Текст книги "Сотворение Земли. Как живые организмы создали наш мир"
Автор книги: Андрей Журавлёв
Жанр: Биология, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 25 страниц) [доступный отрывок для чтения: 8 страниц]
Глава 5
Архей и археи
Сиренево-оранжевый туман не просто уберег Землю от переохлаждения, но, возможно, сделал планету даже более жаркой, чем ныне. Соотношение стабильных изотопов кислорода (18О/16О) и кремния (30Si/28Si) в архейском (3,5–2,5 млрд лет) осадочном кремнеземе, удержавшем первичный изотопный сигнал, указывает на температуру океанических вод в пределах 50–60 °C. Близкое соотношение этих изотопов выявлено и в естественных пробах архейской воды – капельках, заключенных в кристаллах галита (каменной соли), а также в керогенах (только для 18О/16О). Если повышенные значения изотопных подписей кислорода и кремния в кремнеземе еще можно объяснить осаждением этого минерала вблизи гидротерм или в теплых изолированных водоемах, то кероген формировался в нормально-морских условиях.
Да и первично осадочный кремнезем можно отличить от других его разностей по определенным минералогическим и геохимическим критериям. В архейском океане молекулы ортокремневой кислоты (Н4SiО4) полимеризовались в водной толще, образуя коллоидные наносферы, которые в условиях высокой солености слипались друг с другом и оседали на дно, где некоторое время продолжали расти. Поэтому слои кремнезема нацело сложены сферическими гранулами (≤0,2 мм). (Протерозойский кремнезем, образование которого связано с полосчатыми железными формациями, имеет иную структуру, а все фанерозойские кремневые отложения состоят из скелетов разных организмов.)
Редкость волновых знаков (ряби) на поверхности относительно глубоководных турбидитов – отложений морских мутьевых потоков (от англ. turbid – взвешенный, мутный) возрастом 2,7 млрд лет – предполагает низкую вязкость морской воды, также обусловленную повышенной температурой. Особенности архейских эвапоритов уже отмечались.
Если же обратиться к молекулярным корням древа жизни, то самыми древними организмами оказываются термофильные археи – прокариоты, обитающие в горячих источниках, обычно с повышенной кислотностью. (Кстати, «архей» и «археи» – слова однокоренные, подчеркивающие древность понятий, ими определяемых.) Близкие к ним метанобразующие археи также предпочитают жить при 40–85 °C, причем с повышением температуры объемы произведенного ими метана растут. Более того, реконструированные предковые белки группы факторов элонгации (удлинения), отвечающие за последовательное присоединение аминокислот к синтезируемому на органелле-рибосоме белку (иначе говоря, за удлинение белковой молекулы), являются устойчивыми к высоким температурам (45–80 °C и даже выше 80 °C). Поскольку и бактерии, и археи не обходятся без таких компонентов, то, скорее всего, унаследовали их от общего раннеархейского предка, и этот предок имел термостойкий белок-удлинитель.
Так что жизнь не только могла зародиться в «теплом прудике», как предполагал Чарлз Дарвин в письме к своему другу, английскому ботанику Джозефу Гукеру, но и долгое время существовать в тепличной обстановке. В теплой среде и темпы эволюции, вероятно, были выше. Поэтому уже в архейском эоне существовали всевозможные группы бактерий и архей, освоивших разные обстановки и образовавшие сложные сообщества. Обычно мы их не видим, а если видим, то отличить одни округлые микроскопические тельца от других (большинство прокариот имеет именно такую, коккоидную, форму) даже на современном материале без специальных анализов невозможно, но их присутствие чувствуется. В первую очередь благодаря изотопной подписи, оставленной фототрофами, буквально – «питающимися светом» (от греч. φως – свет и τροφή – пища).
Фототрофы фракционируют стабильные изотопы углерода – отбирают изотоп с меньшей массой и более высокой колебательной энергией (реакция с ним требует меньших энергетических затрат). Поэтому в ходе фотосинтеза органическое вещество обогащается легким изотопом (12С), а среда – обедняется, что и фиксируется в конечном счете в осадочных горных породах в виде изотопной подписи.
Необычная изотопная углеродная подпись вроде бы уже стоит на отложениях возрастом 3,8 млрд лет на западе Гренландии. Выражается она в заметной изотопной разнице между графитом, заключенным в кристаллах апатита (от –13‰ до –49‰), и углеродом в составе самого минерала (–2,3‰). При дальнейшем изучении этого апатита выяснилось, что графит образует не внутрикристаллические включения, а, наоборот, оторочку вокруг первичных кристаллов и, значит, сформировался позже, чем апатит. А вот насколько позже, сказать сложно. В целом, чтобы установить биогенную природу подобных и даже морфологически более сложных включений, требуется доказать: 1) осадочную природу самих отложений; 2) первичность включений, которые должны быть достаточно обильны; 3) их тесную генетическую связь с первичными минералами в породе; 4) сходство степени изменения включений с таковой первичных минералов; 5) невозможность объяснить изотопную подпись углерода абиогенными процессами; 6) приложить усилия к поиску следов других биогенных элементов – О, N, S, P и 7) молекулярных органических остатков – биомаркеров. Казалось бы, все это невозможно, но ведь получается!
Вряд ли фракционированием изотопов на заре жизни занимались оксигенные фототрофы, такие как цианобактерии: в архейских водах, учитывая высокое содержание растворенного железа и кремния, не могло находиться достаточно фосфора для поддержания жизни этих микробов. А вот аноксигенные фотоферротрофы в таких условиях процветать могли. Таким бактериям тоже нужна энергия света для синтеза органических соединений, но в качестве донора электрона, необходимого для протекания окислительно-восстановительных реакций, они используют закисное железо (Fe2+), а не воду, поэтому побочными продуктами их деятельности является Fe3+ (и различные минералы железа), а не кислород. Другие хемотрофы примерно тогда же получили доступ и к энергии недр, особенно на срединно-океанических хребтах, где позднее сложились необычные глубоководные сообщества черных курильщиков. Признаки их жизнедеятельности заметны по изотопной подписи другого элемента – серы (34S/32S, или δ34S).
Сохранилось ли что-нибудь от архейских организмов, кроме почти невидимых дырок в древних базальтах и изотопных подписей? Конечно, и немало. О метанобразующих археях и метанокисляющих бактериях из Пилбары уже говорилось. Там же, в Пилбаре (формация Стрелли-Пул) и в поясе Барбертон (соответственно, 3,43 и 3,2 млрд лет), найдены коккоидные тельца с органической оболочкой, состоящей из разных углеводородных молекул и азота, и связанные с ними кристаллы пирита, сохранившие изотопную подпись серы, характерную для серных бактерий.
На первый взгляд, учитывая обилие сульфидов – минералов серы, осаждение которых редко обходится без участия серных бактерий, – в этом нет ничего удивительного, но особая изотопная подпись видна не всегда, а остатки тех, кто «расписался», практически не сохраняются. Предполагается, что серные бактерии, подобные пурпурным и зеленым, были главными архейскими фототрофами и продуцентами (от лат. pro-duco – производить, создавать) органического вещества. Используя сероводород и сульфиды, они освобождали необходимые для фотосинтеза электроны и окисляли исходные молекулы до серы (S0) и в незначительной степени до сульфата (SO42–). Последние взаимодействовали с катионами железа и никеля, недостатка которых в архейском эоне не было, с образованием соответствующих сульфидов (например, пирита). Причем объемы серных соединений уравновешивали объемы органического вещества.
Особенно интересно, что часть бактериального сообщества Стрелли-Пул населяла приливно-отливную зону несмотря на смертельный уровень ультрафиолета: микробы закрепились когда-то под кварцевыми зернами, которые лежали на литорали, среди черного пиритового песка. Они выживали под прозрачным кварцем, подобно тому как в пустыне Намиб сейчас выживают почвенные колониальные цианобактерии носток (Nostoс flagelliforme). Кварц – это и экран, предохраняющий от коротковолнового излучения, и прозрачное окно, пропускающее достаточно света для фотосинтеза, и аккумулятор влаги: вода конденсируется на нижней поверхности камешка из-за суточного перепада температур. Более того, возвращаясь к архейским бактериям, в приливно-отливной зоне благодаря естественной, пусть и слабой аэрации воды им был доступен кислород, полностью отсутствовавший даже на небольшой глубине. (Пока не появился озоновый щит, кислород в небольших количествах образовывался за счет фотолиза воды.) Вероятно, в такой обстановке могли возникнуть и более сложные организмы. Во всяком случае, в той же формации Стрелли-Пул, в ее морских мелководных отложениях выявлены цепочковидные колонии из чечевицеподобных клеток (20–100 мкм в диаметре) с оторочкой и мелкими сферическими тельцами внутри. Эти «чечевичины» не похожи на каких-либо современных прокариот, но не имеют сложно устроенной оболочки, которая выдавала бы в них эукариот (организмов с клеточными органеллами, включая ядро – от греч. εύ – совершенно и κάρΰον – орех, ядро).
Хотя самые древние микроскопические ископаемые остатки на сегодня выявлены в формации Стрелли-Пул, следы архейской и протерозойской бактериальной жизнедеятельности видны во всем. Даже перекатывавшиеся по морскому дну песчинки обрастали бактериальными пленками, продолжавшими осаждение карбоната, и превращались в причудливые слоистые шарики – ооиды, иногда достигавшие в диаметре нескольких сантиметров (рис. 5.1). В целом же подавляющая масса архейских и протерозойских карбонатов, значительно нарастивших площадь континентов, обязана своим происхождением бактериальным сообществам. Без них это было просто физически (и химически) невозможно: при повышенном уровне углекислого газа возрастает и кислотность среды, что усиливает растворимость карбонатов, особенно кальцита и арагонита. Воспрепятствовать растворению карбонатных минералов способны микробы, преобразуя среду из кислой в щелочную хотя бы в придонном слое.
Поскольку в архейском и протерозойском мире еще не было животных, а до рубежа 850–800 млн лет – и простейших, способных питаться биоматами и пленками, они покрывали все свободное пространство, где содержалась хоть какая-то влага (рис. 5.2).
Благодаря таким покрытиям, склеивавшим частицы внеклеточными полимерами, в докембрийских отложениях, начиная с возраста 3,48 млрд лет (древнейшие – в Пилбаре), нередко сохраняются структуры поверхности осадка, даже песчаников, практически исчезнувшие из фанерозойской осадочной летописи. Подобные структуры получили свое общее название – текстуры, образованные под влиянием микробных матов: например, «слоновья шкура» – следы усыхания биоматов, киннейя (Kinneyia) – сморщенные биопленки (рис. 5.3) или манчуриофикус (Manchuriophycus) – слепки биопленок, свернувшихся в трубочку вдоль пляжных песчаных прибойных валиков. (И те и другие поначалу приняли за остатки многоклеточных организмов и присвоили им зоологические имена.)
Иногда на поверхности песчаников сохраняется органическое вещество, обволакивающее песчинки, с вполне различимыми бактериальными трихомами и углеродной изотопной подписью, выдающей цианобактерий (–24‰). Если выйти на влажный песчаный берег сразу после утреннего отлива, то творцов подобных текстур можно застать и в наши дни. Только очень недолго: не проходит и получаса, как от них не остается и следа. Точнее, следы как раз остаются, но от моллюсков, съевших биопленки.
Глава 6
Золотой век
Как уже говорилось, очень многие минералы и горные породы, а в особенности залежи полезных ископаемых, – суть следы жизнедеятельности тех или иных организмов. Практически ни одна рудная залежь, которую экономически выгодно разрабатывать (не просто извлечь из горных пород определенные элементы или соединения, но и продать так, чтобы окупились затраты на добычу и коррумпированные власти), не образовалась без ведома живых существ. Именно они естественным путем обогащают руды – создают экономические (с нашей точки зрения) запасы полезных ископаемых даже такого инертного самородного минерала, как золото. Этот металл практически неуничтожим: за то время, что его так полюбили дамы и монополии – со времен Древнего Египта, когда была составлена первая геологическая карта с изображением золотоносных гранитов (Туринский папирус), иначе говоря, за 3000 лет, – человечество добыло порядка 12–13 × 107 кг благородного металла. И практически вся эта масса существует до сих пор, пусть золотые маски фараонов, изящные скифские фигурки, сосуды инков и короны всяческих царьков, многократно перековываясь и переливаясь, превратились в слитки резервных фондов или сережки, выставленные за пуленепробиваемым стеклом модного ювелирного бутика. (Конечно, главная роль золота в современном мире – защита электропроводящих элементов от коррозии.)
Различаются коренные и россыпные месторождения. Вторые образуются в результате перемыва первых, обычно реками, поэтому золотой песок и самородки скапливаются в руслах или вблизи устьев рек, современных и ископаемых разного геологического возраста. Основные месторождения золота образовались в архейском эоне, 3,8–2,5 млрд лет назад. Поркьюпайн, Керкленд-Лейк, Йеллоунайф и Тимминс – на Канадском щите, Калгурли, Балларат, Бендиго и другие – на Австралийском, Колар-Голдфилс – на Индостанском, Морру-Велью и Гонку-Соку – на кратоне Сан-Франсиску (Бразилия), рудные поля Западной и Южной Африки, где особо выделяется Витватерсранд, содержат (и содержали – ряд из них уже исчерпан) три четверти всех известных золотых руд. Только на долю Витватерсранда в ЮАР, сформировавшегося 2,6 млрд лет назад, приходится 81 × 106 кг разведанного золота (40 % мировых запасов).
Предполагалось, что золотые руды в этом месторождении, приуроченные по большей части к галечным конгломератам, образовались в результате механического переноса и перемыва золотых частиц реками. Но именно изучение золота Витватерсранда выявило совсем иную картину: золотые залежи создают живые существа. Конечно, не огромные и свирепые рыжие муравьи, которые, согласно Геродоту, извлекали самородки для персидского царя Дария. (Возможно, до Геродота дошли слухи о сурках, которые при прокладке своих нор могут «выдавать на горá» самые разные гальки, а если попадутся, то и золотые.) «Добывали» драгоценный металл бактерии. «Живое» золото открыл южноафриканский геолог Дитер Хальбауэр, описавший в 1978 г. обрамленные золотыми частицами мельчайшие углеродные столбики, которые, по его мнению, более всего походили на остатки лишайников и грибов. До недавнего времени его открытие воспринимали как «несостоявшуюся сенсацию», пока микроскопическое изучение рудных образцов, изотопного состава серы и углерода, а также моделирование рудообразования в колониях современных микробов (например, бета-протеобактерий) и геохимические расчеты, предпринятые несколькими коллективами ученых разных стран, не подтвердили отчасти правоту Хальбауэра. Более того, опыты, поставленные в тех же условиях, но без участия бактериальных биофильмов, к осаждению золотых частиц не привели. Да, золотая руда – биохемогенная, но сконцентрирована не грибами или лишайниками, а бактериальными сообществами.
В бескислородных архейских условиях, когда вулканические газы в основном представляли собой сероводород, летучую серную кислоту и сернистый газ с парами воды (плавились-то в зонах субдукции в основном мафические породы), кислотные реки размывали золотосодержащие породы и выносили растворы на мелководье. Из-за этого жившим там бактериям приходилось буквально «купаться» в золоте. Вместе с растворами, несущими жизненно важные элементы – железо и серу, туда же могли поступать опасные соединения, подобные тетрахлориду и цианиду золота и дитиосульфатоаурату [AuCl4–, AuCN, Au(S2O3)2–]. Для обеззараживания этих смертельно ядовитых веществ микробы Витватерсранда восстанавливали их до органико-металлических комплексов или до золота (подобно современным бета-протеобактериям), и из раствора оседали драгоценные наночастицы. (При непрерывном поступлении раствора концентрация частиц возрастает в тысячи раз в течение недели.) Эти частицы накапливались на бактериальных матах (словно на золотом руне в Древней Колхиде). Поскольку жить в золоте постоянно невозможно (такой эксперимент провел на себе царь Мидас), колонии развивались над уже осажденными золотыми агрегатами в виде полых трубочек, буквально слепков трихомов (многоклеточных бактериальных цепочек), и по мере поступления новых растворов создавали рудные запасы (рис. 6.1).
Итак, Витватерсранд и, вероятно, другие архейские месторождения – результат взаимодействия бактериальных сообществ и бескислородной архейской атмосферы. Больше в истории Земли подобные месторождения не появлялись и уже никогда не появятся уже хотя бы потому, что с развитием континентов и со смещением части очагов вулканической деятельности на сушу состав вулканических газов изменился. (Хотя в небольших масштабах бактериальные биофильмы продолжают осаждать золотые наночастицы в горячих вулканических источниках Новой Зеландии.)
Глава 7
Ковровые камни
В первую очередь следы жизнедеятельности древних бактерий, даже целых сообществ, сохранились в виде строматолитов (от греч. στρωμα – подстилка, ковер и λίθος – камень) – тонкослоистых, обычно известковых, куполовидных построек (рис. 7.1). Миллиметровая, реже сантиметровая, слоистость строматолитов проявляется в изменении соотношения микрокристаллических сростков разной размерности, концентрации глинистых частиц или органического вещества и содержания некоторых элементов, но всегда любой из этих показателей многократно, закономерно и ритмично меняется.
Нередко в качестве примера строматолитов приводят современные известковые столбики, растущие в гиперсоленой мелководной бухте Хамелин залива Шарк на западе Австралии. В развитии последних, правда, существенную роль играют одноклеточные эукариоты – диатомовые и зеленые водоросли. Поэтому и структура у них другая – не тонкослоистая, состоящая из миллиметровых разностей карбоната кальция, а рыхлая, грубая. К докембрийским строматолитам ближе те, что образуются сугубо бактериальными сообществами в лагунах Те-Куронг в Южной Австралии или Вермелья в Бразилии. Впрочем, и они не являются прямым аналогом, поскольку выживают в весьма особенных условиях: при резких изменениях солевого и температурного режима. Да и форма у них довольно простенькая: низкие, почти плоские купола. Не сравнить с тем огромным разнообразием строматолитов, что существовали в протерозойском эоне – кустистые и столбчатые, правильные конические (до 3 м высотой) и подушечные, словно гигантские площади (несколько квадратных километров), вымощенные булыжником. Внешне похожие на них бактериальные постройки сейчас существуют на глубинах в десятки метров в щелочных озерах на востоке Турции (Ван), юго-западе Канады (Павилион) и в Индонезии (кратер вулкана Сатонда). Но отчетливых слойков эти микробные сообщества не образуют, поэтому называются микробиалитами. Вряд ли стоит распространять и эту модель, к тому же реализованную при очень низком содержании кальция, на сложные древние строматолиты и, как уже говорилось, предполагать существование в архейском и протерозойском эонах щелочного океана, тем более болотно-озерных ландшафтов, хотя такие допущения делаются. Примеры палеопротерозойской группы Петей (1,88 млрд лет) на северо-западе Канадского щита или мезопротерозойской буровой свиты (1 млрд лет) на северо-западе Сибирской платформы (река Нижняя Тунгуска) показывают, что бактериальные строматолиты были распространены в очень разных морских обстановках: «булыжные мостовые» из коробчатых построек формировались на бурном, но хорошо освещенном мелководье; столбчатые и кустистые образовывали рифы несколько глубже; а огромные, многометровой высоты конусы развивались даже на внешней сублиторали, на пределе фотической (освещенной) зоны и ниже базиса штормовой эрозии. Глубоководные формы, стремясь к свету, нарастали на самом верхнем кончике, образуя столбики и конусы.
Строматолиты являются древнейшими видимыми невооруженным глазом свидетельствами жизни: небольшие конусы, в несколько сантиметров высотой, обнаружены в архейских породах Каапвааля и Пилбары (3,5–3,4 млрд лет). Конечно, похожие структуры могли отлагаться и неорганическим путем: ламиниты – на литорали, радиальные ботриоиды морского цемента – на сублиторали. И опыты показывают, что нечто очень похожее на строматолит получается без участия живых существ. Но есть у «живых» строматолитов ряд признаков, которые вряд ли появились за счет лишь физических и химических процессов. Биогенный строматолит чутко реагирует на смену обстановки: меняет форму в зависимости от того, откладываются его слойки в затишье или в шторм; ветвится и даже прорастает сквозь тонкий слой осадка, накрывший всю постройку после урагана. Бактерии проберутся среди песчинок и начнут свою работу заново. Неживая природа на такое не способна. Кроме того, в биогенных строматолитах есть слойки с микросгустковой текстурой – вероятно, микрит, осевший на бактериальную слизь и приклеившийся к ней. В ламинитах и морских цементах подобных неправильностей не обнаружено. А главное, в строматолитовых керогенах сохранились заметные следы органического фракционирования изотопов углерода (до –30‰), азот и сера.
Выделять слизь, точнее внеклеточное полимерное вещество (в основном полисахариды), микробам приходилось, чтобы хоть немного обезопасить себя от ультрафиолетового излучения. Молекулы такого вещества [карбоксильная (–COOН), гидроксильная (–OH), фосфатная (–РО) и аминовая (–NH2) группы], а также клеточная оболочка, теряя в нейтральной или слегка щелочной морской среде протоны, становились отрицательно заряженными. Поэтому поверхность бактериальной колонии легко улавливала различные катионы, в том числе Са2+, если среда, конечно, была им достаточно насыщена. Кроме того, цианобактериальные колонии в процессе кислородного фотосинтеза выделяли гидроксильные ионы, которые реагировали с растворенным в воде бикарбонатом (HCO3–), образуя анионы карбоната (CO32 –):
HCO3– + OH– ↔ CO32- + H2O.
Анионы CO32– в свою очередь притягивали катионы Са2+, и из раствора выпадали мельчайшие (2–8 мкм в диаметре) микросгустки аморфного кальцита или арагонита.
В основном строматолиты строили нитчатые цианобактерии (менее 0,5 мкм в диаметре и несколько десятков мкм длиной), образующие своего рода «микролуга» – однослойные биопленки и многослойные биоматы. Биоматы состояли из чередующихся вертикально стоящих и горизонтально уложенных бактериальных чехлов, а также слойков чистого карбоната. Слойки с хорошо различимыми бактериальными чехлами формировались в весенне-летнее время при хорошей освещенности и при поступлении больших объемов биогенных элементов; благодаря обильным внеклеточным органическим полимерам они улавливали тонкие минеральные частицы или связывали катионы металлов. Карбонатные отлагались в осенне-зимнее время, когда цианобактериальные макромолекулы деградировали, использовались в пищу другими микробами, а выделявшиеся при распаде органических веществ анионы (особенно карбонат и бикарбонат) реагировали с ионами металлов. Именно тогда из раствора выпадали микросгустки аморфных карбонатных минералов, которые позже кристаллизовались и срастались в минеральные слойки.
При поступлении в окружающую среду ионов железа могли получиться «железные» (сидеритовые) строматолиты, марганца – родохрозитовые. (Все это руды названных металлов.) Сама слизь улавливала различные по составу частицы. При бескислородном фотосинтезе, который осуществляют серные пурпурные и зеленые бактерии, в осадок могли выпадать сульфаты: гипс (CaSO4 × 2H2O), барит (ВaSO4) или целестин (SrSO4). (Кстати, гипс – важное строительное вяжущее вещество, а два других минерала – руды бария и стронция.)
Если строматолиты пропитались растворенным кремнеземом, поступавшим из близлежащего термального источника (как в современной Исландии), то в них нередко, словно в стеклянных препаратах, сохранялись и сами бактерии, создавшие эти странные конструкции. Не исключено, что кремневые строматолитовые корки могли формироваться бактериями «умышленно», особенно в архейских условиях: кремнезем прекрасно экранирует ультрафиолетовые лучи ближнего спектра (150-микронный слой этого минерала обеспечивает полную защиту; без него 70 % клеток гибнет в течение 24 часов).
Преимущественно коническая и столбчатая форма строматолитов предопределялась несколькими факторами. В первую очередь фототаксисом – стремлением к свету бактериальных сообществ, но не только. Поскольку цианобактериальная часть сообщества выделяла кислород, пузырьки газа скапливались на кончике строматолита, куда устремлялись оксифильные бактерии, а за ними другие – потребители органики. (Такие ископаемые пузырьки начинают встречаться в строматолитах возрастом 2,7 млрд лет – на исходе архейского эона.) А правильность сложных построек (выдержанное расстояние между отдельными конусами) объясняется тем, что бактериальное сообщество дробилось на отдельные группы, борющиеся друг с другом за ресурсы.
Строматолитовая форма существования широко распространилась (рис. 4.1л), поскольку жить под защитой минеральных слойков оказалось очень выгодно: биопленки и биоматы быстро высыхали и повреждались ультрафиолетовым излучением, а со временем стали выедаться одноклеточными эукариотами. Под минеральными слойками сохранялась влага, для ультрафиолета они были непроницаемы, а для того, чтобы их разрушить, нужны были железные зубы, как у современных моллюсков – хитонов. Кроме того, в инертные минералы можно было упрятать ионы тяжелых металлов и мышьяка, растворенные в бескислородном океане в повышенных концентрациях и потому представлявшие опасность для жизни.
В архейском океане в возведении карбонатных построек могли участвовать протео– и ацидобактерии (известные в современных микробиалитах), но, поскольку они не имели таких прочных оболочек, как у цианобактерий, шансов сохраниться у них не оставалось. Эти члены сообщества прокариот могли обеспечить и другие пути образования карбонатов, например через последовательность реакций, начинавшуюся с разложения диамида угольной кислоты [(NH2)2CO]:
(NH2)2CO + 3H2O → 2NH4– + HCO3– + OH–;
2HCO3–+ Ca2+ → CaCO3 + H2O + CO2.
«Пузырьки кислорода», впервые застрявшие в строматолитах около 2,7 млрд лет назад, вероятно, и являются древнейшими свидетельствами существования цианобактерий – основной группы фототрофов (как в виде отдельных организмов, так и в форме пластид многих водорослей и высших растений). К этому же рубежу приурочены заметные изменения в изотопной подписи углерода (рис. 4.1е), повышенное содержание органического углерода в морских отложениях (такие объемы вряд ли могли образоваться за счет одного бескислородного фотосинтеза) и находки микрофоссилий, похожих на цианобактерии.
Морфология протерозойских бактериальных чехлов, скажем из сухотунгусской свиты Сибирской платформы, указывает на их принадлежность цианобактериям, внешне похожим на современные калотрикс (Calothrix) и формидиум (Phormidium): именно эти мелководные фототрофы нуждаются в толстых оболочках, предохраняющих от ультрафиолетового излучения. На присутствие цианобактерий указывают и состав органического вещества, иногда сохраняющегося в чехлах, и соотношение стабильных изотопов углерода. Способны были поучаствовать в строматолитостроении и коккоидные бактерии, образующие обильные колонии пленочной и грибовидной формы (напоминающие Entophysalis). В некоторых строматолитах насчитывается до десятка видов разных цианобактерий.
Цианобактерии жили не только под защитой строматолитовых корок: они освоились даже на периодически пересыхающем мелководье и играли там весьма заметную роль. Заметную благодаря золотистому пигменту (лат. pygmentum – краска) сцитонемину, предохранявшему клетки как цианобактерий, так и водорослей от ультрафиолетового излучения. Конечно, в клетках должны были находиться и пигменты, связанные с фотосинтезом, подобные хлорофиллам, поскольку изначально и они служили для рассеивания излучения. (Механизм рассеивания затем и использовался в фотосинтезе.) От гибели бактерии также защищались с помощью акинет – толстостенных удлиненных спор с обильными запасами питательных веществ: акинеты могли выдержать и временную засуху, и чрезмерное осолонение, и сильное опреснение.
Прослеживание молекулярной истории этих прокариот также показывает, что оксифототрофная ветвь отделилась от нефотосинтезирующей и анаэробной линии цианобактерий 2,6–2,5 млрд лет назад. Последние могли существовать и раньше и даже отладить фотосистему II – один из важнейших компонентов всей системы фотосинтеза, необходимый для расщепления молекул воды. В бескислородном архейском океане эта фотосистема была задействована для забора электрона у Н2S, чтобы окислить S2– до S0. С этим источником электронов, так же как с Fe2+, разные прокариоты не могли расстаться еще долго.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?