочь замедлить старение мозга и снизить риск когнитивных нарушений. Однако основой профилактики возрастных изменений мозга является здоровый образ жизни, включающий правильное питание, физическую и интеллектуальную активность, управление стрессом и контроль сосудистых факторов риска.

Важно понимать, что эти тесты и обследования должны проводиться квалифицированными специалистами и интерпретироваться с учетом индивидуальных особенностей и общего состояния здоровья.

Не все изменения, выявленные этими методами, обязательно указывают на патологическое старение мозга.

Регулярное наблюдение в динамике, сравнение результатов с предыдущими и с нормативными, а также целевыми референтными значениями для соответствующего возраста позволяет более точно оценить темпы старения мозга и вовремя принять меры по замедлению этого процесса. Здоровый образ жизни, когнитивная активность и контроль факторов риска (высокое давление, диабет, ожирение) – ключевые факторы поддержания здоровья мозга в любом возрасте.

Глава 3
Факторы, влияющие на долголетие мозга

Нейрогенетика

Гены – инструкции по сборке и эксплуатации мозга, которые мы получили от родителей. И от того, какие именно инструкции нам достались, во многом зависит, насколько долго и эффективно будет работать наш «суперкомпьютер».

Ученые выяснили, что некоторые варианты генов могут быть связаны с более медленным угасанием когнитивных функций и снижением риска возрастных нейродегенеративных заболеваний, таких как болезнь Альцгеймера.

Вот несколько примеров таких «генов долголетия мозга».

Ген APOE. Он инструктирует мозг, как обращаться с холестерином и другими жирами. Один из вариантов этого гена (APOE e2) связан с пониженным риском болезни Альцгеймера и лучшей памятью в пожилом возрасте. Вариант e4, напротив, ассоциирован с рисками болезни Альцгеймера.


Нейрогенетика – наука, которая изучает, как гены влияют на структуру и функции мозга, в том числе и на процессы старения.


Ген BDNF. Этот ген отвечает за питание и выживание нейронов, помогая образовывать новые связи между ними. Его правильные варианты могут защищать мозг от стресса и воспалений, сохраняя ясность ума до глубокой старости.

Ген FOXO3 – регулировщик многих процессов в клетках мозга: репарации ДНК, борьбы со свободными радикалами, утилизации поврежденных белков. Определенные варианты этого гена чаще встречаются у долгожителей и связаны с лучшим когнитивным здоровьем.

Гены биологических часов – CLOCK, BMAL1, PER. Они управляют циркадными ритмами – циклами сна и бодрствования, активности гормонов и обмена веществ. Правильная работа этих генов помогает мозгу восстанавливаться во сне, оптимально расходовать энергию и дольше сохранять свои функции.

Ген FGF21. Этот ген – настоящий супергерой в борьбе со старением. Он помогает мозгу регулировать метаболизм глюкозы и липидов, снижает окислительный стресс и воспаление, защищает нейроны от повреждений. Исследования показывают, что активация FGF21 может улучшать когнитивные функции и замедлять нейродегенерацию.

Ген Klotho. Этот ген назван в честь греческой богини судьбы, прядущей нить жизни. И не зря – он действительно может влиять на продолжительность жизни и здоровье мозга. Белок Klotho участвует в регуляции многих процессов – от обмена кальция и фосфора до защиты от окислительного стресса и воспалений. Высокий уровень Klotho связан с лучшей памятью, интеллектом и сниженным риском возрастных когнитивных нарушений.

Ген ACE1. Этот ген контролирует работу ренин-ангиотензиновой системы – ключевого регулятора кровяного давления и функций сердечно-сосудистой системы. Но он также влияет и на мозг – определенные варианты ACE1 связаны с лучшим когнитивным здоровьем, памятью и скоростью обработки информации в пожилом возрасте. Возможно, этот эффект опосредован улучшением кровоснабжения мозга и снижением риска инсультов и других сосудистых поражений.

Ген IL6. Этот ген отвечает за синтез одноименного цитокина – белка, который регулирует иммунные реакции и воспалительные процессы в организме. С одной стороны, умеренная активность IL6 нужна для нормальной работы мозга, обучения и памяти. С другой стороны, хроническое повышение уровня IL6 при старении и нейродегенеративных заболеваниях может вести к нейровоспалению и повреждению нейронов. Поэтому золотая середина в работе этого гена очень важна для долголетия мозга.

Ген IGF1 и рецептор его белка IGF1-R. IGF1 (инсулиноподобный фактор роста 1) – гормон, который стимулирует рост и развитие клеток, в том числе нейронов. Он также участвует в регуляции метаболизма глюкозы, защите от окислительного стресса и воспалений. Исследования показывают, что оптимальный уровень IGF1 важен для поддержания когнитивных функций и предотвращения нейродегенерации при старении. Однако хроническое повышение активности IGF1 может, наоборот, ускорять старение и повышать риск возрастных заболеваний, включая онкологические.

Ген Ins (инсулина). Инсулин – это главный гормон, регулирующий уровень глюкозы в крови и метаболизм клеток. Но он также влияет и на работу мозга – инсулин нужен для усвоения глюкозы нейронами, синтеза нейромедиаторов, формирования памяти. С возрастом чувствительность мозга к инсулину снижается, что может вести к нарушениям когнитивных функций и повышать риск нейродегенеративных заболеваний. Поэтому поддержание оптимальной работы гена инсулина и профилактика инсулинорезистентности важны для долголетия мозга.

Адипонектин и его ген ADIPOQ. Адипонектин – это гормон, который вырабатывается жировой тканью и участвует в регуляции метаболизма глюкозы и липидов, чувствительности к инсулину, защите от воспалений. Исследования показывают, что высокий уровень адипонектина связан с лучшими когнитивными функциями, памятью и сниженным риском деменции в пожилом возрасте. Возможно, этот эффект опосредован противовоспалительным и нейропротективным действием адипонектина на клетки мозга.

Лептин и его ген LEP. Лептин – это гормон, который также вырабатывается жировой тканью и регулирует аппетит, расход энергии, метаболизм, активность иммунных клеток. Но он также влияет и на функции мозга – лептин участвует в процессах обучения и памяти, нейрогенезе, защите нейронов от повреждений. Снижение уровня лептина или чувствительности мозга к нему при старении и ожирении может вести к когнитивным нарушениям и нейродегенерации. Поэтому оптимальная работа гена лептина и поддержание нормальной массы тела важны для здоровья мозга в любом возрасте.

Ген ELOVL2 (Elongation of Very Long Chain Fatty Acids Protein 2). Этот ген кодирует фермент, который участвует в синтезе особых Омега‑3 и Омега‑6 полиненасыщенных жирных кислот из более коротких предшественников, поступающих с пищей. Эти жирные кислоты необходимы для построения мембран нейронов, передачи сигналов между ними, регуляции воспаления и защиты от окислительного стресса. С возрастом активность гена ELOVL2 снижается, что может вести к дефициту Омега‑3 и Омега‑6 в мозге и нарушению его функций. Поэтому поддержание оптимальной работы этого гена (например, с помощью диеты, богатой этими жирными кислотами, прежде всего Омега‑3) может помочь сохранить здоровье мозга в пожилом возрасте.

Ген LPA (Lipoprotein(a)). Этот ген кодирует особый вид липопротеина – Lp(a), который участвует в транспорте холестерина и других липидов в крови. Высокий уровень белка Lp(a) является фактором риска сердечно-сосудистых заболеваний, таких как атеросклероз и инсульт. Но недавние исследования показывают, что Lp(a) также может влиять на здоровье мозга – он может накапливаться в сосудах мозга, вызывать воспаление и окислительный стресс, нарушать кровоснабжение и способствовать нейродегенерации. Поэтому контроль уровня Lp(a) в крови, а также профилактика его повышения, например, с помощью диеты, богатой клетчаткой и бедной насыщенными жирами, может быть важен для профилактики возрастных когнитивных нарушений. В настоящее время на последней стадии клинической апробации находится миРНК терапия против его повышения (липодизиран).

Ген VCAM1 (Vascular Cell Adhesion Molecule 1). Этот ген кодирует особый белок, который «прилипает» к иммунным клеткам и помогает им проникать в ткани из кровотока, мигрировать к очагу воспаления или поранения. Повышенная экспрессия VCAM1 наблюдается при различных воспалительных заболеваниях, в том числе при нейровоспалении и нейродегенерации. Исследования показывают, что блокирование VCAM1 может уменьшать приток иммунных клеток в мозг или сетчатку глаза, снижать воспаление и защищать нейроны от повреждений. Поэтому терапевтическое воздействие на этот ген (например, с помощью противовоспалительных препаратов или специфических ингибиторов) может быть перспективным подходом для профилактики и лечения возрастных заболеваний мозга.

Конечно, это далеко не полный список «генов долголетия мозга». Каждый год ученые открывают все новые гены и их варианты, которые могут влиять на когнитивное здоровье и темпы старения мозга. Например, недавние исследования выявили роль генов TMEM106B (участвует в утилизации поврежденных белков), SIRT6 (регулирует клеточный метаболизм, эпигенетику, репарацию ДНК и защиту от стресса), KIBRA (важен для консолидации памяти) и других.

Конечно, гены никакой не приговор и не гарантия. На здоровье мозга влияет множество факторов. Хорошие гены – как бонусные баллы в игре под названием долголетие мозга. Они дают нам некоторое преимущество или убавляют шансы, но как это отразится на здоровье, зависит от нашего образа жизни и усилий.

Кроме того, ученые активно исследуют способы «перепрограммирования» генов с помощью эпигенетических воздействий (например, лекарств, диеты, упражнений, медитации), генной терапии и других инновационных подходов.

Возможно, в будущем мы научимся апгрейдить свои генетические инструкции и продлевать молодость мозга независимо от исходных данных.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации