Автор книги: Алексей Семихатов
Жанр: Физика, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 18 страниц) [доступный отрывок для чтения: 6 страниц]
6
Что перестало устраивать Эйнштейна
Квантовая механика возникла в 1925–1926 гг. (с завершающими штрихами, относящимися к 1927 г.), но самый первый квантовый закон был сформулирован Планком в декабре 1900 г.; никто, конечно, еще не знал, что это квантовый закон, а сам Планк использовал слово quantum лишь в технических целях, для обозначения дозированных порций (это, правда, было отличным началом).
Это был закон излучения; он, кстати, превосходно работает уже более 120 лет, не требуя никаких поправок и улучшений. Если опустить все подробности, то он сообщает, как цвет излучаемого света зависит от температуры. Часть этой истории – достаточно известный факт, что каждое теплое тело (например, человеческое) излучает инфракрасные волны. Это не какие-то особые волны, а то же самое физическое явление, что и свет – электромагнитные волны, только в определенном интервале длин волн. Инфракрасные волны еще длиннее, чем волны, отвечающие красному цвету, откуда и название{24}24
В разных других интервалах длин волн лежат (от длинных к коротким) радиоволны, волны в вашей микроволновке, терагерцевые (субмиллиметровые) волны, за которыми идет уже упоминавшееся инфракрасное излучение и видимый свет, а далее ультрафиолет, рентгеновские лучи и жесткое гамма-излучение.
[Закрыть]. (Слова «электромагнитные волны» существенно длиннее, чем слово «свет», и поэтому электромагнитные волны самой разной длины часто называют светом; я тоже буду так делать, не очень следя за терминологической строгостью.)
Теплые предметы излучают инфракрасный свет, а горячие уже светятся красным. Дальнейшее увеличение температуры приводит к появлению более голубого свечения – к сдвигу в сторону более коротких волн. В действительности излучение происходит на всех частотах (раскаленный «добела» гвоздь продолжает излучать и инфракрасный свет тоже), и речь идет о том, на какой длине волны излучение наиболее интенсивно. Для выражения этой интенсивности есть численная мера. Закон Планка описывает не только это, но и гораздо большее: как интенсивность излучения распределена по разным длинам волн при каждой заданной температуре{25}25
При каждой температуре есть длина волны, на которой нагретое до данной температуры тело излучает наиболее интенсивно, тогда как для более коротких и более длинных волн интенсивность заметно спадает. Закон излучения описывает это численно. Речь в этом законе идет об «абсолютно черном теле». Этот термин может ввести в заблуждение: он означает тело, которое ничего не отражает, а только излучает свет, причем по той единственной причине, что оно, тело, имеет определенную температуру; (абсолютно) черным оно является только при абсолютном нуле. Солнце – неплохой пример «абсолютно черного тела».
[Закрыть].
Путем «умной подгонки» Планк максимально удачно угадал превосходно согласующуюся с экспериментальными фактами формулу для интенсивности излучения. Это уже был немалый успех, и на этом можно было бы остановиться, но Планк принялся размышлять над тем, на основе каких идей к такой формуле можно было бы прийти, не занимаясь подгонкой. Из учебника в учебник переходит рассказ о том, как он предположил квантовую природу колебательных систем и вывел из нее свой закон, но в действительности это лишь «обратная проекция» более позднего понимания.
Как бы то ни было, постепенно возникло осознание, что в основе формулы Планка для излучения должно лежать свойство колебательных систем брать себе энергию только определенными порциями (пропорциональными частоте). Такие идеи были полностью чужды физической картине мира того времени, но убедительность, с которой выполнялся закон Планка, помноженная на невозможность объяснить его каким-либо другим способом, заставляла к ним прислушиваться.
Развитию новых взглядов очень поспособствовала «вторая квантовая формула». Она появилась в 1905 г. в статье Эйнштейна, посвященной совсем другой задаче. Там Эйнштейн предположил существование «световых квантов» – минимальных порций света, несущих определенную энергию, зависящую от длины волны этого света. Они понадобились для объяснения иначе никак не объясняемых экспериментальных фактов о том, что происходит, когда свет, падая на поверхность, выбивает из материала электроны{26}26
Квантование света – сколь бы экстраординарной ни выглядела эта идея в 1905 г. – объясняло странный факт: свет с большей длиной волны не выбивает электроны из материала, даже если этот свет очень яркий, т. е. совокупно доставляет к поверхности много энергии. Дело оказалось в том, что если каждый выбиваемый из материала электрон получает необходимую для этого энергию только от одного фотона, то пока энергии фотонов малы – свет длинноволновый, – электроны попросту не получают достаточной энергии, чтобы вырваться наружу, и остаются внутри материала. Увеличение яркости света не меняет ситуации, пока длина волны та же: неважно, сколько фотонов падает на поверхность, если ни один не может передать электрону нужной энергии. А вот при уменьшении длины волны картина меняется: каждый фотон несет больше энергии, получая которую электрон вылетает наружу, причем со все большей энергией по мере дальнейшего уменьшения длины волны.
[Закрыть]. Эта работа была удостоена Нобелевской премии за 1921 г. (присуждена в 1922-м).
В 1907 г. Эйнштейн использовал зарождающиеся квантовые идеи (в том числе формулу Планка) для объяснения того, как твердые тела откликаются на нагревание (см. главу 4). Эта модель была много лучше всего предыдущего, хотя и оказалась не очень точной. Наряду с основной идеей о квантовом характере распределения энергии по колебательным системам она включала некоторое количество упрощающих предположений. Модель действительно описывала резкое уменьшение теплоемкости при уменьшении температуры, но при очень низких температурах предсказывала слишком малую теплоемкость. Она стала шагом на пути к улучшенной модели, которую предложил Дебай в 1913 г., использовав несколько иные предположения, и которая прекрасно описывает теплоемкость твердых тел при очень низких температурах. Важность первой модели Эйнштейна была в указании направления мысли: первые догадки о новом устройстве вещей чрезвычайно ценны, потому что стимулируют следующие версии и часто определяют, в каких терминах следует думать о задаче{27}27
Еще один «квантовый шаг» в том же 1913 г. сделал Бор, распространив идеи дискретности на модель атома. Модель сводилась к постулатам о том, какие орбиты «разрешены» для электрона в атоме, все еще представляемом как подобие планетной системы. При этом понятие «разрешены» получало довольно искусственное обоснование. Модель работала для простейшего атома – водорода; она показала, что необходимо мыслить неординарно, но не годилась ни для одного более сложного атома. Последовавшая затем Первая мировая война затруднила обмен идеями (и не только его), и развитие квантовой теории возобновилось уже в 1920-е гг.
[Закрыть].
В 1916–1917 гг. Эйнштейн применил идею квантов света, формулу Планка и представления о дискретных уровнях энергии в атоме (эмпирический факт, в то время еще не объясненный) для построения простой и элегантной теории. Она говорила, каким образом и при каких условиях свет, проходящий через вещество, может заставить атомы вещества, получившие перед тем дополнительную энергию, излучать новые фотоны, которые по всем своим характеристикам, включая частоту и направление распространения, согласованы с фотонами падающего света. Эта теория лежит в основе работы мазеров и лазеров, впервые созданных соответственно в 1953 и 1960 гг. и впоследствии отмеченных Нобелевской премией{28}28
Нобелевскую премию 1964 г. «за фундаментальные работы в области квантовой электроники, приведшие к созданию генераторов и усилителей на основе принципа мазера-лазера» получили Басов, Прохоров и Таунс.
[Закрыть].
Вклад Эйнштейна в развитие квантовой теории на ее раннем этапе неоспорим. Но этим дело не ограничилось. В 1924-м, буквально накануне открытия квантовой механики, на глаза Эйнштейну попался ответ на давно занимавший его вопрос, касавшийся тех самых порций света, которые он же в свое время и ввел: как описывать их свойства, когда этих порций очень много? Это позволило ему сделать следующий важный шаг. Пожалуй, я процитирую Нобелевский комитет – сообщение для прессы в связи с премией по физике 2001 (!) г.: «В 1924 г. индийский физик Бозе выполнил важные теоретические расчеты, касающиеся частиц света. Он отправил свои результаты Эйнштейну, который распространил теорию на атомы определенного типа и предположил, что если газ, состоящий из таких атомов, охладить до очень низкой температуры, то все атомы внезапно соберутся в состояние с наименьшей возможной энергией»{29}29
Из теоретических соображений Эйнштейн сознавал, что фотоны не могли быть в полной мере статистически независимы друг от друга, как молекулы в обычном (классическом) газе. Бозе точно выразил такую зависимость в своей статье, которую, однако, не приняли к публикации в журнале, поэтому Бозе прислал ее Эйнштейну для возможной публикации в другом издании после перевода на немецкий, если она окажется заслуживающей внимания. Эйнштейн оценил идею, перевел статью на немецкий и отправил в журнал с короткой припиской от себя, а тем временем понял, что идея приложима шире, не только к фотонам, но и к собранию одинаковых частиц любой массы, главное статистическое свойство которых – принципиальная неразличимость вместе с некоторой склонностью к «коллективизму» (сейчас это описывается как принадлежность к классу бозонов). До того считалось, что хотя атомы любого газа одинаковы, они в принципе различимы, но в новой схеме нет возможности даже говорить о том, какая из двух частиц полетела налево, а какая направо; из-за этого имеется меньше способов организовать картину «одна слева, другая справа», и таким образом нарушается привычная статистическая независимость, когда каждая частица вносит вклад в разнообразие возможностей независимо от всех остальных. Это влекло за собой теоретические последствия, включая более последовательный вывод закона Планка (собственно, результат Бозе) и выражения для теплоемкости твердых тел, а также идею о «конденсате», высказанную Эйнштейном в статье, вышедшей уже в 1925 г.
[Закрыть].
Эйнштейн предсказал явление «конденсации», но не обычной, а квантовой, причем невиданно радикальной, когда частицы (атомы) «определенного типа» ведут себя способом, в точности противоположным обычному: не «делают что хотят», каждый без оглядки на остальных, а, наоборот, массово делают одно и то же – причем в очень строгом смысле одно и то же. Макроскопически большое количество частиц, принципиально неотличимых друг от друга, приобретают в точности одинаковые характеристики, причем все возможные характеристики. Потребовалось 70 лет развития технологий, чтобы воспроизвести это явление в лаборатории (за это и была вручена только что упомянутая Нобелевская премия). Сейчас бозе-эйнштейновский конденсат считается отдельным (так называемым пятым) состоянием вещества с выраженными квантовыми свойствами. Знаменательно, что Эйнштейн сделал это предсказание не после и не вследствие изобретения квантовой механики; наоборот, его идеи предшествовали ее появлению (и даже, вместе с идеями де Бройля, повлияли на Шрёдингера, вскоре после того создавшего свое фундаментальное уравнение).
Но когда полноценная квантовая механика наконец появилась (1925–1926), Эйнштейн предъявил к ней значительные претензии. Сначала он просто подозревал предложенную схему во внутренней непоследовательности и изобретал такие ситуации, когда применение внутренней логики самой квантовой механики должно было по его замыслу привести к противоречию. Такой способ действий стали называть мысленным экспериментом. Мысленные эксперименты – логический анализ того, как теория, претендующая на описание мира, может справиться с различными ситуациями, которые в принципе возможны, – сыграли большую роль в развитии квантовой теории.
Задачу оппонирования Эйнштейну взял на себя Бор – который в немалой степени был вдохновителем Гайзенберга при изобретении квантовой теории, а попутно развивал систему взглядов для «объяснения» квантовой механики и вообще физического взгляда на мир. Хорошие личные отношения Эйнштейна и Бора не исключали долгих, глубоких, снова и снова возобновляемых споров. Изобретательность Эйнштейна несколько раз ставила Бора перед вроде бы неустраняемыми противоречиями – но только временно; внимательное рассмотрение показывало, что противоречия каждый раз возникали из-за протаскивания в квантовую область предположений, которые верны в классическом мире и к которым мы привыкли настолько, что можем даже не замечать, в какой момент рассуждений они используются. Бор обнаруживал неявное использование таких предположений, и Эйнштейн подтверждал, что противоречие исчезло. Такие «проверки на прочность» с помощью мысленных экспериментов укрепляли убежденность, что квантовая механика сама по себе лишена логических изъянов, и Эйнштейн с этим согласился.
Но он определенно не хотел соглашаться с той интерпретацией – «объяснением смысла» всей схемы, – которую продвигал Бор. В фокусе обсуждения была несовместимость некоторых свойств друг с другом («вражда», если использовать язык этой книги). Уже было известно, что в зависимости от постановки эксперимента из него можно было извлечь или одни, или другие свойства квантовой системы. Но что представляет собой данная квантовая система в реальности, без ссылок на какие бы то ни было эксперименты? Вещи ведь существуют независимо от того, какими из их свойств мы решим поинтересоваться? Разве нет?
Несогласие между Эйнштейном и Бором (по часто высказываемому мнению – между Эйнштейном и «всеми остальными», что не буквально точно, но в целом скорее верно, чем нет) оказалось несогласием по поводу структуры реальности. Эйнштейн был уверен, что мир и его свойства существуют независимо от нас, наблюдателей, и независимо от того, какие средства мы выбрали, чтобы узнать об этих свойствах; он считал, что наблюдение над объектом выявляет те свойства, которыми этот объект обладал до наблюдения. Физика, по мысли Эйнштейна, имеет своей задачей определение объективных свойств вещей и явлений.
Бор же был склонен отвергать идею объективно существующей реальности. Раз мы имеем дело только с результатами опыта, не следует сверх того предполагать «реальность» и наделять ее какими-то качествами.
Взгляды Бора во многом опирались на важное обстоятельство, с которым мы мельком уже сталкивались. «Наблюдение» – без сомнения, плохой термин. Он в значительной мере ассоциируется с пассивностью: зритель, наблюдающий футбольный матч, не влияет на то, как этот матч развивается, – совсем никак, если сидит перед телевизором, и в небольшой и отчасти спорной степени, если находится на стадионе (где воздействие теоретически ограничено криками).
Но в квантовом мире наблюдение за системой – это всегда вмешательство в систему (с «квантовым футболом» в этом смысле возникли бы большие проблемы). В качестве иллюстрации представьте себе, что вы желаете на ощупь убедиться в наличии каких-то неровностей на очень деликатной поверхности; сама эта процедура может изменить подробности – те самые, которые и были предметом интереса. А в отношении квантовых явлений посмотреть тоже означает «пощупать» – в том числе и светом. Любое наблюдение или измерение сопровождается там вмешательством. Слово «измерение» тоже не самое удачное – по выражению Белла, худшее в списке плохих слов из хороших книг. По историческим причинам тем не менее все его в основном и используют, и я тоже буду так делать, не каждый раз прибавляя, что измерение требует взаимодействия с системой, а потому представляет собой вмешательство в нее.
Одна и та же квантовая система по-разному откликается на измерения, выполняемые с помощью различных приборов. Это делает приборы особенно важными: с точки зрения Бора они необходимы ни много ни мало для придания смысла всей квантовой механике. Измерение выбранной физической величины (например, положения в пространстве или энергии) заставляет квантовую систему определиться с тем, каким окажется значение этой величины. Повторение того же измерения со строго идентичной системой вполне может дать другое значение – так работает индетерминизм, который мы обсуждали в предыдущей главе и который еще не раз нам встретится. Чтобы избежать при этом логического круга, пришлось наделить измерительные приборы особым статусом: по Бору, они не подчиняются квантовой механике. Такое свойство приписывается им декларативно, несмотря на то что каждый прибор состоит из электронов и всего остального (атомных ядер, образованных из протонов и нейтронов), что, разумеется, ведет себя квантовым образом.
А поскольку, согласно Бору, говорить о квантовых объектах «самих по себе» (безотносительно к измерению) достаточно бессмысленно, дело оборачивается таким образом, что для придания смысла квантовому миру необходим отдельный и отделенный от него классический мир. Квантовая реальность, определенно отличающаяся от классической, оказывалась доступной только через результаты измерения, сильно дальше которых предлагалось и не заглядывать.
Эйнштейн, однако, подозревал наличие более глубокой – и при этом «более обычной» – реальности. В частности, он был склонен думать, что невозможность одновременно обладать «враждебными» свойствами не идет от природы вещей, а является лишь чертой квантовой теории в том виде, в котором она была придумана на его глазах; и что эта теория просто недопридумана до конца: она неполная и не ухватывает какие-то более глубокие и более «детальные» свойства мира, где никаких неопределенностей уже нет. Как уже было сказано, эти свойства, существующие где-то в глубине реальности, получили название скрытых параметров.
Заодно, надеялся Эйнштейн, в «более глубокой реальности» нет и индетерминизма, а случайность появляется в квантовой механике только из-за того, что мы не все знаем. Не знаем каких-то неведомых подробностей про электрон и про радиоактивное атомное ядро, вообще про все. Возможно, эти подробности очень громоздкие и нам в конце концов будет удобнее остаться с вероятностным описанием – но как бы то ни было, случайность эта не «истинная и неделимая», ни к чему не сводимая, а просто является результатом действия трудно учитываемых факторов (как при подбрасывании монеты на футбольном поле, только много убедительнее).
Так полагал Эйнштейн, но прислушивались к нему не многие. Предлагаемые задним числом ответы «почему» всегда грешат предвзятостью. Факторов было несколько: и несомненный вычислительный успех квантовой механики уже в версии Гайзенберга, на волне которого предлагалось «раз и навсегда» отказаться от старых, до-квантовых представлений о реальности; и харизма Бора, который обладал незаурядной способностью воздействовать (в том числе давить) на собеседников, произнося при этом с трудом понимаемые, неясно сформулированные и неоднозначно интерпретируемые сентенции (запутанность своей словесной аргументации он возвел едва ли не в принцип); и, возможно, обретшая после Первой мировой войны особое влияние философия позитивизма{30}30
Бор, по-видимому, желал развить – и применять сначала в квантовой теории, а затем по возможности повсеместно – «принцип дополнительности». О нем сейчас еще можно услышать от физиков, но философы едва ли рассматривают его как сколько-нибудь серьезную идею.
[Закрыть].
По итогам дебатов о природе квантового, растянувшихся на несколько лет (с кульминацией в 1927–1930 гг.), победу с заметным преимуществом, по общему мнению, одержал лагерь, возглавляемый Бором. Правда, остались неурегулированными пара ключевых вопросов, которые Бор в известной степени «заболтал», но сообщество по этому поводу не переживало (в частности, не получило определения само понятие измерения – несмотря на его ключевую роль в предлагаемой схеме). На стороне Бора было то неоспоримое обстоятельство, что квантовая механика работала.
Однако в 1935 г. Эйнштейн в соавторстве с двумя молодыми коллегами придумал новую, до тех пор невиданную конструкцию, чтобы с ее помощью отстоять точку зрения, что квантовая механика, пусть сама по себе и ничем не неправильная, все же представляет собой неполную теорию: за ее рамками остаются некоторые подробности устройства мира. Работа Эйнштейна, Подольского и Розена произвела немалое впечатление на Шрёдингера (который, надо сказать, никогда не сближался в своих воззрениях с Гайзенбергом и Бором, хотя и отдавал должное веской аргументации первого и полемическому таланту второго). Шрёдингер же придумал и название для явления, которое изобрели три автора, и заодно высказался в том духе, что оно представляет собой главное отличительное свойство квантовой механики, радикально отделяющее ее от классической. Он назвал его Verschränkung по-немецки и entanglement по-английски. Русский термин «запутанность», возможно, стоило бы заменить на «зацепленность», но дело уже прошлое.
Правда, кроме Шрёдингера запутанностью впечатлились не слишком многие. Статья Эйнштейна, Подольского и Розена была написана сложно. По итогам совместной работы текст писал второй автор, и он расставил акценты не совсем так, как хотел бы первый автор (который не проконтролировал результат), из-за чего основной тезис оказался не столь прост для усвоения. Кроме того, тот же Подольский, видимо в предвкушении скорого выхода статьи, организовал «утечку» в массовое (а не научное) издание, The New York Times. Газетная публикация о том, что Эйнштейн критикует квантовую теорию, вызвала среди непрофессионалов шумиху, которая вполне могла отвратить профессионалов (а с Подольским Эйнштейн больше не разговаривал).
Не слишком ясно выраженные идеи, ажиотаж в газетах, поверхностное впечатление, что это «еще одна» попытка Эйнштейна поймать квантовую механику на противоречии, чего, как все уже видели, сделать не удается, – все это не способствовало привлечению серьезного внимания к статье трех авторов. Бор опубликовал в ответ на нее комментарии, граничащие со словесной эквилибристикой (их неудовлетворительность он и сам впоследствии признавал), и о статье в общем и целом забыли. Но в науке написанное остается. После небольшого отступления мы, вооружившись необходимыми средствами, увидим, что не прошло и полувека, как запутанность, изобретенная в полемике о неполноте квантовой механики, получила развитие, которого ни одна из вовлеченных в дискуссию сторон не могла и предвидеть.
7
Что от вращения
Открытая Эйнштейном, замеченная и названная Шрёдингером запутанность довольно долго вела малособытийное существование вдали от центральных тем квантовой теории. В начале 1950-х гг. – когда в ведении квантовой науки оказалась ядерная энергия, из-за чего много изменилось и в мире, и в этой науке, и в их взаимоотношениях, – Бом придал запутанности более выразительный вид, использовав для этого уникальное квантовое свойство – спин. Ее, впрочем, некоторое время продолжали не замечать и в этом новом наряде, но уж теперь, когда запутанность набрала настоящую популярность, запутанными неизменно оказываются спины.
Чтобы двигаться вперед, нам нужен спин! Это свойство как никакое другое показывает, что наш мир – квантовый в своей основе. Спин не имеет прямого классического аналога, но существенно влияет на судьбу всех элементарных объектов; он фигурирует не только в самом популярном варианте запутанности, но и во многих иных принципиально важных явлениях. Он, в частности, отвечает за точный вид таблицы Менделеева. Откладывать знакомство со спином далее невозможно.
Что такое спин для нашего доброго друга – электрона? Если угодно, это его «второе неотъемлемое свойство». С первым неотъемлемым мы уже многократно встречались, и я его даже не каждый раз упоминаю: это электрический заряд. Заряд позволяет электрону взаимодействовать с электрическим полем (например, получать от него энергию движения – что, собственно, происходило в телевизорах XX в. и что продолжает использоваться в ускорителях). А свое второе неотъемлемое свойство электрон проявляет во взаимодействии с магнитным полем, потому что это свойство делает электрон похожим на магнит неопределенно малого размера. Магнитных свойств в отсутствие электрического заряда у электрона не было бы, но одного заряда недостаточно. Нужно, кроме того, что-то вроде вращения – настолько, насколько это возможно в квантовом мире.
А там, как мы видели в главе 4, вращение теряет наглядность. Из-за вражды невозможно указать ось вращения, и из трех величин, которые нужны для привычного описания этого явления, определены только две, причем и они могут принимать только дискретные значения. Мы называли их атрибутами вращения, потому что это те «остатки» от наглядной картины вращения, которые только и возможны в квантовой механике. Каждый электрон в атоме обладает какими-то атрибутами вращения, но в этой главе нас в первую очередь интересуют электроны сами по себе, вне всякой связи с атомами. Любой электрон, оказывается, обладает своими собственными атрибутами вращения, хотя внутри него ничего подходящего для вращения нет, потому что никакого «внутри» тоже нет{31}31
Быть может, стоит прокомментировать потерю наглядности, начав с электрона в атоме. Он не движется там по какой бы то ни было траектории (и вообще не находится в определенной точке пространства ни в какой момент времени), но интуитивно трудно отделаться от ощущения, что он все-таки «как-то там вращается». В действительности же наглядной картины нет, ее заменяют те самые два «атрибута вращения»; вместе с уровнем энергии они и описывают, «как устраиваются» электроны в атомах. Сейчас же обсуждаются атрибуты вращения, которые относятся к электрону самому по себе – прикреплены к нему постоянно и неотъемлемо, вне всякой связи с атомом. Для них наглядной картины, разумеется, нет, но ведь ее не было и в отношении атрибутов вращения электрона в атоме: ответа на вопрос «как и что вращается», если иметь в виду наглядную картину вращения, не предполагается ни в том, ни в другом случае. Квантовая механика не требует никаких подробностей, если выполняются формальные соотношения.
[Закрыть].
Отказаться от своих атрибутов вращения электрон не может. Они всегда с ним, причем в значительной степени фиксированы количественно: строго определенная «степень раскрутки» приделана к электрону раз и навсегда. Как и все остальное, связанное с электроном, это его качество «никак не выглядит» (не имеет визуального образа), однако проявляет себя в виде магнитных свойств, поскольку у электрона есть еще и электрический заряд. Правда, из-за отягощенности враждой магнит из электрона получается не совсем обычный.
В отношении обычных магнитов у нас есть определенные ожидания. Каждый магнит ориентирован вдоль какой-то линии в пространстве, просто потому что у него есть два полюса, через которые можно мысленно провести прямую. Если договориться проводить ее от южного магнитного полюса к северному, то каждый магнит определит какое-то направление в пространстве. Даже если магнит очень маленький и два полюса находятся совсем близко друг к другу, такое направление все равно задано. Удобно изображать магнит стрелкой: направлена она так, как только что было сказано, а ее длина условно выражает «силу» магнита. Это, конечно, воображаемая стрелка, но не требуется особенно развитой фантазии, чтобы ее себе представить – ведь два полюса у магнита всегда есть.
Магнит, которым является электрон, тоже определяет направление, хотя там нет ничего похожего на отделенные друг от друга южный и северный магнитные полюса. И «сила» этого магнита всегда фиксирована – она одна и та же для всех электронов во всех условиях, аналогично ситуации с зарядом электрона. Попробовав изображать магнитные свойства электронов стрелками, мы сразу поймем, что стрелки различаются только своими направлениями, а не длиной, раз все магниты одинаковы по силе. Но дальше оказывается, что в случае электрона стрелка приобретает «волшебные» черты. Если сформулировать одной фразой, то «как ни поворачивайся, нельзя посмотреть на нее сбоку». Это, конечно, метафора (уж во всяком случае в отношении слова «посмотреть»), но за ней стоит фундаментально квантовое поведение – буквально квинтэссенция несговорчивости из-за квантовой вражды.
Представьте себе, что вы получаете электрон, по своему усмотрению выбираете направление в пространстве и интересуетесь, под каким углом к этому направлению повернута та самая «магнитная» стрелка этого электрона. Для этого имеется прибор, названный по именам двух ученых, впервые применивших его в 1922 г. (первоначально к ионам серебра), – прибор Штерна – Герлаха. Никакой разговор о спине не может обойтись без прибора Штерна – Герлаха; это не только реально существующее устройство, но и основной фигурант множества рассуждений и мысленных экспериментов, проясняющих структуру квантовых законов.
Задача прибора – сортировать влетающие в него миниатюрные магниты в зависимости от их ориентации. Для этого там создается магнитное поле особой конфигурации, которое отклоняет летящие магниты в зависимости от того, как их «магнитные стрелки» повернуты по отношению к этому магнитному полю. Отклонения фиксируются по следам, которые остаются на специальном экране, стоящем за прибором. Если магнитное поле, созданное в приборе, направлено вдоль вертикали, то будут наблюдаться отклонения вверх или вниз – на любую величину в интервале от максимального вверх до максимального вниз. В частности, вообще никакого отклонения не должно наблюдаться в том случае, когда «магнитная стрелка» ориентирована горизонтально, под углом 90° к направлению магнитного поля в приборе.
Но это если у вас обычные магниты. Электроны же ни в какие промежуточные положения не попадают, они вылетают только с двумя крайними вариантами отклонения. Это значит, что стрелка, выражающая магнитные свойства электронов, смотрит или точно «вперед», или точно «назад» вдоль выбранного направления. Ничего посередине, никаких промежуточных положений не случается.
Неожиданно! Ведь выбор, скажем, вертикального направления в приборе Штерна – Герлаха – произвольное решение. Выберем другое, просто наклонив прибор. Результат получается тот же, что и раньше, но в отношении нового направления: только два крайних отклонения вдоль этого направления, а это значит, что «волшебные стрелки» всех электронов смотрят или строго вдоль него или строго противоположно.
Никто, кстати, не говорит «стрелка» или тем более «волшебная стрелка»: все говорят «спин». Итак: спин электрона всегда направлен или вдоль выбранного направления, или в точности противоположно ему (угол 0° или 180°, и никакой другой). Любого направления.
Кажется, что здесь скрывается противоречие и вроде бы несложно изобрести простую стратегию, чтобы его выявить. Используем, как и ранее, прибор Штерна – Герлаха, измеряющий спин вдоль вертикального направления, и будем посылать в него электроны один за одним. Те, которые отклонились вверх, имеют, значит, спин, направленный вверх. С ними, кажется, все понятно: если не давать им удариться об экран, а отправить во второй, точно такой же, прибор Штерна – Герлаха, то все они продемонстрируют спин вверх. Но теперь положим этот второй прибор на бок – так, чтобы он отклонял пролетающие через него магниты вдоль горизонтального направления, скажем, слева направо. В спине каждого из отобранных электронов нет никакого предпочтения между левым и правым, поскольку угол между вертикальным и горизонтальным направлениями – прямой. А значит, второй прибор не отклонит электроны ни влево, ни вправо?
Ничего подобного. Каждый электрон отклонится одним из двух крайних способов – максимально влево или максимально вправо – сообщая тем самым о своем спиновом состоянии «спин влево» или «спин вправо». Но чем же может определяться выбор?
Ничем. Природа прибегает здесь к спасительной – той самой немотивированной – случайности. Результаты «спин влево» и «спин вправо» чередуются в случайном порядке от одного электрона к другому, а про каждый конкретный электрон нет способа предсказать, какой из двух вариантов получится.
А теперь вспомним про исходное вертикальное направление спина: с ним-то как? Направим электроны из второго прибора Штерна – Герлаха в третий, который снова измеряет спин вдоль вертикального направления. Оказывается, что от исходно отобранных спинов вверх не осталось даже воспоминаний: электроны показывают случайно чередующиеся «спин вверх» и «спин вниз», причем в равных пропорциях. Хотя с самого начала мы отобрали электроны со спином вверх, измерение спина вдоль другого направления стирает воспоминания о том, каков был спин до того.
Подведем промежуточный итог. Измерение спина электрона всегда дает один из двух результатов: «спин вперед» или «спин назад» вдоль направления, выбранного для измерения. Оно, это направление, может быть любым, но только каким-то одним; значения спина вдоль разных направлений не прикрепляются к электрону одновременно. Это – прямое следствие вражды, связанной с идеей вращения.
Вражда «вращательных» свойств устроена математически схожим образом и для состояний электрона в атоме, и для спина электрона. Электрон в атоме, как мы видели на в главе 4, обладает двумя атрибутами вращения: это степень раскрутки и еще одно число, причем оба они принимают дискретные значения. Аналогично, атрибуты вращения, которые внутренне присущи электрону из-за наличия у него спина, – это два числа, которые тоже принимают дискретные значения, и одно из них тоже выражает степень раскрутки, но только она одинаковая для всех электронов. Это перефразирование того факта, что все магниты, связанные с электронами, равны по силе. При этом «раскруточное» число, относящееся к спину электрона, слегка нарушает правила, которые выполнены для электронов в атомах: там эти числа могут быть равны 0, 1, 2, 3 и так далее, тогда как собственное раскруточное число электрона – не целое, а полуцелое, причем наименьшее положительное полуцелое: 1/2. Это и выражают словами «спин электрона равен 1/2». Отвечающая электрону степень раскрутки – самая малая, которая только может существовать, не считая нулевой. В природе нет ничего с меньшей (но ненулевой) степенью раскрутки.
Из математики вражды следует, что второй атрибут вращения принимает не любые дискретные значения, а только некоторые, причем разрешенных значений тем больше, чем выше степень раскрутки{32}32
Как мы видели в главе 4, если «раскруточное» число равно 0, то число, отвечающее второму атрибуту вращения, может быть только нулевым; если раскруточное равно 1, то для второго открываются три возможности: –ħ, 0, ħ; если равно 2 – то пять возможностей: –2ħ, –ħ, 0, ħ, 2ħ; и т. д. Шаг между соседними значениями равен ħ. Стоящее за этим правило удается сохранить и для полуцелых раскруточных чисел; в частности, при раскруточном числе 1/2 для второго атрибута вращения остаются доступными всего две возможности: –ħ/2 и ħ/2, расстояние между которыми по-прежнему равно ħ.
[Закрыть]. При минимальной степени раскрутки 1/2 возможны только два значения: –ħ/2 и ħ/2. Они-то и проявляют себя как «спин вперед» и «спин назад» – те самые две возможности, с которыми мы сталкиваемся снова и снова, как бы мы ни поворачивали прибор Штерна – Герлаха. Сверх того у электрона никакого богатства нет, и показать ему нечего; вражда, связанная с вращением, в сочетании с малой степенью раскрутки оставляет скудный выбор. Электрон и откликается как умеет, одним из двух доступных ему способов, на вопрос о своем спине вдоль любого направления{33}33
Атрибуты вращения обоих видов – и связанные с состоянием электрона в атоме, и собственно спин электрона – участвуют в определении формы таблицы Менделеева. Каждая клетка в ней – отражение дискретности для разрешенных значений энергии и атрибутов вращения. При каждом возможном значении энергии из списка (с номерами 1, 2, 3, …) «степень раскрутки» электрона определяется целым числом, для которого разрешен ограниченный набор значений. А именно, для энергии № 1 из списка это целое число может быть только равно 0; для энергии № 2 оно может быть равно 0 или 1; для энергии № 3 – равно 0, 1 или 2; и т. д. А для каждого числа, измеряющего степень раскрутки, имеется свой собственный набор значений для второго атрибута вращения. Состояние электрона в атоме определяется, таким образом, набором трех целых чисел: одно отвечает за энергию и два за атрибуты вращения. На этом мы остановились в главе 4, пообещав одно уточнение. Оно состоит в том, что из-за наличия спина каждой подходящей тройке чисел могут соответствовать два электрона в атоме: они различаются тем, что их спины направлены противоположно. Два электрона – максимум при заданном «энергетическом» числе и двух атрибутах вращения; третьего такого же они не потерпят. Отсюда следует, что при движении по клеткам в таблице элементов (при чтении ее как книги, слева направо вдоль строк и сверху вниз по строкам) все новые электроны вынуждены осваивать состояния со все более высокими энергиями, что приводит к периодическому повторению схожих, до некоторой степени, химических свойств. Из приведенных ограничений на возможные значения чисел, отвечающих за атрибуты вращения, и из наличия спина следуют длины периодов в таблице Менделеева.
[Закрыть].
Спин все-таки не настоящая стрелка: сам по себе он существует в малонаглядном состоянии, а как только мы беремся за прибор Штерна – Герлаха, чтобы на него «посмотреть», он упрямо укладывается «строго вдоль» или «строго против» установленного нами направления. Обычные стрелки, даже воображаемые, так себя не ведут. Но это удивительное поведение глубоко укоренено в математике и связано с тонкими свойствами поворотов в пространстве. (Да, «атрибуты вращения» хоть и квантовые и не описывают вращение в привычном смысле, все же состоят с ним в родстве.)
Математическое отступление почти на целую страницу о связи спина и поворотов, которое я хочу сделать, начинается с придуманного Дираком фокуса с ремнем. Возьмите ремень средней ширины и книгу, желательно толстую (содержание большого значения не имеет, важнее формат и масса). Раскройте ее примерно посередине, вложите между страницами конец ремня без пряжки, закройте и положите на край стола. Тяжестью своих страниц книга должна удерживать конец ремня. Держась за пряжку, растяните ремень как ленту (натягивать сильно ни к чему, да и невозможно, потому что ремень выскочит из книги). Теперь поверните пряжку на два полных оборота (на 720°); ремень при этом скрутится. А далее ваша задача – избавиться от этой скрученности, ничего больше не вращая. Зажмите пряжку в одной руке и не отпускайте! Другой рукой вам понадобится взять книгу, не давая ремню из нее выскочить. Вы увидите, что, не вращая книгу – сохраняя ее ориентацию в пространстве, – вы можете обнести ремень вокруг нее так, чтобы он полностью раскрутился. Скручивание на два полных оборота удается «открутить», не прибегая к вращению (ни пряжки, ни книги), а только обнося ремень вокруг книги.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?