Электронная библиотека » Борис Конрад » » онлайн чтение - страница 6


  • Текст добавлен: 20 сентября 2017, 12:42


Автор книги: Борис Конрад


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
…или все же во фронтальной коре?

Кора большого мозга, по-латыни называемая кортексом (причем этим термином обозначают всю кору головного мозга), имеет намного больший объем, нежели гиппокамп, и, кроме того, подразделяется на множество участков и областей. Области, с которыми сообщается своими нервными путями гиппокамп, располагаются по большей части в коре головного мозга. Первым делом кора головного мозга делится на доли, а именно лобную, теменную, затылочную и височную. Под этими долями расположен островок, называемый также лимбической системой, к которой, между прочим, относится и гиппокамп. Эти названия мало что говорят неискушенным людям и обозначают, лишь к каким костям черепа прилегают те или иные участки мозга. Конечно, каждый хочет понимать врача, употребляющего те или иные термины, но надо помнить, что они придуманы для того, чтобы точно обозначать структуры и явления, которые имеет в виду произносящий их человек.

Некоторые функции локализованы в четко очерченных областях коры. Зрительный центр, где перерабатывается практически вся зрительная информация, находится преимущественно в затылочной доле. Слуховой центр расположен в височной доле. Центры обработки сенсорной информации находятся в теменной коре. Лобная доля, или, иначе, лобная кора, очень важна для процессов мышления.

Вот здесь мы наконец натыкаемся на золотую жилу! Нет, «жесткого диска» памяти нет и здесь, но именно здесь локализована большая часть рабочей памяти! В передней части мозга, непосредственно под лобной костью, находится передняя часть лобной коры, так называемая префронтальная кора. У человека эта область выражена наиболее отчетливо, и некоторые специалисты считают, что именно она сделала нас людьми в полном смысле этого слова. Давно известно, что поражения этой области приводят к сильным изменениям личности. Самый наглядный пример относится к 1848 году, когда железнодорожный рабочий Финеас Гейдж пережил тяжелейшую травму. Во время проведения взрывных работ на строительстве железнодорожной линии Гейдж нарушил технику безопасности, и длинный железный стержень диаметром три сантиметра, вылетев как пуля из шурфа со взрывчаткой, пробил Гейджу голову, войдя в нее в области левой верхней челюсти и выйдя через правую теменную кость. Финеас Гейдж пережил травму, он даже не потерял сознание, но тем не менее почти вся префронтальная кора его мозга была повреждена. Несмотря на это, за несколько недель у Гейджа восстановились все его физические способности и членораздельная речь. Но личность Гейджа претерпела глубокие и необратимые изменения. Он потерял способность составлять планы и ставить перед собой цели. Снизилась также способность принимать ответственные и разумные решения. Он стал импульсивным, нарушилась его социальная адаптация, в поведении стала преобладать сексуальная распущенность. Кроме того, надо вспомнить, что префронтальная кора созревает позже, чем все остальные отделы мозга. Полное ее развитие заканчивается в возрасте между двадцатью и двадцатью пятью годами. Если вы подумали, что Гейдж стал вести себя как пятнадцатилетний подросток, то будете недалеки от истины.

У других больных с поражениями префронтальной коры наблюдают подобную симптоматику, и при этом у них сильно страдает объем кратковременной памяти. Но что происходит с гипотетическим «жестким диском»? Находится ли в префронтальной коре и хранилище долговременной памяти? На эту тему есть достаточно много научных данных: эта часть мозга имеет множество важных связей с другими отделами головного мозга, в частности и с гиппокампом. В отличие от Х. М., у которого вследствие удаления гиппокампа исчезла способность к усвоению новой информации, у больных с поражениями префронтальной коры сохраняются относительно недавние воспоминания, но зато блокируется доступ к старым воспоминаниям. Делает ли префронтальная кора все? Является ли она одновременно накопителем рабочей памяти, процессором и жестким диском? Нет. Здесь действует уже знакомое нам правило: эта область мозга участвует в процессах обработки памяти, но не является местом ее хранения.

В настоящее время ученые исходят из того, что гиппокамп обрабатывает свежие воспоминания, отбирает достойные сохранения и передает информацию о них дальше, в префронтальную кору. Там происходит их упорядочение и объединение. Одновременно формируются так называемые схемы. Вот наглядный пример. Знаете ли вы покемонов, этих разноцветных монстров, порожденных фантазиями фирмы Nintendo? Ну, например, знаком ли вам Пикачу, типичный представитель покемонов, круглое желтое создание с красными щечками и хвостом в виде молнии? К настоящему времени было придумано более 700 фигурок покемонов, обладающих разнообразными способностями и особенностями. Естественно, все они чем-то похожи друг на друга. Если человек, далекий от этой игры, попытается выучить внешние признаки и свойства отдельных покемонов, то он взвалит на свои плечи очень тяжелую задачу. Однако тот, кто родился между 1990 и 2000 годами, скорее всего, много играл в детстве с покемонами. Среди этих людей, с достаточной вероятностью, можно найти таких, в префронтальной коре которых надежно отложились схемы, касающиеся покемонов. Эти люди знают, так сказать, основное строение покемонов. Даже если такой человек в последние годы не следил за развитием игры, то он легко сможет усвоить черты каких-то новых фигурок и включить их в знакомую схему. Тот же, кто не имеет никакого понятия о покемонах, будет вынужден пользоваться гиппокампом в течение довольно долгого времени для передачи информации в префронтальную кору, а бывший фанат покемонов получит эту информацию непосредственно в префронтальную область, минуя гиппокамп. Правда, результат в обоих случаях будет один и тот же, один процесс отличается от другого лишь некоторыми частностями.

Везде или нигде?

Однако поиски и в других областях мозга не дали никаких результатов. Ни в одной из исследованных областей ученым так и не удалось обнаружить четкое местоположение памяти. Если набрать в поисковике название области мозга и добавить слово «память», то можно найти ссылки на работы, в которых приведены данные соответствующих исследований. Вывод напрашивается однозначный: память – это способность, распространенная по всему мозгу.

Даже одно-единственное воспоминание не может локализоваться в каком-то одном, определенном месте. Когда мы вспоминаем какие-то события, они каждый раз реконструируются заново. Отдельные фрагменты – такие, как формы или даже образ Дженнифер Энистон, – могут быть закодированы в каком-то одном нейроне или в сети из нескольких взаимодействующих нейронов, но в процесс припоминания вовлекаются тысячи нервных клеток.

В 1930–1940-х годах американский ученый Карл Спенсер Лешли пытался в серии довольно жестоких экспериментов «погасить» у крыс определенные воспоминания. Сначала животные после бесчисленных повторений превосходно заучивали путь выхода из лабиринта. Если во время научения или перед ним животным удаляли гиппокамп, то усвоения не происходило. Если же память о правильном пути из лабиринта уже находилась в долговременной памяти, то удаление гиппокампа не влияло на успешность выхода. Лешли продолжил исследование и стал удалять у крыс и другие отделы мозга, но крысы все равно не забывали когда-то усвоенный путь. В конечном счете Лешли стал оставлять крысам только то количество мозга, какое было необходимо для элементарного поддержания жизни. Эти искалеченные крысы едва могли передвигаться, но тем не менее помнили когда-то усвоенный путь выхода из лабиринта. При этом Лешли почему-то пришел к неверному выводу о том, что все воспоминание целиком закодировано в какой-то одной области мозга. Однако это не так. Если, например, животному удаляли зрительную кору, то оно пользовалось для решения задачи воспоминаниями о тактильных и обонятельных ощущениях. Лешли удавалось удалять области, отвечавшие за информацию той или иной модальности и даже многих модальностей, но отнюдь не всех.

Результаты этих опытов оказались настолько убедительными, что вплоть до 1990-х годов нейрофизиологи вообще исключали из научного обихода само понятие о локализации памяти. Только после введения в научные исследования методов визуализации живого мозга стала возможной некоторая коррекция сложившихся представлений. Правда, для ощущений и движений локализация функций была в головном мозге установлена уже давно. Существуют «корковые карты» представительств, на которых представлена схема карты связей ощущений и восприятий с частями тела. Самый известный пример такой нейрофизиологической карты – это «кортикальный гомункулюс».

На основании данных, добытых канадским нейрофизиологом Пенфилдом, можно точка за точкой установить связи определенных областей поверхности тела с определенными участками коры головного мозга. При этом величина поверхности какой-то области тела не равна относительной площади соответствующей области коры мозга. Чувствительность кончиков пальцев обеспечивается намного большим числом нейронов, чем чувствительность кожи всей спины. Наиболее популярный способ подтверждения этого факта заключается в следующем: на кожу кончика пальца наносится раздражение двумя очень близко расположенными остриями игл и человек распознает именно прикосновение двух игл. Напротив, если острия игл раздвинуть на расстояние в несколько сантиметров и нанести одновременно укол на кожу спины, человек воспримет это раздражение как укол одной иглой.



Пенфилд наносил на участки мозга легкие электрические раздражения и смог таким образом выявить соответствующие участки чувствительности и соответствующие двигательные реакции (естественно, эти последние реализовались с помощью вполне определенных мышц), что позволило картировать кору мозга. Известно, что раздражение областей коры левого полушария приводит к возникновению ощущений и двигательных реакций на правой половине тела и наоборот, потому что в спинном мозге проводящие нервные пути перекрещиваются, переходя с одной стороны на другую. При стимуляции других участков головного мозга возникали другие реакции – от сложных галлюцинаций до насильственной продукции речи. Однако при смещении места нанесения раздражения на ничтожную долю миллиметра можно получить совершенно иную реакцию. Кроме того, распределение таких участков сильно варьирует у разных людей. Этот феномен показывает нам, что для обработки информации от органов чувств существует свое картирование (такие карты, касающиеся ощущений множества модальностей, в настоящее время уже составлены), однако это не проясняет ситуацию с дальнейшей обработкой сенсорной информации.

Каждый человек обладает супермозгом

Супермозг! Это слово мы часто слышим в отношении выдающихся мнемонистов, которые поражают зрителей со сцены своей выдающейся памятью. Это, конечно, высочайшая похвала, то в том, что касается содержания, слово «супермозг» является полнейшей бессмыслицей. На собственном опыте я убедился в том, что у меня совершенно обычная, заурядная память, и только упорными тренировками и применением особых техник я добился мировых рекордов и удостоился чести выступать в телевизионных шоу. Однако с научной точки зрения такая переоценка не имеет под собой абсолютно никакой почвы. Так же, как утверждение «моя любимая команда побеждала три раза, когда, идя на матчи, я надевал футболку задом наперед, и теперь я всегда буду так ее надевать», подразумевающее, что это действие каким-то образом влияет на исход игр. Точно так же я сам не являюсь доказательством такого предположения. К тому же я на самом деле не знаю, насколько нормален мой мозг. Кое-кто может в этом усомниться, узнав, что я могу по доброй воле часами рассматривать числа. Такая тренировка вполне может изменить функциональное строение мозга. Есть веские основания исходить из того, что в мозге мнемонистов можно найти особенности, отличающие его от мозга людей в контрольной группе. Почему?

Среди прочего у нас есть данные одного исследования, проведенного в Англии. На рубеже тысячелетий группа ученых под руководством Элеонор Магуайр исследовала группу лондонских таксистов. Какое отношение имеют лондонские таксисты к исследованиям памяти? Самое прямое и непосредственное. Если вы решите стать шофером такси в Лондоне, то вам придется сдать нешуточный экзамен на то, что сами участники таких испытаний называют «Знанием» (The Knowledge). Для того чтобы сдать экзамен, надо наизусть знать названия нескольких тысяч улиц в Лондоне и его пригородах, а также названия тысяч отелей, ресторанов и достопримечательных мест британской столицы, а кроме того, помнить, какие улицы связывают их между собой. Я на сто процентов уверен: тот, кто сдал такой экзамен, в следующей жизни будет навигатором, родившись с исходно увеличенным в размерах гиппокампом. Гиппокамп – это область мозга, о которой известно, что она играет выдающуюся роль в памяти и умении ориентироваться на местности.

В последующих исследованиях было показано, что такие изменения действительно происходят в результате многолетней подготовки к экзамену. То есть перед началом подготовки к экзамену не обязательно иметь большой гиппокамп – он сам увеличится от штудирования карт и путеводителей у соискателей звания лондонского таксиста. Сам собой напрашивается вывод о том, что у спортсменов-мнемонистов тоже имеют место определенные изменения в мозге, так как мнемонистам приходится замечать и запоминать намного больше, чем лондонским таксистам.

Мне и самому интересно как можно больше узнать об этом предмете. После того как я несколько лет изучал физику и информатику, я с радостью воспользовался возможностью сменить поле деятельности и заняться нейрофизиологией. В этой смене нет ничего удивительного, потому что нейрофизиологи занимаются исследованиями головного мозга, а в результате получают множество данных, которые нуждаются в обработке, при проведении которой отнюдь не лишними оказываются познания в информатике и статистике. Для своих исследований я смог пригласить в Мюнхен тридцать из пятидесяти самых известных на тот момент мнемонистов. Мне повезло в том отношении, что в этом спорте с 2004 года лидируют представители Германии и других немецкоязычных стран. Понятно, что я не смог непосредственно заглянуть в головы этих мастеров памяти. Представьте себе картину: два рослых студента держат очередного испытуемого, а рядом стою я с включенной циркулярной пилой… Нет, только не это.

К счастью, за последние несколько десятилетий было изобретено множество способов исследования мозга без вскрытия черепной коробки. Эти способы различаются между собой по точности результатов, а также по пространственному и временному разрешению. Это означает, что, например, с помощью электроэнцефалографии (ЭЭГ) можно исследовать электрическую активность мозга в режиме реального времени с временным разрешением порядка одной миллисекунды, но исследовать можно только активность поверхностных слоев коры мозга. С помощью компьютерной томографии (КТ) можно исследовать весь мозг целиком, но за счет довольно высокой лучевой нагрузки. Кроме того, КТ не позволяет оценить функциональную активность головного мозга. Функциональную активность мозга можно измерять и оценивать с помощью позитронной эмиссионной томографии (ПЭТ), но для этого в организм надо вводить радиоактивные вещества, что безвредно для организма при однократном исследовании, но при повторных исследованиях радиоактивная нагрузка становится помехой, не говоря уже о том, что едва ли человеку понравится, что ему то и дело вводят радиоактивные изотопы. Кроме того, ПЭТ – это очень дорогостоящий метод исследования. Поэтому в настоящее время самое большое распространение получил метод ядерного магнитного резонанса, который в клинической и научной практике называют методом магнитно-резонансной томографии (МРТ).

В трубе магнитно-резонансного томографа

МРТ не сопровождается воздействием рентгеновских лучей и не требует введения радиоактивных изотопов. Для проведения исследования пользуются чрезвычайно сильными магнитными полями и радиоволнами определенных частот. Насколько мы знаем, эти воздействия не опасны для людей, хотя для соблюдения безопасности надо придерживаться определенных правил. Естественно, магниты воздействуют на намагничивающиеся металлы, и поэтому МРТ нельзя выполнять людям с имплантированными кардиостимуляторами или иными электромагнитными приборами. Опасным становится исследование и для людей, в теле которых есть металлоконструкции, которые под влиянием магнитных полей могут разогреваться и приходить в движение.

Если у вас есть время, поинтересуйтесь в YouTube взаимодействием металла и МРТ. Вы увидите, что такое взаимодействие может означать на практике. Многие могут не знать, что магниты в МРТ очень сильны и представляют собой катушки с обмотками из сверхпроводящего материала.

Коротко говоря, без углубления в физические дебри процесса можно сказать, что у некоторых материалов при достижении температуры ниже некоторого уровня электрическое сопротивление скачкообразно падает почти до нуля. Это помогает в течение длительного времени поддерживать в катушке постоянное и сильное магнитное поле. Проблема, однако, заключается в следующем: этот «некоторый уровень» является очень низким и холодным. Страшно холодным. Существует абсолютный ноль температур – ноль градусов по шкале Кельвина. Для того чтобы материалы, используемые в катушках МРТ, приобрели свойство сверхпроводимости, они могут быть теплее абсолютного ноля не более чем на четыре градуса, то есть иметь температуру –269 °C. Но вернемся к магнитно-резонансному томографу: понятно, что требуется много времени, чтобы охладить такую большую массу до требуемой низкой температуры, а значит, машина должна работать все время, даже по ночам, когда все уходят домой и выключают свет. Надо также предупредить любящих родственников о том, что, бросаясь на помощь близким, необходимо помнить о монетах и ключах в своих карманах – они могут словно пушечные ядра вылететь из карманов и поразить пациента, причинив ему ушибы. Ничего хорошего.

Помимо того, на многих людей негативно действует необходимость длительного пребывания в тесном замкнутом пространстве. Почти всегда требуется применение ушных заглушек, чтобы пациенту не докучал довольно сильный шум. Шум возникает, потому что напряженность магнитного поля рядом с сильными магнитами постоянно изменяется под воздействием электромагнитных импульсов частотой несколько миллионов герц. Изображения мозга при использовании этого метода получают следующим образом: тело человека состоит из множества разнообразных элементов. Некоторые из них обладают так называемым ядерным спином, то есть импульсом собственного вращения. К таким атомам относят атомы водорода, а поскольку мы по большей части состоим из воды, постольку из всего числа атомов нашего тела 60 % приходится на атомы водорода. Атом водорода можно представить себе в виде шарика, имеющего ось вращения, вокруг которой атом вращается, словно детский волчок. Помимо всего прочего, этот волчок продуцирует магнитное поле. Без влияния внешнего магнитного поля ось вращения волчка может быть ориентирована в любом произвольном направлении. Однако если поместить человека в катушку магнитно-резонансного томографа, то все эти микроскопические магнитики повернутся в одном направлении под воздействием сильного внешнего магнитного поля.

Если же теперь на организм, помещенный в трубу сканера, воздействовать импульсом высокочастотных радиоволн, то микроскопические магнитики на короткий миг выстроятся в направлении этого импульса. Когда радиоизлучение прекращают, магнитики снова ориентируются вдоль постоянного внешнего магнитного поля. Как долго магнитики будут возвращаться в исходное положение, зависит прежде всего от окружающих атомы водорода молекул. Отзвук этого возвращения будет разным, в зависимости от того, находятся ли магнитики в воздухе, в воде или, скажем, в меду. Так как волчки – атомы водорода сами по себе являются магнитами, то при своем возвращении в исходное положение они возбуждают (индуцируют) в катушке электрический ток. Принцип тот же, что в динамо-машине: магнит вращается в катушке, индуцирует ток, а этот ток зажигает свет в фаре велосипеда. Правда, в данном случае никакая лампочка не загорается, но зато становится ясно, какие ткани окружают тот или иной магнитик, и на основании этих различий строится изображение исследуемой области тела.

Таким способом можно локализовать в мозге скопление жидкости или опухоль, так как в этих образованиях атомы водорода окружены большим или меньшим количеством воды, чем в нормальных тканях головного мозга. Но ввиду того, что различные области мозга отчетливо отделены друг от друга и отличаются друг от друга содержанием нервных клеток, можно, например, сравнивать объемы определенных областей мозга у разных людей и со средними значениями. Например, было показано, что гиппокамп лондонских таксистов превосходит своими размерами средние значения.

Описанный метод недостаточен для того, чтобы исследовать активность тех или иных областей головного мозга. Образование новых связей в головном мозге – процесс длительный и микроскопический, и таким способом измерить его невозможно. При проведении функциональной МРТ (фМРТ) используют другой эффект, называемый BOLD-эффектом. Для полноценной работы мозгу необходим кислород. Богатая кислородом кровь по своим магнитным свойствам отличается от крови с низким содержанием кислорода, что обусловлено тем, что кислород связывается в эритроцитах с содержащим железо белком гемоглобином. Это означает, что в крови с низким содержанием кислорода больше свободных, не связанных с кислородом атомов железа, которые могут реагировать на изменения магнитного поля в сканере. В областях повышенной активности больше приток крови и больше потребление кислорода. Таким образом, регистрируется изменение магнитных свойств крови в зависимости от потребления кислорода в тканях. Следовательно, активность мозга оценивают не прямо, а косвенно, по потреблению кислорода клетками мозга в исследуемой области. Чем выше потребление кислорода, тем выше, следовательно, активность мозга.

Есть, правда, одно обстоятельство, которое надо постоянно иметь в виду. Например, при возникновении активности кислород потребляется сразу, но при этом должна продолжаться непрерывная доставка кислорода. То есть в этом месте должен образоваться недостаток кислорода, который сохраняется в течение нескольких секунд до того, как возобновится доставка кислорода. Представьте себе большую стройку возле скоростного шоссе. Вы смотрите на стройку с вертолета или даже со спутника, и, естественно, не можете различить отдельных рабочих. Однако вы видите, что к определенному месту стройки подъезжают грузовики, доставляющие строительные материалы и увозящие со стройки мусор и прочие отходы. Из этого можно заключить, что стройка внизу идет полным ходом. На самом деле мы этого не видим и не знаем, когда и как производится реальная работа. Землю из котлована надо сначала вырыть и уже потом погрузить в самосвалы.

В деятельности мозга все обстоит несколько сложнее. Мозг работает все время и непрерывно, и все чувства активны в любой момент времени. То есть когда я укладываю испытуемого в катушку магнитно-резонансного томографа и начинаю демонстрировать на экране числа, на которые испытуемый должен обратить внимание, я одновременно вижу великое множество очагов активности, которая не имеет абсолютно никакого отношения к считыванию чисел. Конечно, оно тоже происходит за счет усиления активности областей, отвечающих за зрение, чтение и распознавание цифр. Но этим дело не ограничивается, так как испытуемый ощущает носилки, на которых лежит, слышит звуки работы прибора и понимает, что находится в несколько непривычной обстановке. Все эти данные тоже обрабатываются в его мозге. Возможно, испытуемый голоден, у него чешется левая пятка или он планирует, на что потратить вознаграждение за участие в эксперименте. Я как исследователь в данный момент наблюдаю всю эту активность мозга, не имеющую ровным счетом никакого отношения к памяти. Поэтому при проведении фМРТ надо сравнивать активность мозга в разные моменты времени. Следовательно, я должен предъявить испытуемому числа в другой момент, причем так, чтобы он, не заметив ничего нового, просто начал бы считывать числа. Все прочие процессы идут между тем своим чередом. Если я теперь сравню картину фМРТ в два разных момента, то, если мне повезет, смогу выявить какие-то небольшие участки мозга, которые активизировались в сравнении с исходной картиной, и это даст мне некоторые основания предположить, что именно эти области отвечают за формирование памяти.

На практике, однако, часто бывает недостаточно одного такого сравнения и приходится производить множество сравнений у множества испытуемых, а затем сводить данные воедино и подвергать их статистической обработке, чтобы с наибольшей вероятностью выявить область с измененной активностью. Метод этот сравнительно новый, и поэтому к настоящему времени выявлено мало таких областей, не говоря уже о том, что мы пока можем выявлять лишь большие, хорошо заметные различия в активности разных участков мозга. Процесс обработки данных позволяет получать картины, на которых интересующий нас участок мозга маркируется красным цветом. Если в процессе решения математической задачи в левом полушарии возникает окрашенный участок, то непосвященный (как, впрочем, и исследователь!) легко заключает: все понятно, логика локализована в левом полушарии! На самом деле активация происходит во всем объеме мозга, но мы не в состоянии дифференцированно всю ее маркировать, и приходится прибегать к множественным сравнениям и сложным статистическим методам. Дальнейшие исследования опровергли данное заблуждение, но ложная картина «логика = левое полушарие» уже прочно вбита в головы (и, между прочим, в интернет).

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации