Электронная библиотека » Аркадий Эйзлер » » онлайн чтение - страница 7


  • Текст добавлен: 22 сентября 2015, 13:00


Автор книги: Аркадий Эйзлер


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 25 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

7. Наш мозг

Что спрятано в нашей черепной коробке?

Для того, чтобы понять проблемы, стоящие перед учеными и практикующими врачами, необходимо, прежде всего, определить условия нормальной работы мозга, знать его строение и целевое назначение, как органа, определяющего наше осознанное существование. БП нарушает слаженную работу мозга, ущемляя двигательный аппарат, и как следствие, отнимает у нас привычки и удобства, приобретенные с самого начала нашего жизненного пути и ставшие необходимым инструментом связи с внешним миром.

Под воздействием окружающей среды и её раздражителей в мозге возникает целый ряд взаимосвязанных процессов, например, прием, накопление и переработка информации, возбуждение электрических сигнальных систем, выделение химических сигналов, биохимические превращения новых протеинов, их агрегация и т. д. Каждый из этих процессов ведет к реализации определенных реакций нашего организма, связанных с постоянным самоутверждением человеческой индивидуальности, являясь откликом на постоянно изменяющиеся условия ее пребывания в окружающей среде.

Вместе со спинным мозгом головной мозг создает центральную нервную систему, которая в совокупности с органами чувств интегрирует человека в привычный, заученный с детства осознанный мир, позволяя соответствующим образом ориентироваться во всем его многообразии. Мозг регулирует различные сознательные и многие бессознательные процессы и функции нашего организма и состоит из следующих областей (рис. 3):

– Большой мозг

– Ствол мозга и базальные ганглии

– Мозжечок


Рис. 3


Каждая из этих областей мозга отличается от других строением и своими функциями. Внутри каждой области находятся миллиарды белых нервных волокон, которые связывают все области в одно целое. В свою очередь, серые клетки образуют, так называемую, кору головного мозга, которая обволакивает белое вещество нервных волокон.

Механизмы движения

Части коры большого мозга представляют собой центр управления, ответственный за планирование и реализацию сознательных произвольных движений. Если, например, вы хотите выучить пьесу на пианино, играя ее в первый раз, то в определенных нервных клетках большого мозга вначале должен возникнуть сигнальный импульс движения. Этот импульс в виде электрического сигнала проходит через ствол мозга и далее – мозжечок, достигая в итоге через спинной мозг и нервы руки мускулы пальцев, которые должны нажать на соответствующую клавишу. Для того, чтобы такое движение было сбалансированным, в этой общей игре задействованы мозжечок и базальные ганглии. Базальные ганглии отвечают за согласованность, координацию и постоянный контроль за одиночными движениями: когда они начинаются, сколько продолжаются и когда кончаются, возбуждая, тем самым большой мозг для производства последующих импульсов.

Если музыкальная пьеса играется уже наизусть, то управление необходимыми стадиями движения становится задачей базальных ганглий и мозжечка. Большая кора мозга при этом снимает с себя эти функции и освобождается для разучивания новых музыкальных упражнений. Таким образом, базальные ганглии играют особенно большое значение при реализации автоматических, уже усвоенных и повторяющихся движений.

Электрическая схема управления мозгом

Можно каждый раз удивляться тем астрономическим цифрам, за которыми скрываются миллиарды нервных клеток, спрессованных природой в наш думающий орган. Однако все эти огромные количества мельчайших частичек связаны между собой сложнейшей электрической схемой, мало того, они сами являются этой схемой, по которой передвигаются потоки электросигналов низкого напряжения.

Попытки обнаружить электропроводимость в нервах предпринимались уже давно. Однако поначалу сама мысль об этом резко отвергалась на том основании, что нервы не имеют электроизоляции, и если бы в организме существовал источник электричества, то он наверняка распространялся бы равномерно по всем направлениям, а не тек бесконечно по одним и тем же нервам. Теория электрических явлений в нервной системе получила новый толчок к дальнейшему развитию благодаря итальянцу Л. Гальвани, который в своих легендарных опытах с препарированными лягушками пытался получить свидетельство того, что «жизненный дух» и электричество идентичны. И лишь спустя столетие, итальянский физик К. Матеуччи посредством чувствительных замеров определил процесс прохождения электричества через нерв. В 1843 г. немецкий физиолог Э. Дюбуа-Реймон описал прохождение электричества при раздражении нерва. Когда он в 1849 г. установил, что электрический разряд проходит по нерву и при химическом раздражении, стало ясно, что нерв – это не просто пассивный электрический проводник, но и сам является источником возникновения электрического тока.

Впервые наличие импульса электрического тока в нервной клетке (электродвижущий потенциал) удалось установить в 1939 г. двум английским биофизикам – А. Ходгину и А. Хаксли. Этот активный потенциал показал себя характерной, универсальной, свойственной всему живому формой переноса сигналов нервными клетками. Однако вполне закономерный вопрос – что это, собственно, за неведомая субстанция, по которой проходит сигнал, и какую она имеет структуру – оставался без ответа, ибо инструментарий тех лет был достаточно примитивен, представляя собой световой микроскоп, впоследствии значительно усовершенствованный и ставший незаменимым инструментом нейробиологических исследований.

Как работают нервные клетки?

Примерно такой же путь прошла методика подготовки пробы для исследований под микроскопом. Первые успешные шаги к фиксированию и окрашиванию нервных тканей были сделаны во второй половине XIX века. Немецкий анатом О. Дейтерс воздействовал на кусочки нервной ткани хромовой кислотой и дихроматом калия. Благодаря этому он обнаружил, что из нервных клеток можно выделить «два вида волокнистых отростков»: отростки протоплазмы, называемые сегодня дендритами, и цилиндрические отростки, называемые аксонами, о которых мы уже говорили. Эти клетки его земляк и коллега В. Гарц предложил назвать нейронами.

Во времена Дейтерса было еще невозможно увидеть маленькие отростки нейронов, и только благодаря немецкому гистологу Й. Герлаху, испробовавшему в качестве красителей кармин, индиго и хлорид золота, они стали видимыми. Однако на микроскопических снимках окончания дендритов и аксонов терялись в бесцветном окружении тканевых препаратов, и определить, как эти отростки и их окончания связаны между собой, было невозможно. Этому вопросу тогда не придавалось большого значения, так как предполагалось, что эти клетки представляют собой комплексную сетку, а передача сигналов осуществляется через нервную ткань посредством «жизненного духа» или электрического тока.

В 1944 г. появляются работы Нобелевского лауреата Г. Гассера – пионера в области электропередачи сигнала между нервными клетками. Его ученик, Г. Грундфест, директор нейрофизического института Колумбийского университета, вместе с биохимиком Д. Нахманзоном изучили биохимические изменения, происходящие при прохождении сигнала через нервную клетку, которая начала рассматриваться не только как проводник информационных потоков, но и как биологическая конструкция, ставшая ключом к пониманию функций мозга. Благодаря изучению нервной клетки появилось первое представление о биологических причинах возникновения, например, произвольного движения, внимания, памяти, процесса обучения.

Итак, в начале XX столетия были выдвинуты три теории биологии нервной клетки, являющихся главными в понимании функций мозга и до сегодняшнего дня:

Первая – теория о нейронах, определяющая нервную клетку (нейрон) как основной строительный элемент сигнальной системы мозга.

Вторая – теория об ионах, описывающая передачу информации внутри нервной клетки, механизм возникновения электрического сигнала внутри нее и последующее его распространение на значительные расстояния.

Третья – химическая теория, описывающая передачу сигнала между окончаниями нервных клеток – синапсами посредством химического трансмиттера, воспроизводимого ими. Соседняя клетка узнает этот сигнал и реагирует специфической молекулой – рецептором, находящимся на внешней поверхности клеточной мембраны.

В ОТЛИЧИЕ ОТ МНОГИХ ДРУГИХ КЛЕТОК, ИМЕЮЩИХ ПРОСТЫЕ ОЧЕРТАНИЯ, ФОРМА НЕРВНЫХ КЛЕТОК ИМЕЕТ СЛОЖНУЮ КОНФИГУРАЦИЮ С ЧРЕЗВЫЧАЙНО НЕЖНЫМИ ПРОДОЛЖЕНИЯМИ, КОТОРЫЕ ПРИМЕРНО В 100 РАЗ ТОНЬШЕ ЧЕЛОВЕЧЕСКОГО ВОЛОСА.

В 90-х годах XIX-го столетия испанский нейроанатом С. Кахаль заложил основы современных исследований нервной системы в области нейронов. До Кахаля биологи не уделяли достаточного внимания форме нервных клеток. В отличие от многих других клеток, имеющих простые очертания, форма нервных клеток имеет сложную конфигурацию с чрезвычайно нежными продолжениями, которые примерно в 100 раз тоньше человеческого волоса. Биологи не знали, являются ли они окончаниями нервных клеток. Многие, включая известного итальянского анатома К. Гольджи, считали, что нервные клетки не имеют внешней мембраны, и цитоплазма одной клетки непосредственно соединена с цитоплазмой другой, создавая непрерывную, тесно связанную сеть, наподобие паутины, в которой сигналы распространяются одновременно во все стороны. Поэтому за основу нервной системы Гольджи принимал беспрепятственно коммуницирующую нервную сеть, а не отдельную клетку[4]4
  Eric Kandel. «Auf der Suche nach dem Gedächtnis». s. 77–82.


[Закрыть]
.

Кахаль, оставив мечту стать художником, посвятил себя общей анатомии, а затем анатомии мозга. Наблюдая статическую, мертвую клетку, он, благодаря своему врожденному таланту художника и воображению, наделял ее свойствами живой. Известный английский физиолог Ч. Шеррингтон писал о Кахале: «Он описывал картины, которые видел под микроскопом так, словно они оживали, начинали чувствовать, двигаться, надеяться и умирать, как и мы. Это было поистине изумительно, хотя изучаемые препараты были либо мертвыми, либо зафиксированными». Кахаль ищет более совершенные методы, позволяющие идентифицировать нервные клетки во всем их множестве. Во-первых, Кахаль исследовал мозг не взрослых, а новорожденных животных. Так как количество нервных клеток в их мозге значительно меньше, они упакованы еще не так тесно, и их продолжения очень коротки, то ученый хотел увидеть в «клеточном лесу» мозга отдельные ростки новых клеток. Во-вторых, он использовал специальные индикаторные краски на основе серебра, разработанные им самим. Обосновывая свои новые методики, Кахаль рассуждал: «Почему бы нам не изучать молодой лес, поскольку старый, разросшийся непрогляден и непроходим? На ранней стадии развития еще относительно маленькие нервные клетки в любом интервале вырастают полностью, и даже изначальные разветвленные окончания будут видны достаточно четко». Таким образом, ему удалось проследить процессы развития нервной клетки – нейрона, определить ее конструкцию и составные части: клеточное ядро, аксон и множество нежных дендритов. Суммируя и анализируя свои наблюдения, Кахаль сформулировал четыре принципа учения о нейронах и разработал теорию нейронных конструкций, до настоящего времени определяющую понимание функций серого вещества головного мозга.

1. Нейрон является основной структурной и функциональной составляющей мозга, как его основной строительной ячейкой, так и элементарным переносчиком сигнала.

2. Окончание аксона одного нейрона устанавливает контакт с дендритами другого нейрона только в специальных местах – синапсах, лежащих между двумя нейронами и разделенных синаптическим зазором. Окончание аксона одной нервной клетки, которое Кахаль называл «пресинаптическим окончанием», подходит совсем близко к дендритам другой нервной клетки, но не касается их, как бы пытаясь «прошептать нечто тайное, доверительное».

3. Нейроны вступают в соединения непроизвольно. Каждая нервная клетка взаимодействует с синапсами только других определенных нервных клеток. С помощью принципа специфических соединений Кахаль смог показать, что нервные клетки связаны друг с другом только по определенным направлениям, которые он назвал «сетью переключений». Сигналы движутся по ним по правилам, согласно которым, каждый единичный нейрон осуществляет контакт посредством многих пресинаптических окончаний с дендритами множества целевых клеток. По этой причине каждый отдельный нейрон широко распределяет полученную им информацию, достигая целевых клеток, которые часто находятся в различных областях мозга. Дендриты целевой клетки, в свою очередь, воспринимают информацию целого ряда раздражений различных нейронов, которые могут интегрировать сигналы от других нейронов, даже от тех, которые лежат в других областях мозга. На основании анализа передачи сигнала, Кахаль пришел к выводу, что мозг является органом, состоящим из специфических, логически предсказуемых систем переключений. Этим он опроверг господствующее в то время мнение, согласно которому, мозг представляет собой «расплывчатую» нервную систему, в которой возможны любые виды взаимодействия.

4. Принцип динамической поляризации. Согласно этому принципу, сигналы переносятся в определенных сетях переключений только в одном направлении. Это утверждение имело огромное значение – оно приводило к целому ряду логических последствий, которые вскоре стали правилами, используемыми до сегодняшнего времени для объяснения прохождения информационных потоков. Впоследствии оно нашло свое применение при установлении систем переключения в головном и спинном мозге. Каждая из этих систем несет определенную функцию. Например, сенсорные нейроны, находящиеся на коже и других органах чувств, реагируют на раздражения определенного вида, поступающие из окружающей среды – механическое давление (кожа), свет (зрение), звуковые волны (слух) или специфические химические вещества (запах и вкус) – и посылают сигналы дальше в мозг. Мотонейроны посылают свои сигналы из областей головного и спинного мозга к двигательным клеткам мускулов или клеткам желез и управляют активностью этих клеток. Интернейроны, составляющие большинство в общей категории нейронов мозга, служат станциями переключения между сенсорными и моторными нейронами. На основании этого, Кахаль смог проследить движение информационных потоков от сенсорных нейронов в коже к спинному мозгу и оттуда дальше – к интернейронам, мотонейронам и, наконец, к двигательным клеткам мускулов. Эти результаты он получил в ходе исследований на крысах, обезьянах и людях. С течением времени было выявлено, что каждый тип клетки, благодаря своим биохимическим особенностям, подвержен определенным заболеваниям. Сенсорные нейроны в коже и суставах, например, подвергаются такому заболеванию, как сифилис. Болезнь Паркинсона поражает определенную категорию интернейронов. Некоторые болезни избирательны до такой степени, что они поражают только часть нейронов. Рассеянный склероз выбирает своей жертвой только определенные виды аксонов. Ботулизм разрушает синапсы.

За свои революционные достижения в области физиологии и медицины Кахаль совместно с Гольджи, чье индикаторное окрашивание нейронов на основе серебра позволило Кахалю совершить свои открытия, в 1906 г. получили Нобелевскую премию.

Производство синапсами сигналов допамина

В 1955 г. С. Палай и Г. Паладжи из института Рокфеллера показали с помощью электронного микроскопа, что существует маленькое пространство, которое отделяет пресинаптическое окончание одной клетки от дендритов другой – синапсовая щель, неоднократно упоминаемая нами. Кроме того, было установлено, что синапсы ассиметричны и что выделение химических трансмиттеров происходит только в пресинаптической части клетки. Этим объясняется, почему информация в одном нейроновом круге переключения проходит только в одном направлении.

Ш. Шеррингтон в середине XX века продолжает развивать утверждения Кахаля о структуре нервных клеток и успешно связывает их с физиологией и поведением. Во время исследований рефлексов на кошках он открыл, что не всякая нервная активность вызывается раздражением, то есть, не все нервные клетки используют свои пресинаптические окончания для того, чтобы стимулировать следующую, принимающую клетку с целью дальнейшей передачи информации. Наоборот, некоторые клетки тормозят ее, используя свои окончания для блокады принимающей клетки, мешая дальнейшему прохождению сигнала.

Нервные клетки (нейроны), являясь элементарными структурно-функциональными частицами передачи электрического сигнала в нервной системе, отличаются от других клеток мозга тем, что обладают способностью молниеносно обмениваться информацией между собой даже на значительном отдалении друг от друга.

Каждый нейрон представляет собой одновременно как передающую, так и принимающую сигнал ячейку. Вся поверхность тела нейрона (перикариона) и его отростков (аксонов и дендритов) покрыта оболочкой из особых протеинов (рецепторов), избирательно проницаемой в состоянии покоя для ионов калия, а при возбуждении – для ионов натрия. Эти рецепторы преобразуют поступающие извне сигналы в возбуждающий (эксцитативный) или тормозящий (ингибиторный) потенциал мембраны. Произойдет ли «выстрел нейрона» – генерация электрического импульса, определяет пространственная и временная интеграция поступающих сигналов. После такой предварительной обработки информации сигнал кодируется посредством изменения потенциалов нейрона и передается дальше через аксоны. В отличие от других типов клеток, нейроны обладают специфическими контактами, связывающими их с целевыми клетками. В связи с этим можно говорить о специфичности нервных клеток, при которой синапсы классифицируются по местоположению, характеру действия, способу передачи сигнала.

В среднем один нейрон создает около 1000 нервных импульсов, принимает же значительно больше. Как уже упоминалось, человеческий мозг содержит примерно 1011 нейронов и 1014 синапсов. При всей впечатляемости этих цифр, в основе всех синаптических связей лежат два основных механизма: электрический и химический. Электрические и химические синапсы отличаются друг от друга и чисто морфологически: у химических синапсов отсутствует цитоплазматическое соединение между нервными клетками – нейроны отделены друг от друга узкой, примерно 15–25 нанометров, синаптической щелью.

В противоположность этому, у электрических синапсов передача информации между цитоплазмой обеих клеток осуществляется путем непосредственного контакта, через специальные ионные каналы так называемого Gap junctions в пресинаптической и постсинаптической клеточной мембране. Электрические синапсы быстрого действия стереотипны и устойчивы к изменениям внутренней и внешней среды, что обеспечивает высокую надежность работы. Их функции заключаются, прежде всего, в передаче простых деполяризированных сигналов, обеспечивающих мгновенные реакции организма. При этом электрические синапсы не в состоянии создавать тормозящий эффект или длительно действующий эффект изменения состояния.

ОБМЕН ИНФОРМАЦИЕЙ МЕЖДУ НЕЙРОНАМИ МОЗГА ПРОИСХОДИТ ПРЕИМУЩЕСТВЕННО С ПОМОЩЬЮ ХИМИЧЕСКИХ СИНАПСОВ, КОТОРЫЕ ИМЕЮТ ДЛЯ БОЛЬНЫХ ПАРКИНСОНОМ ОГРОМНОЕ ЗНАЧЕНИЕ, ТАК КАК ЗДЕСЬ РАСПОЛОЖЕНЫ НЕРВНЫЕ КЛЕТКИ, ВЫДЕЛЯЮЩИЕ СИГНАЛЬНЫЙ ТРАНСМИТТЕР.

В противоположность электрическим, химические синапсы обладают способностью проводить как эксцитативные (лат. – excitare возбуждать), так и ингибиторные (лат. – inhibere задерживать) сигналы (см. рис. 8, 9). Эта гибкость позволяет химическим синапсам обеспечивать более сложные поведенческие реакции организма, по сравнению с электрическими. Поскольку их чувствительность и восприимчивость подвержена модулированию, этот тип синапсов обладает достаточно высокой пластичностью, являющейся предпосылкой для формирования функций памяти и других видов деятельности высшей нервной системы.

Химические синапсы обладают также способностью усиливать нейронные сигналы. Таким образом, даже небольшая терминаль (пресинаптическая структура аксона) в состоянии значительно изменить потенциал постсинаптической клетки. Поскольку химические синапсы передают импульс только в одном направлении, они служат своего рода детекторами возбуждающего потенциала.

Обмен информацией между нейронами мозга происходит преимущественно с помощью химических синапсов. Механизм этой передачи является основой когнитивных функций мозга, таких как мышление, сознание, восприятие, ощущения, управление моторными функциями, воспоминания и обучение. Все эти ментальные качества объединены под обобщающим понятием «разум», когда речь идет о человеке, хотя задатки его четко прослеживаются и у животных.

В химических синапсах передача информации между нейронами осуществляется посредством биологически активных химических веществ, нейротрансмиттеров. Исходя из «принципа Дейла», согласно которому, каждый нейрон представляет собой единую метаболическую систему, и во всех его пресинаптических окончаниях высвобождается один и тот же нейротрансмиттер, каждый нейрон может быть «классифицирован» по тому виду нейромедиатора, которым он «пользуется» для передачи информации. Так, например, нейрон, синтезирующий допамин, можно специфицировать как допаминергический.

Однако в последнее время этот принцип больше не считается безоговорочным: новые данные убедительно свидетельствуют о совместимости нескольких нейроактивных веществ в одном нейроне, а также о возможности синтеза, депонирования и высвобождения одним и тем же нейроном различных нейроактивных веществ, в том числе нейротрансмиттеров и нейропептидов.

Первое доказательство того, что нервные импульсы в организме могут быть результатом химических реакций, представил в 1921 г. австрийский фармаколог и физиолог О. Леви (О. Loewi). В своем ставшем классическим эксперименте он установил, что при раздражении симпатического нерва изолированного сердца все той же многострадальной лягушки выделяется вещество, способное стимулировать сердечную деятельность другой лягушки. Ему понадобилось еще пять лет, чтобы показать, что химическая субстанция, расщепляющая это «вагус – вещество», идентична ацетилхолину. Данные факты послужили основой для создания теории химической передачи нервного возбуждения.

С того времени было открыто множество новых нейротрансмиттерных субстанций, но достичь аналогичных результатов в экспериментах с веществом головного или спинного мозга не удавалось. Это привело к тому, что представления о нейротрансмиттерах постоянно изменялись, в соответствии с новейшими открытиями в области нейробиологии и концепции рецепторов в фармакологии.

Согласно выводам Леви, нейротрансмиттеры являются продуктами обмена веществ, высвобождаемыми (образуемыми) в синапсе при стимуляции нейрона, и определенным образом воздействующими на клетки эффекторного органа, осуществляющего ответную реакцию организма на раздражитель. Несмотря на кажущуюся в теории простоту классификации таких химических субстанций мозга, как трансмиттеры, экспериментально определить их отличительные признаки чрезвычайно сложно. Эта проблематичность обусловлена анатомической комплексностью центральной нервной системы, ограничивающей целевое назначение электрической стимуляции определенных зон нейронов. К тому же, техника, имеющаяся на сегодняшний день в распоряжении специалистов, недостаточно чувствительна для качественной регистрации локального пресинаптического высвобождения потенциальных нейротрансмиттеров. Современные аналитические технологии, хотя и позволяют определить фемтомолярную концентрацию, но их чувствительности недостаточно, чтобы замерить содержимое высвобожденного пресинаптического трансмиттера. Один фемтомоль трансмиттера содержит около 600 миллионов молекул. Поступление раздражения лишь при разовом изменении пресинаптического потенциала вызывает на каждом нервном окончании реакцию выброса нескольких сотен синаптических везикул (внутриклеточных органоидов), каждая из которых содержит около 10 000 трансмиттерных молекул.

Наряду с аналитическими проблемами ситуацию усложняет и тот факт, что каждый нейрон образует около 1000 синаптических связей в различных участках клетки, которая, в свою очередь, является составной частью комплексной нейрональной сети. Все это делает практически невозможным избирательно замерить высвобождение определенного нейротрансмиттера.

Кроме всего прочего, нельзя исключать теоретическую возможность того, что стимуляция нейронной системы не будет сопровождаться высвобождением трансмиттеров, так как пресинаптическое торможение посредством пресинаптических рецепторов, действующих по принципу «отрицательной обратной связи», уменьшает или совсем прекращает высвобождение трансмиттера из пресинаптических нервных окончаний.

Вышеописанная проблематика делает весьма затруднительным само допущение факта трансмиттерной функции у субстанции, считающейся трансмиттером. Чтобы классифицировать продукт метаболизма клеток в качестве трансмиттера, он должен отвечать следующим четырем критериям:


1. Локализация.

Химическое вещество синтезируется в нейронах. Исследования постмортального материала демонстрируют характерное региональное распределение субстанций, причисленных к трансмиттерам.


2. Высвобождение.

Субстанция присутствует на окончаниях пресинаптических нейронов в высокой концентрации и высвобождается в больших количествах под воздействием ионов Са+2, оказывая определенное воздействие на постсинаптическую клетку или эффекторный орган.


3. Мимикрия.

Субстанция, введенная в организм эндогенным методом, в зависимости от ее объема в точности имитирует воздействие эндогенно высвобожденного нейротрансмиттера, т. е. активирует в постсинаптической клетке те же рецепторные ионные каналы или интрацеллюлярные (внутриклеточные) сигнальные трансдукционные каскады.


4. Инактивирование.

Наличие специфического механизма, способного удалить данную субстанцию из синаптической щели.


Мы уже упоминали о том, что для того, чтобы не происходило постоянных коротких замыканий при прохождении электрического сигнала через нервные клетки, последние, словно проводники, окутаны изолированными мембранами. Если идет целенаправленный информационный поток в виде поступающего электрического сигнала, то на месте контактов двух нервных клеток посредством химических посредников-нейротрансмиттеров он мгновенно воспринимается и передается дальше. Допамин представляет собой сигнал, играющий огромную роль при БП. Другими трансмиттерами, принимающими участие в передаче информационных сигналов, являются, к примеру, ацетилхолин, глутомат, серотонин. Место, разделяющее две контактные нервные клетки, синапс, имеет для БП огромное значение вследствие того, что здесь расположены допаминопроизводящие нервные клетки, то есть те, которые выделяют сигнальный трансмиттер. Причем, процесс выброса происходит только тогда, когда электрический сигнал достигает места контакта двух допаминопроизводящих клеток. Этот выделяющийся сигнальный посланник проскакивает через маленькую щель и соединяется кратковременно со специальным приемным устройством следующей близлежащей нервной клетки, называемым допаминовым рецептором.

В процессе этого взаимодействия возникает новый электрический сигнал, передаваемый далее следующим нейронам. Основная часть допамина возвращается обратно в пресинаптический нейрон, другая, меньшая его часть, участвующая в передаче нервного импульса, расщепляется с помощью двух энзимов: моноаминооксидазы-В (МАО-В) и катехол-О-метил-трансферазы.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации