Электронная библиотека » Борис Конрад » » онлайн чтение - страница 5


  • Текст добавлен: 20 сентября 2017, 12:42


Автор книги: Борис Конрад


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
В поисках следов памяти

Сто лет назад ученые, изучавшие мозг, считали, что память хранится в мозге в закодированном виде. Если мы чему-то научились и в результате изменилось строение мозга, то в нем непременно должны остаться следы приобретенного знания. Эти гипотетические следы были названы энграммами. Много сил было потрачено на их поиск и обнаружение. Но, несмотря на все усилия, эти изменения не были найдены ни в одном участке головного мозга. Как мы усвоили из предыдущей главы, мозг постоянно изменяется в процессе обучения. Одно-единственное запоминание приводит ко многим изменениям, так как по ходу его происходит активация множества нейронов. Значит, след памяти надо искать в специфической последовательности переноса возбуждения.

Например, путешествие в Париж способно активировать множество систем памяти. Представьте себе, что вы стоите вместе с возлюбленной на Эйфелевой башне. От одного этого у вас в мозге происходит активация множества нервных клеток: одни обрабатывают эмоции, другие обеспечивают данными автобиографическую память, третьи важны для формирования семантической памяти, где откладывается такая важная для викторин информация, как, например, то, что высота Эйфелевой башни – 324 метра. Если же вы поцелуете возлюбленную, то забудете обо всем на свете. Чувственность захлестывает вас обоих, вы закрываете глаза и не замечаете, как карманный воришка вытаскивает из вашего кармана бумажник. Ах, о чем это я… рассказывая впоследствии дома обо всем увиденном и пережитом в Париже, вы снова включаете сходные нейронные сети и заново переживаете романтические моменты, поцелуй и свой взволнованный рассказ в полицейском участке.

Особые клетки головного мозга

Один нейрон не способен хранить информацию, он может лишь передавать импульсы. Воспоминание – это всегда цепь и последовательность возбуждений. Однако, несмотря на это, существуют отдельные нейроны, которые совершают удивительные вещи! Например, есть клетки, которые называют «нейронами места» или «нейронами решетки». В 2014 году эти клетки получили Нобелевскую премию. Ну, конечно, не они сами, а нейрофизиологи Джон О’Кифи, Мэй Бритт Мозер и Эдвард Мозер, открывшие эти клетки. Бабушкин нейрон – это скорее модель, нежели настоящая нервная клетка. Напротив, нейроны Дженнифер Энистон кажутся настоящими, хотя это уже другая история.

Изучать то, как отдельные нейроны реагируют на определенные мысли, трудно. Для наблюдения за нейронами и их поведением нам пришлось бы извлечь мозг из черепной коробки, но такой мозг не способен мыслить. То есть изучать надо живой мозг. Это правда, что современные методы наружного исследования не позволяют исследовать на живом мозге поведение отдельных нейронов. Для этого надо ввести электроды в ткань мозга, но интактный мозг между тем надежно защищен от взлома сводом черепа. Поэтому исследования, удостоенные в 2014 году Нобелевской премии, были проведены на животных. Ученые наблюдали за ходом возбуждения в отдельных нейронах гиппокампа (области мозга, о которой мы еще будем говорить ниже) крысы. При этом ученые установили, что существуют определенные нейроны, которые всегда активировались, когда животное находилось в определенном месте своего пути. Животное перемещалось по клетке свободно, и нейроны возбуждались независимо от направления, в котором животное бежало, оказываясь в определенном месте. Как только крыса оказывалась в топографическом поле данного нейрона, он тотчас же разряжался. Разряд не зависел от временных параметров, но только и исключительно от места. Эти специализированные нейроны были названы авторами «place cells», то есть клетками места. Так, впервые стало понятно, как мозг учится оценивать, в каком месте пространства он находится.

Однако эти клетки, или нейроны места, не привязаны к GPS-координатам. Во-первых, каждая клетка реагирует на определенное поле, а не на точку. Когда животное исследует лабиринт со множеством отсеков, нервная клетка реагирует на весь отсек, а не на положение животного в нем. Во-вторых, при исследовании другого окружения активируются те же нервные клетки. Интересно наблюдать, как изменяются при этом поля, на которые реагирует одна клетка. Если клетка разряжается в квадратном боксе в нижнем левом углу, то она же разряжается в продолговатом прямоугольном боксе тоже именно в нижнем левом углу. Если после этого поместить крысу на стол, не имеющий стен, но ограниченный своими краями, то и на нем клетка разряжается в нижнем левом углу. Таким образом, важна ориентация границ доступного животному пространства. Кроме того, поля накладываются друг на друга, поэтому, хотя на первый взгляд и кажется, что каждая клетка обладает своим полем, на самом деле точное местоположение поля закодировано в активности множества нейронов. Так как поля этих клеток варьируют, то одного этого механизма недостаточно для того, чтобы точно кодировать местоположение.

Поэтому существует дополнительный механизм, тоже открытый Мозерами: так называемые нейроны решетки (координатные нейроны). Эти нейроны тоже разряжаются при нахождении организма в определенных местах, но не в каких-то определенных местах данного пространства, а в сети точек, упорядоченных в точном геометрическом порядке – в гексагональную решетчатую структуру. Эти клетки расположены не в гиппокампе, а в соседней области большого мозга, но активно сообщаются с клетками места, придавая мозгу способность сохранять информацию о местоположении.



Эти результаты можно получить и воспроизвести на мозге крыс, мышей, а также приматов. Однако это не значит, что их можно автоматически воспроизвести и у человека. Конечно, эти опыты с введением электродов можно в принципе выполнять и на человеке – по глупости ради этого можно даже вскрыть черепную коробку. Вероятно, нашлись бы сумасшедшие ученые и жадные до денег испытуемые, которые могли бы воплотить такой подход в жизнь, но, к счастью, существует законодательство, прямо запрещающее такое вмешательство. Тем, что мы все же располагаем такими результатами, мы обязаны существованию больных (по большей части с эпилепсией), которым показаны нейрохирургические операции на открытом мозге. Во время таких операций к мозгу прикладывают электроды и возбуждают определенные его участки. С согласия больного можно также с помощью таких же электродов исследовать функции и других участков мозга.

Естественно, в отличие от голодных крыс, людей не выпускают в незнакомое замкнутое пространство, где они бы ходили в поисках пищи. Вместо этого ученые предъявляют пациентам изображения виртуальной реальности на компьютерном экране. Полученные результаты подтвердили выводы, сделанные в исследованиях на животных: в аналогичных участках мозга человека находятся нервные клетки, разряжающиеся в зависимости от местоположения, как это происходит и у экспериментальных животных. То есть нейроны места и нейроны решетки существуют также и в нашем мозге. Одно уточнение: то, что отдельные клетки разряжаются в каком-то определенном месте, не означает, что важная для ориентации информация хранится именно в этих клетках. Нейрону для активации требуется поступление информации от тысяч других нейронов, и только поступление такой информации делает возможным разряд определенного нейрона в каком-то данном месте.

Используя такой же способ регистрации активности отдельных нейронов у больных эпилепсией перед операцией на открытом мозге, американские нейрофизиологи начали искать гипотетические нервные клетки, которые в шутку назвали «бабушкиными нейронами». Это соответствовало представлению о том, что когда человек видит собственную бабушку, в его мозге разряжается какой-то единственный нейрон.

Однако на самом деле обнаруженная учеными картина оказалась куда более впечатляющей: в Пасадине, недалеко от Голливуда, ученые под руководством Р. Кироги нашли нейрон… Дженнифер Энистон! То есть нервную клетку головного мозга, которая разряжалась при предъявлении испытуемому изображения Дженнифер Энистон. Пойдет ли и в данном случае речь о Нобелевской премии, пока неясно. Во всяком случае, этот результат не только привлек повышенное внимание научных кругов, но и навлек на себя критику коллег. Если учесть число фильмов, которые смотрит средний американец, и число фильмов, в которых играет Дженнифер Энистон, то мы не станем удивляться тому, что люди чаще видят именно ее, а не собственных бабушек. Естественно, Дженнифер Энистон – это всего лишь наглядный пример. Например, были выявлены нейроны, разряжающиеся при виде Билла Клинтона или Майкла Джексона. С большой долей вероятности можно предположить, что существуют нейроны, разряжающиеся у человека и при виде его собственной бабушки. Трудность, видимо, заключается в том, что в этом случае ученым помимо просьбы о разрешении ввести электроды в мозг придется просить больного о разрешении заглянуть в фотоальбом с частными фотографиями бабушки.

Однако для исследователей важно, конечно, нечто другое, а именно: нет ничего особенного в том, что какая-то одна клетка разряжается, когда испытуемому предъявляют определенную фотографию. Скорее всего, эта клетка является частью энграммы, которая верно кодирует этот образ. Особенность состоит в том, что клетка Дженнифер Энистон разряжается при виде разных фотографий этой актрисы, а не фотографий других похожих блондинок. Даже Джулии Робертс! Однако эта же клетка разряжается при упоминании имени Дженнифер Энистон или при прочтении его в тексте. То же самое происходит при просмотре кадров из сериала «Друзья», благодаря которому стала известна Дженнифер Энистон, даже если актриса отсутствует на предъявленных кадрах. Значит, клетка реагирует на личность определенного человека, а не только на его изображение. Естественно, мы не рождаемся на свет с клеткой Дженнифер Энистон. Во всяком случае, я очень на это надеюсь! Определенный нейрон обучается реагировать разрядом на образ Энистон. Естественно также, что информация об Энистон закодирована и хранится не в одном этом нейроне. Сам нейрон не имеет об актрисе ни малейшего понятия. Все дело в сетевом взаимодействии с другими нейронами, которое происходит таким образом, что при просмотре сериала «Друзья» по дендритам этого нейрона поступает так много сигналов, что вместе они преодолевают порог возбуждения, и нейрон разряжается.

Вот еще один пример. У нас, немцев, наверняка есть нейрон Томаса Готтшалька. У меня, во всяком случае, он точно есть, как у фаната передачи «Спорим, что?..» (Wetten, dass?..) и бывшего кандидата на участие в ней. Другие клетки реагируют на определенные цвета или формы. Через глаза образ поступает в мозг и там декодируется. Некоторые нейроны разряжаются при виде локонов. Другие – при виде светлых волос. Третьи разряжаются на зрелище пестрой одежды. Наверное, есть нейроны, реагирующие на большие носы. Сигналы от таких нейронов передаются на другие нервные клетки, и где-то расположена одна клетка, куда сходятся все эти сигналы, отвечающие за «локоны», «светлые волосы», «мужчину» и «большой нос». Этого вполне достаточно для того, чтобы преодолеть порог возбуждения и разрядить эту клетку, при возбуждении которой нам является образ: «Томас Готтшальк!» Если в этом ансамбле отсутствует аспект «мужчина», то, возможно, стимуляция окажется недостаточной. В противном случае клетка разрядилась бы в ответ на образ Барбары Шёнебергер или вашего любимого кокер-спаниеля.

Критики возражают, что именно так клетка и поступает. В ходе исследования можно предъявить, в конце концов, всего лишь несколько сотен фотографий, на которых запечатлены всего несколько десятков человек, потому что надо предъявить не одну фотографию каждого из них. То, что одна нервная клетка реагирует здесь исключительно на одного человека, отнюдь не означает, что она не отреагировала бы на множество других образов, которые просто не тестировали. В этой области мозга большинство исследованных клеток вовсе не обладают такой исключительностью. Напротив, считают, что при взгляде, например, на Дженнифер Энистон разряжалась не только эта клетка, но и множество других, которые, однако, не являются столь же специфическими. Кроме того, регистрировалась активность лишь небольшого числа нейронов из многих сотен миллионов клеток исследуемой области головного мозга. То обстоятельство, что, несмотря на это, у многих испытуемых на Дженнифер Энистон реагирует одна клетка, указывает, что таких клеток должно быть много. Шанс подвести электрод точно к какой-то одной клетке исчезающе мал. Таким образом, это исследование тоже не доказывает существование «бабушкиной клетки», которая реагировала бы только на одного человека. Однако мы получаем основательное подтверждение того, что для кодирования информации, как об этом догадывались и раньше, требуется меньше нервных клеток, чем думали раньше. Все вместе – хороший пример того, что в результате связей многочисленных нейронов в конце концов кодируется точная концепция или даже образ какого-либо конкретного человека.

Где находится «жесткий диск» головного мозга?

Таким образом, мы принимаем, что в нашем мозге находятся связанные друг с другом нервные клетки и что память хранится именно в этих связях. То есть где-то в мозге. Но где именно? Ствол мозга, мозжечок, промежуточный мозг едва ли являются местом хранения памяти, потому что у этих отделов мозга есть свои, очень важные, особые задачи. Эти отделы помогают нам сохранять жизнь, и, естественно, тоже хранят какую-то информацию. Но за сознание отвечает все же только большой мозг. Не стоит ли нам в первую очередь искать там нашу память?

Нейрофизиологи и исследователи мозга заняты таким поиском уже много лет, причем применяя для этого самые разнообразные методы. Мы все знаем, что существует великое множество людей с расстройствами памяти. Если, кроме того, у таких больных можно установить поражение определенной области головного мозга, то многое говорит за то, что существует взаимосвязь между определенными свойствами памяти и пораженной областью мозга. Если ваш автомобиль забарахлил, то в мастерской специалисты проверят все его детали, и если одна из них сломалась, то велика вероятность того, что проблема связана именно с этой поломкой. Правда, никаких гарантий здесь нет. Может быть, проржавевший провод до сих пор работает исправно, а дефект кроется в другом месте. Механик заменит подозрительную деталь, и если двигатель не заработает, то продолжит поиск неисправности.

У исследователей головного мозга такой возможности, естественно, нет, и на заре развития нейрохирургии довольно частыми были ошибочные решения. Например, когда для того, чтобы устранить какое-либо нарушение, удаляли часть мозга, в результате получали провалы в памяти. На этих мрачных уроках учились специалисты, изучавшие память: если удалить вот этот участок мозга, то пострадает память. Это были довольно информативные указания. Для исследования нормальной памяти проводят опыты на животных, отводя потенциалы от тех или иных участков мозга, а у людей в настоящее время выполняют функциональную магнитно-резонансную томографию. У каждого из этих методов есть свои достоинства и недостатки. По результатам исследований под подозрение (как место хранения памяти) попадают разные области головного мозга. Так где же расположен его «жесткий диск»?

Может быть, в гиппокампе?

Этот участок мозга особенно интересен. Каждый, кто хоть немного интересуется мозгом, наверняка не раз слышал, что гиппокамп особенно важен для памяти. Если в каком-нибудь телевизионном шоу, даже в упрощенном виде, заходит разговор о памяти, то в нем непременно будет упомянут гиппокамп. Собственно, это упоминание напрашивается само собой. Это красивое название происходит от греческого наименования «морского конька». Считают, что эта анатомическая структура напоминает формой это иглокожее животное (я убедился в этом впервые, когда в какой-то передаче картинку, изображающую стилизованного морского конька на плавках, отделили от них и наложили на соответствующую структуру головного мозга). Гиппокамп расположен в глубине мозга, под его корой, но благодаря своей причудливой форме легко выявляется при исследованиях. На самом деле в нашем мозге находятся два гиппокампа, по одному в каждом полушарии.

Естественно, сведения о том, что гиппокамп играет очень важную роль в формировании памяти, соответствуют действительности. В том, что мы об этом знаем, выдающуюся, хотя и печальную, роль сыграл пациент Х. М., страдавший тяжелой формой эпилепсии. Для того чтобы избавить больного от припадков, нейрохирург почти полностью удалил гиппокамп с обеих сторон. Эпилепсию удалось вылечить, но при этом больной практически потерял память. Нарушение было столь явным и специфичным, что этого пациента нейрофизиологи и исследователи мозга изучали и обследовали несколько десятков лет.

Удалось показать, что Х. М. мог пользоваться старыми воспоминаниями, но был не способен откладывать в долговременную память новую эпизодическую информацию. Продолжали работать кратковременная, процедурная и отчасти семантическая память. На практике это приводило к курьезным происшествиям. Так, например, Х. М., возможно, ощущал себя гением всякий раз, когда играл в гольф. Он был уверен, что никогда прежде не играл в эту игру. Но по мячу он каждый раз ударял сильно, уверенно и точно. Фактически он владел необходимыми навыками игры в гольф, что было вполне возможно, так как процедурная память у Х. М. не пострадала, но он всякий раз забывал, что умеет это делать.

Интеллект Х. М. сохранился полностью. В исследовании IQ он показал результат выше среднего. Он охотно и хорошо разгадывал кроссворды. По крайней мере, он умел отвечать на вопросы, ответы на которые не изменились с 1953 года. Однако жизнь сильно изменилась за те 50 лет, которые Х. М. прожил после операции. Когда ему показали мобильный телефон, Х. М. очень быстро понял, что это такое и как надо обращаться с этим прибором, так как кратковременная память не пострадала в результате операции. Однако Х. М. очень скоро забыл, что такое мобильный телефон и для чего он нужен. Каждое утро, просыпаясь, Х. М. был уверен, что на дворе 1953 год, а ему самому нет еще и тридцати. Вероятно, с кем-нибудь такое может приключиться только с похмелья, когда человек думает, что ему тридцать лет, а потом смотрит в зеркало и видит там почтенного старца. Такое можно воспринять как очень мрачную шутку. Х. М. умер в 2008 году в возрасте 82 лет. Свой мозг он завещал науке. Через год после смерти Х. М. его мозг на протяжении 52-часового живого показа был рассечен на 2401 тонкий ломтик. За этим процессом наблюдали сотни тысяч людей. Тот, кто случайно стал зрителем этой передачи, мог, вероятно, усомниться в собственном разуме.



Исследование мозга Х. М. показало, с одной стороны, что у Х. М. помимо почти полного двустороннего удаления гиппокампа (и некоторых других прилегающих к гиппокампу областей) были и другие, правда, незначительные повреждения мозга, которые, возможно, усугубили поражение памяти. С другой стороны, у него сохранилась часть гиппокампа с обеих сторон. Несмотря на то что специалисты считали гиппокамп Х. М. практически неработающим, утверждать с уверенностью этого никто не стал.

Современные исследования с помощью МРТ показывают, что гиппокамп почти всегда участвует в процессах, отвечающих за формирование памяти, однако конкретная роль его в этих процессах пока не установлена. Гиппокамп участвует также в формировании кратковременной памяти, но у таких больных, как Х. М., кратковременная память нормально функционирует и без гиппокампа. В других исследованиях было показано, что гиппокамп участвует в объединении и ассоциации различных видов информации. Согласно современным представлениям, гиппокамп служит местом восприятия новых воспоминаний. Сама кратковременная память располагается где-то в другом месте, но то, что откладывается в ней, в конечном счете попадает именно в гиппокамп. Из гиппокампа информация передается в другие области мозга. Все это напоминает процесс обработки поступившей в какую-то фирму почтовой корреспонденции. Вся почта короткое время хранится в секретариате. Потом рекламу выбрасывают в мусорную корзину, а все остальное распределяют по соответствующим подразделениям, где ею занимаются сотрудники, которые часть сохраняют, а часть выбрасывают. Сортировка почты производится ночью, чтобы днем не отвлекать сотрудников от работы. В случае памяти такой процесс называют ее консолидацией, которая по большей части происходит во время сна, причем информация переходит из гиппокампа в другие области мозга – но не сразу, а несколько позже.

То есть выходит, что гиппокамп играет роль распределительной станции? На самом деле в мозге все устроено немного сложнее. Ясно, что гиппокамп выполняет сетевую, распределительную функцию, но информация может направляться в другие отделы мозга, причем непосредственно, минуя гиппокамп. Так возникает множество копий. То же самое можно представить себе и в случае почты, когда каждый сотрудник непосредственно получает направленное в его отдел письмо, в то время как почтовое отделение оставляет себе только копию. Эта копия хранится недолго, вносится в реестр, где указано, в каком месте хранится оригинал. Гиппокампу как раз и приписывают функции такого указателя. Однако опыт пациента Х. М., который мог вспомнить о вещах и событиях, случившихся за несколько дней до операции, показывает, что в этом случае речь шла лишь об относительно новых воспоминаниях, которые были утрачены. Отсюда следует то, что подтверждается и многими другими исследованиями: гиппокамп не является «жестким диском» головного мозга. Значит, ищем дальше.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации