Электронная библиотека » Борис Конрад » » онлайн чтение - страница 2


  • Текст добавлен: 20 сентября 2017, 12:42


Автор книги: Борис Конрад


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
Что пьет корова?

Мой любимый футбольный клуб – ВФЛ! Это замечание на полях. Теперь назовите мне город в Рурской области. Вероятность того, что вы назовете Бохум, а не Дортмунд, Эссен или Хаттинген, будет намного выше, особенно если вы тоже болеете за ВФЛ из Бохума. Во мне, как в болельщике этого клуба, его название пробуждает сильные эмоции – подавленность, воодушевление, боль и счастье. Но это тоже замечание на полях.

В этих случаях говорят о примирующем эффекте (прайминг-эффекте). Употребляя этот термин, имеют в виду, что предварительное произнесение какого-то слова изменяет вероятность возникновения каких-либо последующих реакций или ассоциаций. Все это имеет отношение и к памяти, поскольку нужная информация в такой ситуации не лежит на поверхности. Для специалистов по памяти прайминг-эффект очень интересен, потому что его исследование уводит в глубины мозга. Так, например, больные с некоторыми формами амнезии страдают от неспособности вспомнить какую-то усвоенную прежде информацию. Тем не менее у таких больных продолжает работать прайминг-эффект. Например, один такой пациент не мог расшифровать аббревиатуру футбольного клуба, но в ответ на второй вопрос уверенно называл Бохум.

Представляется, что прайминг играет роль и в поведении. Так, например, в ходе одного эксперимента выяснилось, что испытуемые медленнее переходят из одного помещения в другое, если в первом помещении им предварительно проводят инструктаж о задании и как бы вскользь упоминают о старости. Но исследования, даже научные, часто дают неоднозначный результат. Поэтому до сих пор не стихают споры о том, насколько глубоким является влияние прайминг-эффекта.

Прайминг, так же как и условный рефлекс, касается имплицитной памяти, то есть запоминания на подсознательном уровне. Мы можем пользоваться этим, чтобы перехитрить самих себя. Например, перед соревнованиями по памяти я напоминаю себе о своих успехах. Это приводит к тому, что мой мозг подсознательно нацеливается на быстрое усвоение информации, важной для достижения успеха. В других случаях перед очередным турниром я повторяю сведения, которые могут оказаться важными в соревновании. С помощью такого прайминга я начинаю соображать и запоминать лучше, чем без него, – эти два вида прайминг-эффекта хорошо помогают мне в соревнованиях. Во время экзаменов или при решении каких-либо задач вы тоже можете испробовать такой подход и получить от него ощутимую пользу: думайте об успехе и попытайтесь обдумать возможное содержание задачи!


И все-таки, что пьет корова? Тот, кто не знает этой шутки и должен ответить быстро и без раздумий, чаще всего отвечает: «Молоко!» Само упоминание слова «корова» благодаря прайминг-эффекту приводит к слову «молоко». Однако корова дает молоко, а сама она пьет воду.

Память моллюсков

Когнитивные способности человека выше, чем у животного, и поэтому человек может обдумывать свои действия. Именно по этой причине применять кликер в отношении мужа на кухне – занятие совершенно бессмысленное. Однако, несмотря на это, основы памяти возникли в незапамятные времена, и подсознательные процессы, обеспечивающие запоминание, действуют у человека практически так же, как и у большинства животных. Чем ближе по строению мозг животного к мозгу человека, тем больше схожи между собой процессы запоминания и припоминания. Особенно сильно бросается в глаза эта схожесть при сравнении мозга человека с мозгом приматов, но наш мозг в целом похож и на мозг других млекопитающих. Поэтому знания о человеческом мозге и человеческой памяти основаны на экспериментах, проведенных на животных, каким бы странным это ни могло показаться.

В то время как в исследованиях на крысах и мышах изучали в основном поведение, известный австрийско-американский ученый Эрик Кандел изучал память на мозге одного морского моллюска. Этот моллюск называется аплизией, или морским зайцем, и именно это животное сделало Кандела нобелевским лауреатом. Очень рекомендую всем посмотреть фильм «В поисках памяти» (2009), посвященный работам Кандела.

Но почему именно аплизия? Согласно последнему большому исследованию, мозг человека состоит из 86 миллиардов нервных клеток. Конечно, это не так много, как звезд в Млечном Пути, но все же и это число впечатляет. Таким образом, в нашем мозге слишком много клеток, и они, кроме того, слишком малы, чтобы изучать их по отдельности. Напротив, у аплизии во всем ее организме всего 20 000 нервных клеток. Поэтому Кандел и его коллеги – вместо того, чтобы прослеживать в общих чертах процессы, протекающие в сложных системах, – решили более подробно изучить процессы памяти, протекающие в более простых и обозримых системах. В танцевальных школах на первых занятиях учат движениям медленного вальса, а не искрометным импровизациям аргентинского танго. По той же причине изучение памяти лучше всего начинать с мозга морского зайца.



Оказалось, что и у аплизии есть память. Естественно, морской заяц не в состоянии запоминать номера телефонов и не может назвать двадцать знаков числа π после запятой, но и у него можно сформировать условные рефлексы. Успешные в эволюционном плане биологические виды всегда продвигаются выше и дальше. Наш мозг способен на большее, нежели мозг аплизии, в нашем мозге есть множество отделов, каждый из которых отвечает за свои, специализированные функции, но на нижнем уровне работы нашего мозга функционируют многие, достаточно примитивные механизмы. Благодаря Канделу и его коллегам мы теперь многое знаем о формировании памяти на молекулярном уровне. Изучение поведения человека и животных моделей позволяет узнать больше о специализации определенных отделов мозга или даже отдельных нервных клеток. В опытах с участием людей специалисты по когнитивной психологии смогли показать, что существуют разные типы памяти, а исследования с применением магнитно-резонансной томографии указывают на то, что за различные виды памяти отвечают разные отделы мозга. Наши знания обо всех этих процессах ежедневно пополняются благодаря работам ученых, изучающих память и физиологию головного мозга.

Однако все эти достижения пока не дают возможности описать цельную картину. Точного ответа на вопрос о том, как именно функционирует память, у нас до сих пор нет. В то время как жесткий диск компьютера работает по строго определенным правилам и точно воспроизводит записанные на нем данные, с мозгом все обстоит совершенно иначе. За миллионы лет эволюции возникли неимоверно сложные системы, детали работы которых нам до сих пор неизвестны. Но надо сказать, что знаем мы все же довольно много. Например, известно, что мы, люди, обладаем отнюдь не одним видом памяти, или, точнее, у нас не одна память, а несколько. Разные «памяти» выполняют разные обязанности. Окончание первой главы я посвящу описанию этих отдельных «памятей».

«Я же это знал!»

«Кратковременная память у меня очень даже неплохая, но долговременная могла бы быть и получше!» Я часто слышу такие высказывания от людей, посещающих мои лекции. Люди давно знают, что виды памяти различаются по способности разное время сохранять запоминаемые сведения. Кандел сумел показать, что кратковременная и долговременная память существуют уже у аплизий, причем процессы в структурах, отвечающих за разные виды памяти, сильно отличаются друг от друга. Эти отличия играют важную роль и в науке о человеческой памяти. Однако у человека есть и третий уровень памяти, предшествующий кратковременной памяти, – память такого типа называют ультракороткой.

Надо, однако, иметь в виду, что речь здесь идет об обобщающей модели. В мозге нет особых сейфов для хранения ультракороткой, кратковременной и долговременной памяти. Реальность, как всегда, намного сложнее модели. Этот факт хорошо известен нам по прогнозам погоды. Метеорологи множество раз примеряют свои модели к реальности, чтобы в полдень объявить по радио, что да, именно сейчас там-то и там-то идет дождь. В науке о памяти модели тоже позволяют плодотворно работать с допущениями и предпосылками. В процессе работы возникают бесчисленные новые идеи, усовершенствования и варианты, позволяющие уточнить представление о происходящих процессах, а затем ученые строят модель, в наибольшей степени соответствующую реальности.

Нам здесь будет достаточно рассмотреть простые модели. Ибо даже такие простые модели пользуются понятиями, которые сильно отличаются от понятий, употребляемых в обыденной речи. Если, например, психолог произносит словосочетание «кратковременная память», то он, скорее всего, имеет в виду нечто иное, нежели человек, далекий от психологии. Для того чтобы лучше понять суть научных представлений, можно с успехом прибегнуть к метафорам. Интересно отметить, что в разные эпохи эти метафоры были различными. Древние греки сравнивали память с восковой дощечкой и архивом. Представление о том, что в мозге есть отдельные ящички для разных видов памяти, бытует до сих пор. Правда, в наше время человеческую память чаще всего сравнивают с компьютерной памятью. Согласно этим представлениям создается следующая картина: сенсоры, воспринимающие информацию с клавиатуры или видеокамеры, немедленно передают ее дальше. Это аналог ультракороткой памяти. Затем сведения передаются в оперативную память – аналог человеческой краткосрочной памяти, а после этого на «жесткий диск» – аналог долговременной памяти.

Проблемы начинаются с того, что эта аналогия изначально хромает, ибо информация (как это происходит в компьютере) в мозге хранится совершенно по-другому. Если в компьютере содержание точно копируется, сохраняется и в том же виде выдается по первому требованию, то припоминание у человека всегда сопряжено с изменением, коррекцией и толкованием содержания. Нет в человеческом мозге и кнопки стирания памяти, как нет и USB-порта для ее переноса. Возможно, среди читателей найдутся и такие, кто сейчас, через десять лет после появления этого изобретения, спросят: «Что такое USB-порт?» Но, несмотря на это, нам все же придется пользоваться компьютерными метафорами. В буквальном смысле такими метафорами являются слова «вызвать» и «сохранить». Вызов информации и ее сохранение происходят в компьютере, но эти процессы отсутствуют в биологических системах. Мы не вполне понимаем, как работают биологические системы, и поэтому за неимением лучших терминов прибегаем к понятиям информатики, чтобы описать то, что мы имеем в виду. Фраза «мозг изменяется в ходе взаимодействия с внешним миром» сложнее, но не более содержательна, нежели фраза «информация, сохраненная в мозге». Самое главное – это помнить, что «сохранение» информации – это всего лишь более или менее удачная метафора, ибо сохранение информации в мозге протекает совершенно не так, как в компьютере.

Ультракороткая память

Действительно, отложению информации в кратковременной памяти предшествует ее попадание в ультракороткую память, которую называют также «сенсорной памятью». Дело в том, что информация исчезает из этой памяти быстрее, чем вы успеете произнести слово «ультракороткая». Например, при зрительном восприятии наш мозг формирует новые восприятия в течение долей секунды. Наглядный пример: если вы видите, как в ночи кто-то быстро проводит из стороны в сторону карманным фонариком, то вы видите след светового пятна – его траекторию, которая практически мгновенно исчезает. Исследования показывают, что время сохранения такого следа составляет от 15 до 300 миллисекунд. Кто-то может подумать: «Однако, ради бога, господин Конрад, 300 миллисекунд – это же не память!» Но, если мы вспомним определение, согласно которому памятью называют любую форму сохранения информации, то такое кратковременное сохранение информации тоже можно назвать, если угодно, запоминанием или памятью. Мало того, это восприятие очень важно для памяти, ибо именно оно фильтрует поступающую информацию, попутно решая вопрос о том, что стоит обрабатывать дальше.

Однако сенсорная память не ограничивается одной лишь модальностью зрительного восприятия. Помимо визуальной сенсорной памяти у нас есть такая же память в отношении всех других чувств, причем время хранения сенсорной информации в каждой модальности немного отличается. То, что на этапе сенсорной памяти информация фильтруется, прежде чем попасть в сознание, подтверждается эффектом коктейльной вечеринки: даже в самом шумном окружении вы отчетливо понимаете, что говорит вам собеседник, но слова людей, сидящих за соседними столами, сливаются для вас в бессодержательный шум. Но стоит кому-то из соседей произнести ваше имя или затронуть важную для вас тему, как вы немедленно обратите на этого человека свое внимание. Таким образом, все шумы воспринимаются и фильтруются. В случае слухового восприятия сенсорную память можно уподобить эху, и поэтому в данном контексте она так и называется – «эхо-память».

Кратковременная память

В кратковременную память попадает лишь ничтожная доля нового содержания, воспринятого органами чувств. Кроме того, через кратковременную память транзитом проходит и то, что потом откладывается в долговременной памяти, откуда мы потом можем эти сведения извлечь и обдумать их. Короче, через кратковременную память проходит все, что мы активно обрабатываем, и поэтому кратковременную память называют иногда рабочей памятью. Таким образом, мы видим, что в обоих случаях процессы развиваются согласно разным моделям, но для понимания процессов, происходящих в кратковременной памяти, такое разделение в принципе не важно. «Кратковременной» эта память называется, потому что информация сохраняется в ней в среднем двадцать-тридцать секунд. Если поступающей информации мало, то срок сохранения может растянуться до двух минут. Но в любом случае время сохранения информации в кратковременной памяти действительно очень мало.

Всякая вновь поступающая в кратковременную память информация вытесняет находящуюся там информацию. Все хорошо знают этот феномен по запоминанию телефонного номера из телефонной книги. Набирая номер, вы отлично его помните, но он улетучивается из вашей памяти практически сразу после того, как в трубке раздаются длинные гудки. Если же вы перед тем, как набрать номер, посмотрите на часы, то можете быть уверенными, что сами вы прочитанный номер уже не вспомните, потому что информация о времени вытеснила информацию о номере телефона. Молодым людям словосочетание «телефонная книга» в большинстве случаев уже представляется совершенно непонятным. Таким людям я посоветую вспомнить о снапчате: последние семь просмотренных кадров вы еще помните, но в промежутке выскакивает сообщение по WhatsApp и стирает все, что содержалось до этого в кратковременной памяти. Получается, что тот, кто создает за 0,3 секунды семь кадров снапчата, не выходит за пределы сенсорной памяти.

Кратковременная память ограничена не только из-за малости времени, она мала и по объему. Например, она вмещает в среднем около семи цифр. Вот небольшое упражнение: прочтите по очереди следующие строчки, закройте глаза и попробуйте вспомнить все цифры.


92387

8631742

3510029011


Как это работает? Если вы не отвлекались и хорошо сосредоточились, то последовательность цифр первой строчки вы вспомните без особого труда. Средняя строчка уже трудна для запоминания; вы можете перепутать местами пару цифр, одну пропустить, но если хорошенько сосредоточитесь, то, возможно, вспомните и всю строчку правильно. Запомнить семь цифр – это в пределах средних человеческих возможностей.

Если испытуемые часто повторяют подобные упражнения, то запоминание семи цифр, как правило, перестает вызывать затруднение. Напротив, запомнить десять цифр последней строчки очень и очень трудно. Тот, кто может это сделать, как правило, осознанно или неосознанно прибегает к какой-то мнемонической тактике: например, напевает цифры на какую-нибудь любимую мелодию или членит последовательность на числа (триста пятьдесят один – ноль – ноль – двадцать девять – ноль – одиннадцать, вместо того чтобы запоминать последовательность три – пять – один – ноль и т. д.). Однако, если я скажу вам, что в последней строчке число тридцать пять следует за записанной в обратном порядке датой теракта 11 сентября 2001 года, то вы тотчас и без затруднений запомните эту последовательность цифр.

Дело в том, что кратковременная память обрабатывает не цифры по отдельности. Фрагменты информации, с которыми она работает, называют блоками (chunks). Блоком может послужить и цифра. Или дата 11 сентября 2001 года, так как она указывает на один фрагмент значимой информации. Эффективной стратегией увеличения объема кратковременной памяти является разбиение информации на крупные блоки. Если вы поищете и найдете в последовательности цифр дату своего рождения, известный вам номер телефона или кредитной карты, то вы тем самым увеличите емкость своей кратковременной памяти. Разбиение информации на блоки и объем кратковременной памяти в 1950-х годах изучал американец Джордж Миллер, и с тех пор эта тема является самой обсуждаемой и самой цитируемой в статьях, посвященных исследованиям памяти. Для обыденной жизни важно знать, насколько ограниченна емкость кратковременной памяти и что рациональное разбиение информации способствует увеличению этой емкости. Однако надо еще помнить о том, что малейшее отвлечение от основного содержания и восприятие какой-то иной информации приведет к немедленному стиранию той информации, которую вы старались запомнить.

Есть еще один способ членения информации: например, можно произнести первые пять цифр вслух, а остальные прочитать просто глазами. Применение этой тактики помогает большинству людей сохранить в памяти все десять цифр. Дело в том, что у кратковременной памяти несколько модальностей – она фиксирует не только зрительную, но и слуховую информацию, причем параллельно. В принципе мы не знаем всех тонкостей работы кратковременной памяти, но благодаря Алану Бэддели мы имеем в распоряжении удачную модель.

Если мы со стороны понаблюдаем за нашим мышлением, то поймем, что есть очень немного вещей, которые мы способны делать параллельно. Например, мы не можем вести два разговора сразу, но смотреть телевизор и разговаривать можем вполне. Мы можем говорить по телефону и одновременно разгадывать кроссворд. Во всяком случае, мужчины на это способны. Недавно я наткнулся в интернете на статью, в которой говорится о том, что нейрофизиологи обнаружили, будто женщины лучше мужчин приспособлены к многозадачности. Приводится ссылка на опубликованную в 2014 году работу о функционировании связей между полушариями головного мозга. В обычных условиях полушария взаимодействуют достаточно слабо. Тот, кто знает в Руре дорогу А40, в Мюнхене Ринг, а в Штутгарте какую-нибудь еще улицу, знает также и то, что, хотя теоретически сообщение прекрасное, продвижение по этим улицам может быть и страшно медленным. Точно так же, даже если два места соединены между собой короткой и удобной дорогой, то все равно человек может в какой-то данный момент находиться только в одном из этих мест. Так как у мужчин и женщин области мозга, отвечающие за кратковременную память, имеют одинаковое анатомическое строение, то едва ли можно ожидать большой разницы в ее емкости, и, между прочим, результаты исследования не являются однозначными. Если вам приходилось видеть мужчин, играющих в компьютерные игры, то вы подтвердите, что они способны одновременно контролировать множество самых разных вещей.

Как явствует из вышеприведенных примеров, одновременное выполнение функций возможно прежде всего в тех случаях, когда это выполнение требует решения разных, а не сходных по природе задач. Бэддели решил проверить это утверждение экспериментально и выяснил, что мы не способны одновременно выполнять два визуальных или слуховых задания, но вполне можем решать сложную математическую задачу и выполнять какое-либо визуальное задание. На этом феномене основана ролевая модель памяти, разработанная Бэддели: по его мнению, память исполняет несколько связанных между собой ролей – роль фонологического шлейфа, пространственно-визуального блокнота, эпизодического буфера и центрального исполнительного органа. В учреждении этому соответствует магнитофон с коротким временем воспроизведения (фонологический шлейф), на который записывается информация, которая стирается при появлении новой информации, которая записывается вместо предыдущей, и доска для записей, на которой представляется зрительное содержание. Оно стирается при каждой смене содержания, заменяясь новым (пространственно-визуальный блокнот).



Позднее Бэддели добавил к своей модели эпизодический буфер для того, чтобы лучше объяснить результаты новых опытов. Например, таким буфером может быть болтливый коллега, который постоянно рассказывает какие-то забавные истории и сплетни, но не является источником важной и значимой информации. Центральный исполнительный орган – не начальница, а секретарша, которая реагирует на все источники информации, фильтрует их и подает в обработанном виде, в каковом они и попадают в поле зрения начальницы.

Когда мы видим перед собой ряд цифр или читаем текст, мы внутренне повторяем их, то есть создаем фонологический шлейф. Разделение слуховых и визуальных феноменов здесь не больше, чем при таком же разделении на фоне восприятия информации на сенсорном уровне. Пространственно-визуальный блок вступает в игру, когда мы зрительно представляем себе некую сцену, видим ее внутренним взором и можем ею манипулировать. Эта способность актуализировать содержание в рабочей памяти имеет очень большое значение. Осознанно мы замечаем это при выполнении в уме расчетов, когда мы каждый раз повторяем про себя (мысленно произносим) результаты промежуточных расчетов, но в конце концов запоминаем только конечный результат.

Сам Бэддели в одной из своих книг замечает, что, как это ни удивительно, даже люди, обладающие очень ограниченной кратковременной памятью, способны вести вполне нормальную жизнь. Тем не менее существует очевидная положительная корреляция между емкостью кратковременной памяти и тем, что мы называем интеллектом.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации