Электронная библиотека » Амантонио » » онлайн чтение - страница 7


  • Текст добавлен: 11 февраля 2020, 19:00


Автор книги: Амантонио


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 25 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
Как работает иммунная система

Чтобы осознать всю нелепость вакцинации от коклюша, нам нужно немного разобраться, как работает иммунная система. Сделаем это на примере проказы (лепры). Поскольку от нее нет вакцины, на нее можно взглянуть незамутненным взором.

Проказа, грубо говоря, бывает двух видов – туберкулоидная и лепроматозная. Туберкулоидная проказа – это сравнительно легкая форма болезни. Поражается только кожа, и болезнь может даже пройти сама по себе. Лепроматозная проказа – это очень тяжелая форма болезни. Поражаются все слизистые оболочки, болезнь сама пройти не может, и она зачастую летальная. Возможны также промежуточные виды между этими двумя формами болезни. Что влияет на то, будет человек болеть туберкулоидной лепрой или лепроматозной? Только реакция его иммунной системы на бактерии проказы.

Иммунная система делится на две части: система клеточного иммунитета и система гуморального иммунитета.

Гуморальный иммунитет – это иммунитет антител. В ответ на антиген вырабатываются антитела. Эти антитела цепляются к патогенам, нейтрализуют их или сигнализируют другим клеткам, что им попался патоген и его нужно уничтожить. За эту систему ответственны клетки Т-хелперы типа 2 (Th2).

Клеточный иммунитет – это иммунный ответ, в котором участвуют не антитела, а клетки – фагоциты, Т-киллеры и другие. Они распознают зараженные клетки организма, пожирают их или убивают. За эту систему ответственны клетки Т-хелперы типа 1 (Th1).

Обе эти системы подавляют друг друга посредством цитокинов, которые они вырабатывают. Цитокины, выделяемые Th1, подавляют клетки Th2, и наоборот.

В случае с проказой чем больше иммунная реакция смещена в сторону клеточного иммунитета, тем более легкую форму болезнь принимает, а когда иммунная реакция смещена в сторону гуморального иммунитета, болезнь принимает тяжелую форму. Можно сказать, что в данном случае клеточный иммунитет (Th1) намного эффективнее, чем гуморальный иммунитет (Th2), который только мешает клеточному иммунитету выполнять свою работу.



Вернемся к коклюшу. Бесклеточная вакцина от коклюша смещает иммунную реакцию в сторону гуморального иммунитета (Th2), тогда как цельноклеточная вакцина ассоциирована с клеточным иммунитетом (Th1). Правда, цельноклеточная вакцина тоже смещает иммунную реакцию в сторону Th2, но не так сильно. В бесклеточной вакцине содержится намного меньше антигенов, чем в цельноклеточной. Тем не менее бесклеточная вакцина способствует вырабатыванию намного большего количества антител. Чем больше ревакцинаций бесклеточной вакцины человек получает, тем меньше длится иммунитет от этих прививок. Это объясняется тем, что дополнительные дозы прививки смещают иммунную реакцию все дальше и дальше в сторону гуморального иммунитета (вырабатывается больше антител), то есть иммунная реакция становится все менее и менее эффективной. Другими словами, чем больше доз вакцины человек получил, тем выше вероятность, что он заболеет, и тем дольше он будет заразен {14}.

Как измеряется эффективность вакцин во время клинических испытаний? Экспериментаторы не могут просто привить детей, а потом заразить их и посмотреть, сколько из них заболеют. Поэтому эффективность вакцин измеряется количеством антител, которые вырабатывает иммунная система в ответ на прививку (это называется иммуногенность). Но в случае с коклюшем (и не только) мы видим, что все ровно наоборот. Чем больше антител вырабатывает иммунная система, тем выше вероятность заразиться. Поэтому одна из рекомендаций авторов предыдущей статьи – это снизить количество антигена в вакцинах. CDC тоже подтверждает, что нет никакой связи между количеством антител и защитой от коклюша {15}.

Получается, что существует большая разница между настоящей эффективностью вакцины и ее эффективностью во время клинических испытаний (иммуногенностью). Чем эффективнее вакцина от коклюша выглядит во время клинических испытаний, тем менее она эффективна в реальности, поскольку тем сильнее она смещает иммунитет в сторону Th2.

Первородный антигенный грех

Когда иммунная система встречает патоген в первый раз, она формирует на него иммунный ответ. В следующий раз, встретив такой же или похожий патоген, она сформирует тот же самый иммунный ответ, даже если другой ответ был бы более эффективным. Этот феномен называется «первородный антигенный грех».

В случае с коклюшем вот что происходит. Когда коклюшная бактерия поселяется в дыхательных путях, один из токсинов, который она выделяет, это токсин аденилатциклаза (ACT). Этот токсин обманывает иммунную систему и не дает ей понять, что коклюш – это патоген. Лишь через 2 недели иммунная система понимает, что ее обманули, и начинает бороться с коклюшем. В следующий раз, когда иммунная система снова встретится с ACT, она уже не будет обманута и сразу его подавит, в результате чего человек не заразится снова. Но, поскольку в вакцине ACT отсутствует, иммунная система привитого человека не умеет на него реагировать, и привитый заражается коклюшем. А из-за эффекта первородного антигенного греха она уже никогда не научится на него эффективно реагировать.

Более того, чем больше доз вакцины человек получает, тем сильнее действует первородный антигенный грех. Это происходит потому, что иммунная система с каждой дозой производит все больше и больше специфических В-клеток. Эти клетки конкурируют с наивными В-клетками, которые могли бы адаптироваться и реагировать более эффективно на немного измененный патоген.

То есть, поскольку вакцинный и натуральный патогены отличаются друг от друга, иммунная реакция на настоящий коклюш у переболевшего непривитого человека будет намного эффективнее, чем иммунная реакция у привитого. Поэтому непривитый переболеет коклюшем один раз, а привитый будет уже всю оставшуюся жизнь реагировать на коклюшную бактерию неэффективно {16, 17}. В исследовании 2019 года ведущий исследователь коклюша Джеймс Черри пишет, что благодаря эффекту первородного антигенного греха дети, которые получили бесклеточную вакцину, останутся на всю жизнь более восприимчивыми к коклюшу и это уже невозможно изменить {18}.

Замена штаммов

Точно так же, как чрезмерное употребление антибиотиков приводит к мутации бактерий и к появлению устойчивых к антибиотикам видов, также и поголовная вакцинация приводит к быстрому появлению устойчивых к вакцине бактерий {19}. У привитых от коклюша появился новый штамм бактерии с более вирулентным коклюшным токсином. Этот штамм не существовал до начала вакцинации, и он приводит к большему количеству госпитализаций и смертей, чем обычный штамм {20}.

Место обычной коклюшной бактерии B. pertussis частично стала занимать также бактерия B. parapertussis (паракоклюш), от которой вакцина не защищает, и она уже ответственна за 16 % случаев болезни {21}. Согласно другому исследованию, паракоклюш ответствен за 36 % случаев болезни {22}. В исследовании на мышах прививка от коклюша повышала риск заболеть паракоклюшем в 40 раз по сравнению с непривитыми {23}.

Одним из компонентов бесклеточный вакцины является пертактин – это один из белков мембраны коклюшной бактерии. В странах, где используется бесклеточная вакцина, коклюшные бактерии с пертактином заменяются бактериями без пертактина. В Австралии штаммы без пертактина почти полностью вытеснили штаммы с пертактином всего за 4 года {24}. Генетический анализ штаммов коклюшной бактерии в Нидерландах выявил, что бактерия мутировала и адаптировалась к вакцине. Стали преобладать штаммы, в которых пертактин и коклюшный токсин отличаются от вакцинного штамма. Эти штаммы не существовали до начала вакцинации. То же самое наблюдалось в Финляндии, США и Италии {25}.

Другой тип бактерии, который заменяет обычную B. pertussis, это B. holmesii, который вызывает те же симптомы, что и коклюш, и от которого прививка неэффективна {26, 27}.

Безопасность

В исследовании 11 000 детей, которые получили цельноклеточную вакцину в Канаде, выяснилось, что те, кто получили первую дозу вакцины на 2 месяца позже обычного срока, болели астмой в 2 раза реже. У тех, кто получил все 3 дозы вакцины позже – риск развития астмы был в 2,5 раза ниже. Это происходит из-за того, что иммунная реакция смещается в сторону Th2.

Точная причина астмы неизвестна, но, согласно одной из господствующих теорий, астма вызывается повышенной гигиеной. Когда ребенок растет в стерильной среде и не соприкасается с бактериями, его иммунная система смещается в сторону Th2. Это приводит к выработке антител IgE.

Эти IgE и ответственны за астму, аллергии, дерматит и прочие аллергические болезни, которые чаще встречаются у привитых детей, поскольку прививки тоже сдвигают иммунитет в сторону Th2. Этот сдвиг происходит напрямую (благодаря вакцинным антигенам), а также не напрямую (благодаря защите от бактерий) {28}.

В исследовании, опубликованном в 2000 году, оказалось, что привитые болели астмой в 2 раза чаще непривитых. Авторы считают, что половина случаев астмы в США могла бы быть предотвращена, если бы детей не прививали вакциной АКДС {29}. Похожие результаты были получены и в других исследованиях {30, 31}. У девочек, которые получили первую дозу АаКДС хотя бы на месяц позже срока, аллергия разививалась в 4 раза реже, чем у привитых в срок. Экзема развивалась в 2 раза реже и у мальчиков, и у девочек, привитых хотя бы на месяц позже {32}.

В обзоре 2002 года сообщается, что в вакцину добавляется коклюшный токсин. Этот токсин увеличивает проницаемость гематоэнцефалического барьера, что позволяет ему, а также другим токсинам и вирусам проникнуть в мозг. В статье 1953 года заявляется, что практически у каждого привитого ребенка была системная интоксикация, а поражение ЦНС часто оставалось перманентным. Там же упоминается, что после того, как в 1979 году 4 ребенка в Теннесси умерли после прививки из одной серии, CDC заключило, что АКДС связана с синдромом внезапной младенческой смерти. После этого инцидента производители не посылают всю серию вакцины в одно место, а распределяют каждую серию по всей стране {3}.

Бесклеточная вакцина, конечно, намного менее опасна, чем цельноклеточная, но тем не менее, согласно VAERS, с 2002 года в США более 1300 человек умерли после этой прививки, более 1000 стали инвалидами и более 10 000 были госпитализированы. От коклюша за эти годы умерли менее 200 человек (включая привитых). То есть риск умереть от прививки как минимум в 6 раз выше, чем риск умереть от коклюша. Поскольку цифры VAERS следует умножать как минимум на 10, риск смерти от прививки в 60–600 выше, чем от болезни.

Лечение

В систематическом обзоре Кокрейн влияния антибиотиков на коклюш авторы заключили, что антибиотики уничтожают коклюшную бактерию, то есть делают человека незаразным, но они никак не влияют на течение болезни.

Превентивная профилактика контактов младенцев антибиотиками неэффективна {33}. Согласно некоторым исследованиям, использование антибиотиков при коклюше приводит лишь к более длительной болезни {34}.

В 1936 году в медицинской литературе начали появляться статьи об эффективном лечении коклюша витамином С. Первым был японский врач, который использовал витамин внутривенно, а в 1937 году независимо от него группа канадских врачей использовала витамин орально {35, 36}. В 1938-м витамин С успешно использовали в США {37}. Болезнь проходила за считаные дни. Также сообщалось, что младенцы на грудном вскармливании практически не болеют коклюшем, так как получают от матери достаточное количество витамина. В 1938-м также появилось контролируемое исследование, которое не обнаружило, что витамин С эффективнее контрольной субстанции {38}. Правда, в качестве контрольной субстанции почему-то использовали рыбий жир, белладонну и бромид. Несмотря на то что еще в статье 1871 года в Lancet сообщается об успешном лечении коклюша рыбьим жиром {39}. Уже тогда ученые знали толк в выборе плацебо.

В 1950 годы были опубликованы еще несколько статей о лечении коклюша витамином С. Ну а потом появилась вакцина, и о витамине С полностью забыли. Последние 70 лет никто его не исследует, что, однако, не мешает некоторым врачам и родителям успешно использовать его в лечении и профилактике коклюша.

Статистика

Самый частый аргумент эффективности прививки от коклюша, это что в 1950-е годы, когда от коклюша начали прививать, от него умирала 1000 человек в год в США, а сейчас умирают единицы. Однако, если взглянуть на графики смертности от коклюша с начала XX века, становится ясно, что вакцина не имеет никакого отношения к снижению смертности от коклюша, так как более чем 90 % снижение смертности произошло до начала вакцинации и даже до начала использования антибиотиков. Количество случаев коклюша также начало падать до начала вакцинации. Более того, до начала 1990-х охват вакцинации не превышал 70 %.


Выводы

Коклюш опасен только для младенцев. Но, поскольку прививка не работает для младенцев, взрослых и детей прививают от коклюша с одной целью – создать коллективный иммунитет, который обезопасит младенцев от этой болезни. Но вакцинация достигает обратной цели. Вместо того чтобы переболеть коклюшем один раз и забыть о нем на всю оставшуюся жизнь, привитые дети и взрослые могут болеть коклюшем много раз. Более того, поскольку болезнь у них протекает часто бессимптомно, они становятся «тихим резервуаром» инфекции, распространяя ее на свои семьи и на младенцев. Чем больше доз вакцины они получили, тем больше они подвержены инфекции. Тогда как самым эффективным было бы отдалить заболевшего коклюшем брата от младенца, этого брата сложно диагностировать из-за нетипичного хода болезни из-за изменившегося определения болезни и из-за нежелания врачей диагностировать коклюш у привитых.

Риск умереть после прививки значительно выше, чем риск умереть от коклюша.

В последние годы количество случаев коклюша постоянно увеличивается. Это происходит не потому, что появились антипрививочники, а, наоборот, потому что прививают все больше. Прививают беременных, родителей, бабушек и дедушек, дядь и теть и вводят в календарь прививок новые ревакцинации для детей. Чем больше доз вакцины делают, тем дальше иммунитет смещается в сторону Th2 и тем больше организм становится восприимчив к болезни.

Источники

1. Winter K et al. Clin Infect Dis. 2015;61(7):1099-106

2. Warfel JM et al. PNAS. 2014;111(2):787-92

3. Geier D et al. J Hist Med Allied Sci. 2002;57(3):249-84

4. McGirr A et al. Pediatrics. 2015;135(2):331-43

5. Sala-Farré MR et al. Enferm Infecc Microbiol Clin. 2015;33(1):27-31

6. Bertilone C et al. Commun Dis Intell Q Rep. 2014;38(3):E195-200

7. Skoff TH et al. Pediatrics. 2015;136(4):635-41

8. Jenkinson D. BMJ. 2012;345:e5463

9. Stewart GT. Am J Epidemiol. 1984;119(1):135-9

10. Cherry JD et al. Clin Infect Dis. 2004;39(11):1715-8

11. Srugo I et al. Emerg Infect Dis. 2000;6(5):526-9

12. WHO meeting on case definition of pertussis, Geneva, 10-11 January 1991

13. Althouse BM et al. BMC Med. 2015;13:146

14. Diavatopoulos DA et al. Cold Spring Harb Perspect Biol. 2017;9(12)

15. Murphy TV et al. MMWR. 2008;57(RR-4):1-51

16. Eberhardt CS et al. Cold Spring Harb Perspect Biol. 2017;9(12)

17. Cherry JD et al. Clin Infect Dis. 2004;38(4):502-7

18. Cherry J. J Pediatric Infect Dis Soc. 2019:piz005

19. Bart MJ et al. mBio. 2014;5(2):e01074

20. Mooi FR et al. Emerg Infect Dis. 2009;15(8):1206-13

21. Cherry JD. Pediatrics. 2012;129(5):968-70

22. Liese JG et al. Arch Dis Child. 2003;88(8):684-7

23. Long GH et al. Proc Biol Sci. 2010;277(1690):2017-25

24. Lam C et al. Emerg Infect Dis. 2014;20(4):626-33

25. Mooi FR et al. Emerg Infect Dis. 2001;7(3 Suppl):526-8

26. Pittet LF et al. Lancet Infect Dis. 2014;14(6):510-9

27. Zhang X et al. Emerg Infect Dis. 2012;18(11):1771-9

28. McDonald KL et al. J Allergy Clin Immunol. 2008;121(3):626-31

29. Hurwitz EL et al. J Manipulative Physiol Ther. 2000;23(2):81-90

30. Bernsen RM et al. Pediatr Allergy Immunol. 2008;19(1):46-52

31. Farooqi IS et al. Thorax. 1998;53(11):927-32

32. Kiraly N et al. Allergy. 2016;71(4):541-9

33. Altunaiji S et al. Cochrane Database Syst Rev. 2007(3):CD004404

34. Tozzi AE et al. Pediatrics. 2003;112(5):1069-75

35. Otani T. Klin Wochenschr. 1936;15(51):1884-5

36. Ormerod MJ et al. Can Med Assoc J. 1937;37(3):268-72

37. Vermillion E. J Kan Med Soc. 1937;39(11):469

38. Gairdner D. BMJ. 1938;2(4057):742-4

39. Prestwich J. Lancet. 1871;98(2519):812

Глава 10
Столбняк

Врач – такой же хороший консультант в вопросах прививок, как мясник – в вопросах вегетарианства.

Джорж Бернард Шоу

В отличие от папилломы или коклюша, столбняк – это действительно опасное заболевание. Многие родители, отказывающиеся от других прививок, все же считают нужным привить от столбняка. Но какова вероятность заболеть столбняком, опаснее ли столбняк, чем прививка, и защищает ли прививка от столбняка?

Столбняк вызывается бактерией Clostridium tetani. Споры этой бактерии находятся повсюду. В почве, в кишечнике человека и животных (особенно травоядных), в пыли, на теле и даже в слюне. В аэробной среде бактерия не размножается, но, попадая в анаэробную среду, оживает и начинает выделять очень сильный токсин (тетаноспазмин). Если вследствие травмы этот токсин попадает в нервную систему, он вызывает спазмы мышц и может привести к параличу. В развитых странах примерно в 11 % случаев болезнь заканчивается летальным исходом. Не все штаммы бактерии выделяют токсин {1}.

Вакцина от столбняка практически всегда совмещена с дифтерией и коклюшем, но обычно она комбинирована также с полиомиелитом, гемофильной палочкой и иногда с гепатитом В. Существует вакцина от столбняка вместе с дифтерией, но без коклюша. Не везде она доступна, и даже там, где она есть, ее обычно делают лишь тем, кто чувствителен к коклюшному компоненту. Все вакцины от столбняка содержат алюминий. Теоретически, вакцина от столбняка без алюминия существует, до 2008 года ее использовали во Франции, но сегодня ее не производят {2}.

Если взять столбнячный токсин и обработать его формалином, то получается токсоид (анатоксин), который уже не токсичен. Его и используют в качестве вакцины. В случае травмы вакцину использовать бесполезно, так как выработка антител – это процесс, который занимает от нескольких дней до нескольких недель {3}. В этом случае делают инъекции иммуноглобулина (то есть самих антител). Иммуноглобулин (TIG) выделяют из крови многократно привитых лошадей или людей. В России, Украине и странах третьего мира делают инъекции лошадиного иммуноглобулина, тогда как в развитых странах используют человеческий иммуноглобулин, поскольку лошадиный вызывает сывороточную болезнь.

В развитых странах 70 % заболевших столбняком и 80 % умерших – это люди в возрасте старше 50 лет. Смертность от столбняка у людей младше 30 лет практически нулевая, тогда как среди пожилых умирает половина заболевших {4}.

Естественный иммунитет

Существует полный медицинский консенсус насчет того, что естественный иммунитет от столбняка невозможен и только прививка способна предотвратить болезнь. Однако в израильском исследовании авторы провели анализ крови 200 случайно выбранных иммигрантов из Эфиопии в Израиль и обнаружили у 98 % из них антитела к столбняку. У 30 % из них уровень антител считается защитным (выше 0,01 МЕ/мл). Никто из них не был привит. Количество антител у них увеличивалось с возрастом. Авторы заключили, что естественный иммунитет вырабатывается от постоянного соприкосновения с бактерией {5}. В другом исследовании взяли анализ крови у 120 случайно выбранных женщин, живущих в израильских кибуцах. У всех был достаточный уровень антител от столбнячного токсина, хотя 12 % из них никогда не были привиты {6}.

Уровень антител от столбняка у 57 непривитых жителей Галапагосов тоже был выше защитного уровня. Двое из них переболели столбняком в прошлом. Авторы также проверили 9 животных, и у всех был достаточный уровень антител. Они заключили, что иммунитет вырабатывается посредством проглатывания спор бактерии, которые размножаются в кишечнике, а раны на коже действуют как ревакцинация. Похожие исследования были проведены также в Англии, Индии и Мали {7–10}. Все эти исследования противоречат принятой догме – что перенесенная болезнь не вырабатывает иммунитет.

В принципе, ответ на вопрос, каким образом вырабатывается естественный иммунитет, был дан еще в 20-е годы прошлого века. Бактерии столбняка обнаружились в кишечнике у 35 % мужчин в Пекине, притом что столбняк в Китае был очень редкой болезнью (не считая столбняк новорожденных). Исследователи обнаружили бактерии столбняка в стуле пациентов даже после того, как они провели в больнице 3 месяца на практически стерильной еде {11}. В последующем исследовании авторы доказали, что бактерии столбняка размножаются в человеческом кишечнике. Чтобы проверить выработку антител к столбняку посредством их употребления в пищу, один из авторов исследования проглотил большое количество бактерий (были же когда-то настоящие ученые!). Эксперимент, однако, пришлось прекратить, так как у него начался запор (неясно, было ли это следствием проглатывания бактерий) {12}.

В другом исследовании у морских свинок, которых кормили бактериями столбняка, через 6 месяцев появились антитела. Однако существует много штаммов бактерии столбняка, и антитела вырабатывались лишь к тому штамму, которым их кормили. Иммунитет от других штаммов не появлялся. Те, кого кормили несколькими штаммами, выработали иммунитет ко всем штаммам.

В одном из экспериментов авторы заразили морских свинок столбняком, и все, кроме двух, погибли. Впоследствии оказалось, что этих двух свинок случайно подселили к самцу и они были беременны. Как беременность спасла их от столбняка, осталось неясно. Они родили здоровое потомство. Вдобавок авторы сообщают: широко известно, что споры бактерии сами по себе не инфицируют и, чтобы произошло заражение, нужен еще какой-нибудь раздражающий фактор. Они использовали в качестве раздражителя разные материалы и среди прочего – стеклянную ампулу. Ампулу, наполненную спорами бактерий столбняка, вставляли под кожу морских свинок и разбивали. То, что споры бактерии сами по себе недостаточны для инфицирования, тоже объясняет тот факт, что, несмотря на распространенность бактерий столбняка, случаи заболевания исключительно редки. Авторы пишут, что нет никакой связи между количеством антител в крови и иммунитетом к столбняку. Они заключают, что антитела к токсину играют лишь небольшую роль в иммунитете от столбняка и есть кое-что другое, что защищает от инфекции. Они предполагают, что это белки под названием агглютинины. Эти агглютинины специфичны, для каждого штамма бактерии столбняка есть подходящий агглютинин {13}.

В исследовании 1926 года в крови у 80 % жителей Калифорнии нашлись агглютинины к нескольким штаммам бактерий столбняка, но у них не было антител. Авторы считают, что бактерии столбняка находились в кишечнике этих людей в прошлом, но не прижились там, поэтому антитела отсутствуют {14}. С 1920-х годов агглютинины столбняка больше никто не исследовал.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 4.4 Оценок: 11

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации