Автор книги: Алексей Семихатов
Жанр: Физика, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 18 страниц) [доступный отрывок для чтения: 6 страниц]
Но если первоначально вы скрутили ремень не на два, а на один полный оборот, «открутить» его обратно таким способом не получится.
В одном полном повороте есть что-то, чего уже нет в двух полных поворотах – что вообще-то может показаться несколько странным, потому что, закрыв глаза, повернувшись на 360° вокруг любой оси и снова открыв глаза, вы увидите мир прежним: он возвращается в исходное состояние уже после одного полного поворота. И тем не менее имеется класс математических объектов, несколько более абстрактных, чем ремень и книга, которые остаются неизменными при повторении полного поворота дважды, т. е. при повороте на 720°, но изменяются при повороте на 360°. Эти объекты живут в специальных математических пространствах, но, обитая там, умеют откликаться на повороты в обычном пространстве. Назвали их спинорами – из-за их связи со спином. Математические команды они получают от «волшебной стрелки»: когда она поворачивается в нашем обычном пространстве, спиноры «там у себя» изменяются по определенным правилам. И они не остаются прежними после одного полного поворота «стрелки» в нашем пространстве; чтобы прийти в себя, они ждут второго такого же поворота. Нам тоже придется немного подождать следующего появления спиноров на этих страницах, но ожидание окупится: в конце концов они приведут нас в антимир, открытый только что упомянутым Дираком (вклад которого в картину мироздания выходит далеко за пределы фокуса с ремнем){34}34
Спином обладают не только электроны, но и другие составные части материи, протоны и нейтроны (последние – при отсутствии электрического заряда), а если смотреть глубже – то и кварки, из которых протоны и нейтроны состоят. Спином могут обладать как атомные ядра, так и атомы и ионы, если компоненты, из которых они сложены, не компенсируют свои вклады в общий спин. (Штерн и Герлах первоначально сортировали по спину атомы серебра.) Забегая вперед, можно отметить, что наличие двух «опорных» возможностей вроде «спин вперед» и «спин назад» требуется в квантовых компьютерах, а одно из применяемых там решений – сверхпроводящие мезоскопические образования: они состоят из огромного числа электронов, которые, однако, ведут себя как нечто единое целое. В этом своем качестве они могут обладать математически таким же спином, как и одиночный электрон, являясь в отличие от последнего наблюдаемой системой!
[Закрыть].
Возвращаясь к упрямству «волшебных стрелок» самих по себе: оно ставит перед нами несколько вопросов о природе квантовой реальности. Следует ли полагать, что измеренное значение спина вдоль выбранного направления возникает в момент его измерения? И «происходит» ли что-нибудь между измерениями, когда спином электрона никто не интересуется? Мы не можем (по фундаментальным, как мы говорили, причинам) видеть квантовые объекты так, как видим обычные вещи или даже разглядываем мелкие, но вполне определенные подробности в микроскоп. Квантовые объекты «этим и пользуются», ведя лишенное наглядности существование, а информация от них доходит до нас при посредстве тех или иных устройств или агентов, которые вмешиваются в происходящее на квантовом уровне. По мере погружения в подробности квантового устройства вещей мы все острее осознаем проблему: в какой степени можно говорить о том, что представляют собой квантовые объекты «сами по себе»?
Чтобы рассуждать об этом, как минимум необходим какой-нибудь способ описания возможных состояний обитателей квантового мира: как вообще может быть устроена их «жизнь в себе» и какие средства позволят нам описывать ее настолько полно, насколько возможно? Из-за вражды, запрещающей определенные комбинации свойств, здесь далеко не все заранее ясно.
8
Что комбинируется и запутывается
Время от времени – и не так уж редко – нам случается переживать несколько различных эмоций сразу. Испытывая комбинации эмоций типа «грустно и легко одновременно», мы находимся во власти обеих, но и каждая не теряет своей индивидуальности. В привычном физическом мире, в отличие от психического, индивидуальности вещей не смешиваются. Камни, стулья и тигры существуют сами по себе, каждый является чем-то одним. Электрон, однако, способен одновременно «переживать» состояние со спином вверх и состояние со спином вниз, а равным образом – свое нахождение в множестве точек пространства, притом что находиться в любой конкретной ему со всей возможной строгостью запрещено. Сосуществование различных возможностей описывается в рамках специальной математической схемы – ключевого элемента всей квантовой механики.
Успех всеобщей шрёдингеризации неотделим от способа описания квантовых систем, при котором различные «возможности» комбинируются в нечто единое, существуют вместе, но не растворяются друг в друге. Это определяющий момент в построении квантовой механики, ее внутренний механизм, работающий по своим особым законам. Из предыдущих глав должно быть ясно, что практически ничего «обычного» электрон и его собратья делать не могут: не могут, для начала, двигаться по определенным траекториям. На их долю остаются «переживания» (разумеется, в кавычках) в специальных математических пространствах. Там свои правила, и туда, довольно удивительным образом, переносятся основные события: там все и происходит.
Вообще для описания любой системы требуются средства, позволяющие перечислить все, что с ней в принципе может случиться – перечислить все ее возможные состояния. Не побоюсь тавтологии: «состояние» как теоретическая конструкция – например, для использования в уравнении – должно максимально полно описывать состояние интересующей нас системы. В нашем привычном мире эту роль выполняют положение в пространстве и скорость (с учетом направления, конечно) для каждой «самостоятельной» части системы, которая нас интересует. Камни могут лежать рядом друг с другом, а могут быстро разлетаться в разные стороны.
В квантовом же мире в абстрактную конструкцию состояния, какой бы она ни была, можно включить только по одному элементу из каждой враждующей пары «положение – скорость»: если положение в пространстве, то не скорость. Но куда же годится такое неполное описание с использованием только половины величин? В случае «камней» этой половины определенно было бы недостаточно. Кажется, что мы теряем возможность описывать, что происходит с квантовыми системами.
Здесь интрига усложняется. С одной стороны, я проявил пресловутую недисциплинированность мышления, перенеся на квантовый случай понятие «происходит», которое нагружено смыслами из окружающего мира, почти наверняка неприменимыми в мире квантовом; там не следует предполагать ничего из «очевидного», а рассуждать надо более формально. А с другой стороны – как раз в рамках более формальных рассуждений – оказывается, что хоть мы и ограничены «бедным» описанием на основе только половины величин, мы получаем за это неожиданную компенсацию: состояния наделяются особым свойством – возможностью комбинироваться колоссальным числом способов. Ради такой возможности им и приходится жить в математических пространствах.
Если квантовая система в принципе может находиться в состоянии А, а также может находиться в состоянии Б, то она может находиться и в произвольной комбинации этих состояний. Характерный пример «из жизни» мы уже встречали в главе 4: мы говорили там, что у электрона в атоме нет свойства занимать какое-либо положение в пространстве. К этому сейчас можно добавить, что причина – именно в комбинации (по официальной терминологии, суперпозиции) состояний. Электрон в атоме находится в комбинации состояний, каждое из которых отвечает определенному положению, но именно наличие комбинации не позволяет электрону занимать какое бы то ни было положение в пространстве. Если вам не вполне ясно, как представить себе такой способ существования электрона, то это нормально. Не оглядывайтесь по сторонам в надежде увидеть квантовое состояние! Их здесь нет, они населяют свое собственное пространство.
Комбинирование состояний не назвать наглядным именно потому, что прямого классического аналога у этого явления нет: оно определенно находится по ту сторону границы между классическим и квантовым. Чтобы не погружаться в психологию, которую я имел неосторожность затронуть в самом начале главы (и которая к квантовой теории прямого отношения не имеет), я предлагаю метафору квантовых состояний, в которой отсылаю всего лишь к волшебству. Ни одна метафора не совершенна, и никакую не следует заводить слишком далеко, чтобы не дойти до абсурда; эта моя метафора тоже не идеальна, но я надеюсь продержаться с ней некоторое время.
Представьте себе, что вы в казино и у вас на руках волшебная, «квантовая» карта – одна карта, содержащая в себе комбинацию нескольких: скажем, тройки треф, семерки треф и туза пик. Речь идет не о «комбинации» из нескольких карт, как «стрит» или «каре» в покере, а о (волшебной, как было сказано) комбинации из нескольких значений внутри одной карты.
Для учета таких комбинаций в этом казино – буквально повторяя то, как это делается в квантовой механике, – предлагается использовать арифметические действия. Например, содержанием вашей карты может быть «тройка треф плюс семерка треф» (туз пик в этот раз оказался исключенным). Этот плюс не означает, что у вас на руках десятка треф – нет, значения не складываются, значение каждой карты «защищено» тем, что это не число само по себе, а значение карты. Другой вариант комбинации – «семерка треф минус две тройки пик». Здесь тоже не надо производить арифметические действия: значения карт не участвуют в математических операциях. К числу «минус два», сопровождающему значение карты, надо относиться терпеливо, смысл таких чисел прояснится позже. (Кстати, эти числа могут быть абсолютно любыми, а целые я обычно использую только для простоты.)
Может наступить момент, когда казино попросит вас предъявить карту. Первое, что вам надлежит знать, – отказаться тут нельзя (к этому центральному обстоятельству в настоящей, не-метафорической квантовой механике мы еще будем возвращаться; в казино же это не проблема, там найдутся люди, которым трудно отказать). А кроме того, в тот момент, когда казино обязывает вас выложить карту, эта ваша карта перестает быть волшебной: она превращается в одну из обычных карт – но только в одну из тех, которые участвовали в комбинации. Если комбинация, которая составляла содержание вашей волшебной карты, – это «двойка червей минус две тройки пик плюс одна треть дамы треф», то предъявленная вами карта может оказаться или двойкой червей, или тройкой пик, или дамой треф (уже без всяких сопровождающих чисел). Но не какой-либо другой картой. Правда, решить, какой именно из перечисленных, вы не можете: волшебная карта, расколдовываясь в обычную при предъявлении, решает это за вас.
Мы начинаем подозревать, что комбинации внутри волшебных карт – это что-то вроде списка возможностей. И, честно говоря, называются они не комбинациями, а суперпозицией, а «волшебная карта» в квантовой механике называется волновой функцией. Волновая функция, описывающая состояние, скажем, электрона, может, например, быть комбинацией возможностей, каждая из которых – нахождение электрона в какой-то точке пространства; но пока там присутствует более одной возможности, электрон не находится ни в одной из этих точек. Различные волновые функции содержат много или мало возможностей и различаются теми числами, которые сопровождают каждую возможность{35}35
Если число, стоящее перед каким-либо значением карты (как и вообще перед любой возможностью), не указано, это значит, что оно равно единице. А число, равное нулю, означает, что соответствующая возможность исчезает из комбинации: ее просто незачем рассматривать.
[Закрыть].
Полезным будет одно терминологическое упрощение: поскольку волновая функция – это все, что мы можем сказать о состоянии электрона, про нее можно думать и говорить, что она и есть состояние электрона. Собственно говоря, термины «волновая функция» и «состояние» указывают на одно и то же, но я употребляю то одно, то другое название, исходя из каких-то личных предубеждений: волновая функция просится на язык в более общем контексте («волновая функция электрона»), а состояние, как правило, относится к чему-то более конкретному («состояние с наименьшей энергией»); впрочем, четкой границы здесь нет.
Волновые функции/состояния населяют математическое пространство, которым я пугал читателя уже в главе 3. Математическое оно именно потому, что загруженным туда возможностям разрешается комбинироваться друг с другом путем сложения – с помощью знака плюс, используемого в том же слегка ускользающем смысле, что и в волшебных картах (кроме того, как мы видели, различные возможности могут умножаться на числа, например, минус два и одна треть). С нашим обычным пространством оно напрямую никак не связано.
Согласно принципам квантовой механики, нет никакого другого способа говорить о том, что «происходит с электроном», кроме как обсуждать его волновую функцию (она же – состояние). Все вопросы о том, «что делает» электрон, надо задавать волновой функции, и мы регулярно будем так поступать.
И если вы успели перевести дух после преодоления классическо-квантового водораздела, то вот следующий важный вопрос. Позади остались классические состояния, выражающие положения и скорости. Сейчас же перед нами волновая функция электрона в виде комбинации состояний, отвечающих различным положениям. Да, если этих положений хотя бы два (а их, как правило, бесконечно много), то электрон лишается свойства находиться в какой бы то ни было точке пространства. Но что со скоростью? «Приделать» дополнительную информацию о скорости к имеющейся волновой функции нельзя из-за вражды. Мы столкнулись лицом к лицу с вопросом, который, пусть робко, уже звучал раньше: не приводит ли вражда между величинами к неполному описанию мира?
Нет, квантовая механика не так проста. Польза от того, что основной ареной стало пространство, населенное волновыми функциями, оказывается немалой: там обнаруживается необходимое количество математических фокусов для «восстановления полноты бытия». Вспомним, что мы говорили в главе 3: в недрах квантовой механики физические величины принимают вид операций, воздействующих на математические объекты. Эти последние и есть волновые функции! Скорость тоже становится средством воздействия на них: из одних волновых функций она производит некоторые другие по четко установленным математическим правилам. В колоссальном большинстве случаев (можно сказать, почти всегда) в результате получается «совсем другая» волновая функция; этот математический факт означает, что у электрона в рассматриваемом состоянии нет никакого определенного значения скорости. Имеются тем не менее такие специальные волновые функции, что действие на них скорости-как-операции приводит всего лишь к умножению их на число. Это число в таком случае и является точным значением скорости электрона в данном состоянии. Построить такие состояния можно, если весьма специальным образом комбинировать вообще все положения в пространстве; «вражда» оборачивается таким образом своеобразной кооперацией в самой глубине математического формализма. Другое дело, что состояния электронов в атоме не представляют собой ни одну из этих специальных волновых функций, и у этих электронов нет ни определенного положения в пространстве, ни определенной скорости (хотя вне атома могло бы быть одно или другое; в атоме же, как мы помним, вместо этого имеются определенные значения энергии и атрибутов вращения).
Волновая функция вносит дополнительный поворот в сюжет, когда перед нами больше одного электрона (или чего угодно еще). Если в системе имеется несколько самостоятельных частей, то волновая функция как «перечисление возможностей» имеет дело со всеми этими частями сразу – она просто не умеет снисходить до каждой в отдельности. Это необычное свойство с последствиями, которые еще будут нас преследовать. Для простоты ограничимся тройкой электронов: в волновой функции тогда в качестве возможностей перечислены тройки точек; каждая тройка представляет возможную конфигурацию трех электронов. Но в волновой функции совсем ничего не сообщается о каком-либо одном электроне безотносительно к другим.
Вместо электронов попробуем на минуту представить себе сумасшедшее квантовое турагентство, которое планирует отпуск для Павла, Юрия и Александры, но почему-то делает это не совсем обычным образом, а построив аналог волновой функции. А именно, обсуждаются тройки, и только тройки, возможностей: скажем, Павел в Гондурасе, Юрий в Таиланде, Александра в Швеции; Павел в Аргентине, Юрий в Индии, Александра в Нидерландах; Павел в Ботсване, Юрий в Омане, Александра в Марокко; и так далее{36}36
В действительности квантовая картина еще более странная. Как мы увидим в заключительных главах, электроны, как и другие одинаковые квантовые объекты, не просто одинаковы, но и принципиально неразличимы. В использованной метафоре это означало бы, что Павел, Юрий и Александра теряют индивидуальность (становятся полностью взаимозаменяемыми) и можно говорить лишь о том, что кто-то из них в Гондурасе, кто-то в Таиланде, а кто-то в Швеции, но обсуждать, кто именно где, не имеет смысла. Впрочем, для нас сейчас важен не этот аспект неразличимости, а тот факт, что страны появляются только тройками.
[Закрыть]. Каждая тройка возможностей сопровождается своим числом, и каждая сосуществует в «волновой функции» со всеми остальными. Но эти числа не относятся к странам по отдельности: разложив на столе карту мира, нельзя подписать на ней что-то вроде «коэффициента пребывания» для каждой страны – это можно сделать только для троек стран.
А в метафоре карт у вас на руках тогда три карты, которые не просто волшебные, но еще и согласованным образом волшебные. Впрочем, чтобы мои примеры оставались не особенно громоздкими, пусть, пожалуй, карт будет все-таки две; тогда они могут быть такой, например, комбинацией: «(валет треф и двойка пик) минус (пятерка бубен и десятка треф) плюс (дама червей и туз пик)». Поскольку мы уже находимся в опасной близости к математике, стоит воспользоваться удобным обозначением – скобками – для более ясной расстановки смыслов. Внутри каждой скобки – то, чем может оказаться пара волшебных карт, когда казино попросит их предъявить. Выложив ваши две карты, вы можете тогда обнаружить, что это дама червей и туз пик. Или одна из двух других возможностей – но никогда не перекрестные комбинации, скажем, валет треф и туз пик. Тем, кого математикой не испугать, в качестве домашнего задания остается расставить знаки вместо слов «плюс» и «минус». Получится, если не считать игорной тематики, практически «настоящая» волновая функция.
Картина, основанная на сложении/комбинировании возможностей, выглядит не совсем обычной, и не зря: она лежит в основе большинства «необычностей» квантового мира. Я не перестаю удивляться, что основанная на ней схема, во-первых, вообще была придумана, а во-вторых, привела к беспрецедентным успехам в описании природы (среди прочего, именно эта абстрактная волновая функция «выращивается» в квантовом компьютере так, чтобы привести к совсем не абстрактному ответу). Чтобы увидеть, как она работает, нужны кое-какие дополнительные средства; им посвящены следующие главы, а сейчас я еще раз прошу читателя отнестись ко всей идее «комбинирования» максимально внимательно.
Комбинирование возможностей в волновой функции в сочетании с изящной математикой объясняет «выкрутасы» с повторными измерениями спина, которые мы наблюдали в главе 7. Мы брали там электроны в состоянии «спин вверх» и измеряли их спин в приборе Штерна – Герлаха, который лежит на боку и поэтому может выдавать только результат «спин влево» или «спин вправо». Положить измерительный прибор на бок означает выполнить поворот на 90º. В небольшом математическом отступлении о поворотах в предыдущей главе появились спиноры – обитатели абстрактного пространства, математически чувствительные к поворотам, выполняемым в нашем физическом пространстве: когда «волшебная стрелка» поворачивается здесь у нас, они откликаются на это, изменяясь по определенным правилам.
Волновая функция, сама будучи абстрактной и математической, легко справляется со спинорами: она включает их в себя в качестве возможностей, таких как «спин вправо», «спин вверх» или «спин вниз». А поскольку волновая функция – это «контейнер» для комбинации возможностей, в ней могут появляться и комбинации вроде «спин вверх плюс спин вниз». Вертикальное направление, выбранное в последнем примере, ничем, конечно, не выделено; стоит, пожалуй, еще раз сказать, что то или иное направление выбирается в нашем физическом пространстве, но все состояния вида «спин вперед» и «спин назад» обитают в своем математическом пространстве; это абстракции – причем абстракции, снабженные правилами, по которым они меняются в ответ на повороты в нашем пространстве.
Из этих правил следует нечто замечательное: состояние «спин вверх» с математической точностью можно переписать в виде комбинации «спин влево плюс спин вправо» – т. е. как комбинацию тех состояний, которые только и способен детектировать «лежащий» (повернутый на 90º) прибор Штерна – Герлаха. Факт этот вовсе не очевиден, но таковы правила поведения спиноров в ответ на повороты в нашем пространстве (в данном случае на 90º). Лежащий на боку прибор Штерна – Герлаха при попадании в него электрона в состоянии «спин вверх» поэтому способен измерить или спин влево, или спин вправо. Кстати, состояние «спин вниз» – это математически то же самое, что состояние «спин влево минус спин вправо».
Необычная для нас возможность комбинировать возможности в одном состоянии физической системы достигает нового уровня необычности, когда две системы взаимодействуют, создавая тем самым одну составную систему. Благодаря взаимодействию из комбинации возможностей вырастают запутанные состояния, уже нам встречавшиеся.
В подробности того, что вообще представляет собой взаимодействие (например, между электроном и протоном), можно погружаться довольно глубоко, но не самое плохое описание сводится к тому, что взаимодействие – это согласованное изменение своих состояний различными участниками, которых чаще всего двое. Сейчас мы применим это к волновой функции. Еще раз на секунду заглянем в волшебное казино: там взаимодействия из физического мира становятся видом игры, в простейшем случае для двоих.
В качестве примера я предлагаю дурацкую игру с максимально простыми правилами (волнует меня не «реалистичность» взаимодействия, а точное выражение идеи запутанности). Карты двух участников «взаимодействуют» и в результате изменяются. Если у вас карта красной масти, то любая карта вашего партнера превращается в короля. А если у вас черная карта, то карта вашего партнера превращается в даму; масть в данном случае не важна, и при желании можно считать, что она не изменяется{37}37
Поскольку карты волшебные, можно не спрашивать себя «как это они превращаются»; когда изменения происходят с состояниями взаимодействующих элементарных частиц, задавать вопрос «как» тоже не имеет смысла, потому что свойства фундаментальных взаимодействий – это фундаментальные законы природы, они ни через что другое не объясняются. В мою карточную «игру», кстати, можно было бы внести что-то от настоящих взаимодействий, например закон сохранения: ваша красная карта уменьшается в своем значении на единицу, а карта вашего партнера (любая) увеличивается на единицу; ваша черная карта увеличивается на единицу, а карта вашего партнера тогда уменьшается на единицу. Но все эти подробности только отвлекают от идеи запутанности, возникающей при взаимодействии, а цель состоит в том, чтобы именно ее и проиллюстрировать.
[Закрыть]. В игре с обычными картами – если «превращается» понимать как «заменяется на» – благодаря предельной глупости правил, происходящее не вызывает никаких вопросов. Если, скажем, у вас пятерка червей, то две карты на столе – ваша и вашего партнера – становятся парой «(пятерка червей и король)».
Но что, если ваша волшебная карта представляет собой комбинацию разных цветов, скажем, «пятерка червей плюс пятерка пик» – чем тогда станет карта вашего партнера: королем или дамой?
Основное правило, которое я всерьез переношу в игру из квантовой механики, состоит в том, что эти пятерка-червей-как-возможность и пятерка-пик-как-возможность играют каждая сама по себе{38}38
В квантовой механике это свойство называется линейностью. Отношение его к линии довольно опосредованное, а по существу оно сводится к повсеместно действующему правилу раскрытия скобок типа a(B + C) = aB + aC.
[Закрыть]. В результате ваша карта и чужая оказываются вот в каком состоянии:
«(пятерка червей и король) плюс (пятерка пик и дама)».
Значение вашей карты здесь каждый раз названо первым, а скобки снова расставлены для удобства восприятия. Карта вашего партнера вовлеклась в волшебство: теперь это король по отношению к пятерке червей и дама по отношению к пятерке пик, а «просто» сказать, король это или дама, невозможно.
Такое «вовлечение в волшебство» в квантовой механике называется запутанностью, а получающиеся «неясные» состояния – запутанными. Неясные они в отношении отдельных частей системы, хотя система в целом описана максимально полным образом!
А если опираться не на волшебство, а на физические явления, то вот мысленный эксперимент, в котором взаимодействие создает запутанность. Электрон, отклонившийся влево или вправо в лежащем на боку приборе Штерна – Герлаха, пролетает мимо одинокого протона. Электрон в состоянии «спин влево» отклонился влево, а значит, протон под действием электрического притяжения к электрону смещается влево. А электрон в состоянии «спин вправо» отклонился вправо, и туда же смещается протон. А вот при попадании в прибор электрона в том самом состоянии «спин влево плюс спин вправо» возникает запутанное состояние «(спин влево, отклонился влево, сместился влево) плюс (спин вправо, отклонился вправо, сместился вправо)». Если для краткости следить только за спином электрона и положением протона, то это состояние
Запутавшись со спином электрона, протон уже не имеет свойства находиться определенно левее или определенно правее той области, где он обитал перед началом опыта.
В приборе, однако, есть множество других протонов и электронов, которые, в свою очередь, вовлекаются во взаимодействие с уже запутавшимся протоном. С ними-то что происходит?
Прервемся здесь – на самом интересном месте, тем более что мы уже немного заступили в следующую главу, потому что от момента, предшествовавшего взаимодействию, до момента после взаимодействия проходит некоторое время. Отношения квантовой механики с временем регулируются ее главным уравнением – уравнением Шрёдингера.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?