Текст книги "Думай медленно… Решай быстро"
Автор книги: Даниэль Канеман
Жанр: Зарубежная психология, Зарубежная литература
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 10 (всего у книги 47 страниц) [доступный отрывок для чтения: 15 страниц]
Один из лучших примеров подстановки – опрос, проведенный среди немецких студентов. Его участники среди прочих отвечали на следующие два вопроса:
Насколько вы счастливы в последнее время?
Сколько свиданий у вас было за прошлый месяц?
Исследователей интересовала корреляция между ответами. Окажется ли, что студенты, у которых было много свиданий, счастливее других? Как ни странно, корреляция оказалась практически нулевой. Очевидно, личная жизнь при оценке собственного счастья приходила в голову не первой. Другая группа студентов видела те же два вопроса, но в обратном порядке:
Сколько свиданий у вас было за прошлый месяц?
Насколько вы счастливы в последнее время?
На этот раз результаты опроса выглядели совершенно иначе: корреляция между количеством свиданий и общим ощущением счастья оказалась необычайно высокой для соотносимых психологических показателей. Что же произошло?
Объяснение простое, и оно – хороший пример подстановки. Свидания, очевидно, были не главным в жизни студентов (в первом исследовании счастье и свидания не коррелировали), но вопрос о личной жизни вызывал эмоциональную реакцию. Студенты, часто ходившие на свидания, вспомнили о радостной стороне своей жизни, а те, кто делал это реже, вспомнили об одиночестве и неудачах. В такой последовательности при ответе на вопрос об общем счастье эмоции, возникшие в связи с вопросом о личной жизни, еще были свежи.
Случившееся точно повторяет психологический эффект иллюзии размера на рисунке 9. «Ощущение счастья в последнее время» оценивать сложно и непривычно. Ответ требует серьезных размышлений. Однако студентам, которых только что спросили о свиданиях, не пришлось много думать, потому что у них в голове уже имелся ответ на родственный вопрос: насколько счастливы они в своей личной жизни. Они подставили вместо заданного вопроса тот, на который у них был готов ответ.
Здесь, так же как и в примере с иллюзией, мы вправе спросить: неужели студенты запутались? Возможно ли, что они и впрямь считают эти вопросы эквивалентными? Конечно же, нет. Студенты не утрачивают способность различать личную жизнь и жизнь в целом. На вопрос, есть ли разница между личной жизнью и жизнью в целом, они ответят, что это не одно и то же. Однако их не спрашивали о разнице между этими концепциями, а поинтересовались тем, насколько они счастливы. У Системы 1 был наготове ответ.
Речь может идти не только о свиданиях. То же самое обнаруживается, если вопросу о счастье вообще предшествует вопрос об отношениях с родителями или о финансовом положении. В обоих случаях при оценке доминирует удовлетворение конкретной областью интересов. Любой эмоционально важный вопрос, влияющий на настроение, окажет то же действие. Что ты видишь, то и есть. Текущее умонастроение сильно влияет на людей при оценке собственного счастья.
Эвристика аффектаПреобладающее влияние выводов над доводами заметнее всего в ситуациях с вовлечением эмоций. Психолог Пол Словик предложил в виде объяснения эвристику аффекта, под воздействием которой наши предпочтения и неприязни способны формировать наши убеждения об окружающем мире. Ваши политические предпочтения определяют, какие доводы покажутся вам привлекательными. Если вам нравится политика, проводимая в области здравоохранения, то вы считаете ее весьма выгодной и менее затратной, чем предлагаемые альтернативы. Если вы агрессивно настроены в отношении других государств, то, вероятно, считаете, что они слабы и легко подчинятся желаниям вашего правительства. Если вы настроены более кротко, вы, вероятно, думаете, что они сильны и не покорятся чужой воле. Ваше эмоциональное отношение к облучению пищевых продуктов, красному мясу, атомной энергетике, татуировкам или мотоциклам предопределит ваше мнение о пользе и рисках, связанных с их использованием. Если вам не нравится что-то из этого списка, вы, скорее всего, считаете, что риски слишком высоки, а польза пренебрежимо мала.
Это не означает, что ваш разум совершенно закрыт, а убеждения полностью изолированы от информации и разумных рассуждений. Ваши убеждения и эмоциональное отношение могут несколько измениться, когда вы узнаете, что риск от неприятного вам занятия меньше, чем вы думали. Информация о более низком риске также изменит и оценку преимуществ, даже если в полученной вами информации об этом не было ни слова.
Здесь мы видим новую сторону «личности» Системы 2. До сих пор я описывал ее как относительно уступчивого наблюдателя, предоставляющего Системе 1 значительную свободу. В моем представлении Система 2 занимается активным намеренным поиском информации в памяти, сложными вычислениями, сравнениями, планированием и выбором. В задаче про биту и мяч и во многих других примерах взаимодействия двух систем казалось, что Система 2 – главная, что у нее есть способность противостоять предложениям Системы 1, притормаживать развитие событий и проводить логический анализ. Самокритика – одна из функций Системы 2. Однако в вопросах эмоционального отношения к чему-либо Система 2 – не критик, а защитник эмоций Системы 1, она поощряет, а не запрещает. Она ищет в основном ту информацию и доводы, которые согласуются с ее существующими убеждениями, а не ту, которая позволит их проанализировать. Активная, ищущая когерентности Система 1 предлагает решения нетребовательной Системе 2.
Разговоры о подстановках и эвристических методах«Мы еще помним, на какой вопрос пытаемся ответить? Или уже заменили его вопросом полегче?»
«Мы рассматриваем вопрос, добьется ли этот кандидат успеха, но, похоже, ответ даем на вопрос, хорошо ли он держится во время интервью. Давайте не будем делать подстановки».
«Ей нравится проект, поэтому она считает, что затраты на него невелики, а выгоды много. Хороший пример эвристики аффекта».
«Мы используем прошлогодние показатели в качестве эвристической модели, чтобы дать оценку потенциальной стоимости компании через несколько лет. Насколько пригодна такая модель? Какая еще информация нам нужна?»
В таблице ниже приведен перечень характерных черт и действий, относящихся к Системе 1. Каждое предложение в действительном залоге заменяет утверждение в страдательном залоге, более точное с технической точки зрения, но более сложное для понимания, смысл которого заключается в том, что соответствующее событие внутри разума случается автоматически и быстро. Я надеюсь, что этот перечень поможет вам выработать интуитивное «чувство личности» выдуманной Системы 1. Как и у многих известных вам персонажей, у вас будут возникать предчувствия насчет того, что Система 1 сделала бы в других обстоятельствах, и бо́льшая часть ваших предчувствий будет верной.
Характеристики Системы 1
• Порождает впечатления, чувства и склонности; когда Система 2 принимает их, они становятся убеждениями, позициями и намерениями.
• Действует автоматически и быстро, почти или совсем без усилий и без ощущения сознательного контроля.
• Может быть запрограммирована Системой 2 на мобилизацию внимания для обнаружения определенной модели (то есть на проведение поиска).
• После соответствующего обучения умело реагирует на стимулы и раздражители и порождает квалифицированные предчувствия.
• Создает когерентную модель активированных идей в ассоциативной памяти.
• Соединяет ощущение когнитивной легкости с иллюзиями правды, приятными чувствами и пониженной бдительностью.
• Отделяет неожиданное от обычного.
• Предполагает причины и намерения или придумывает их.
• Пренебрегает неоднозначностью и подавляет сомнения.
• Предрасположена верить и подтверждать.
• Преувеличивает эмоциональную согласованность (эффект ореола).
• Сосредоточивается на существующих доказательствах и игнорирует те, которых нет (WYSIATI: что ты видишь, то и есть).
• Генерирует ограниченный набор базовых оценок.
• Представляет множества при помощи норм и прототипов; не интегрирует.
• Сопоставляет уровень интенсивности различных шкал (например, размера и громкости).
• Вычисляет больше, чем намеревалась («мысленная дробь»).
• Иногда подставляет более легкий вопрос вместо трудного (эвристические методы).
• Более чувствительна к переменам, чем к состояниям (теория перспектив)*.
• Переоценивает малые вероятности*.
• Демонстрирует снижающуюся чувствительность к количеству (психофизика)*.
• Реагирует на потери сильнее, чем на выигрыши (неприятие потерь)*.
• Заключает задачи принятия решений в узкие рамки, изолируя их друг от друга[1]1
Подробнее об этом рассказывается в 4-й части книги (прим. автора).
[Закрыть].
Часть II
Методы эвристики и искажения
10
Закон малых чисел
Исследование частоты рака почки, проведенное в 3141 округе США, выявило удивительную закономерность: самый низкий уровень заболеваемости обнаружен в сельских, малонаселенных округах, расположенных в традиционно республиканских штатах на Среднем Западе, Юге и Западе. Что вы думаете по этому поводу?
Ваш разум в последние несколько секунд был очень активен, причем работала преимущественно Система 2. Вы планомерно искали в памяти информацию и формулировали гипотезы. Вам понадобились некоторые усилия: у вас расширились зрачки, измеримо участилось сердцебиение. Но и Система 1 не бездельничала: работа Системы 2 полагалась на факты и предложения, извлеченные из ассоциативной памяти. Вы, вероятно, отвергли мысль о том, что республиканские политические взгляды защищают от рака почки. Скорее всего, в итоге вы сосредоточились на том факте, что округа с низким уровнем заболеваемости в основном сельские. Остроумные статистики Говард Вейнер и Харрис Цверлинг, приводя в пример это исследование, прокомментировали: «Очень легко и соблазнительно сделать вывод, что низкий уровень заболеваемости – прямое следствие здоровой сельской жизни: воздух чистый, вода тоже, еда свежая и без добавок». Очень разумно.
Рассмотрим теперь округа с самым высоким уровнем заболеваемости раком почки. Эти нездоровые округа в основном сельские, малонаселенные и расположены в традиционно республиканских штатах на Среднем Западе, Юге и Западе. Вейнер и Цверлинг в шутку комментируют: «Легко предположить, что высокий уровень заболеваемости – прямое следствие бедности сельской жизни: хорошая медицина далеко, пища жирная, злоупотребление алкоголем и табаком». Конечно же, что-то не так. Сельская жизнь не может служить одновременным объяснением и для высокого, и для низкого уровня заболеваемости раком почки.
Основной фактор здесь – не то, что округа сельские или в основном республиканские. Все дело в том, что население сельских округов малочисленно. Главный урок, который нужно усвоить, касается не эпидемиологии, а сложных отношений между нашим разумом и статистикой. Система 1 отлично приспособлена к одной форме мышления – она автоматически и без усилий опознает каузальные связи между событиями, иногда даже в тех случаях, когда связи не существует. Услышав об округах с высоким уровнем заболеваемости, вы немедленно заключили, что они чем-то отличаются, что у этой разницы есть объяснение. Однако, как мы увидим, Система 1 не слишком способна управляться с «чисто статистическими» фактами, которые меняют вероятность результатов, но не заставляют их случаться.
Случайное событие – по определению – не подлежит объяснению, но серии случайных событий ведут себя чрезвычайно регулярным образом. Представьте себе сосуд, наполненный небольшими шариками. Половина из них – красные, половина – белые. Затем представьте очень терпеливого человека (или робота), который вслепую достает по четыре шарика, записывает число красных, бросает их обратно и повторяет так много-много раз. Если обобщить результаты, то обнаружится, что сочетание «два белых, два красных» появляется почти в шесть раз чаще, чем «четыре белых» или «четыре красных». Это соотношение – математический факт. Результат многократного извлечения шариков из урны можно предсказать с той же точностью, как результат удара молотком по яйцу. Предсказать, как именно разлетятся осколки скорлупы, вы не сможете, но в целом вы уверены в результате. Впрочем, есть одно различие: удовлетворенное ощущение причинной связи, которое вы испытываете, думая о молотке и яйце, в случае с шариками напрочь отсутствует.
С этим связан и другой статистический факт, относящийся к примеру о раке. Из одного и того же сосуда два очень терпеливых экспериментатора по очереди достают шарики. Джек в каждой попытке вытаскивает по 4 штуки, а Джилл – по 7. Они оба делают отметку каждый раз, когда им достаются шарики одного цвета, все белые или все красные. Если достаточно долго этим заниматься, то Джек будет наблюдать такие результаты примерно в 8 раз чаще Джилл (ожидаемый процент составляет 12,5 и 1,56 % соответственно). И вновь ни молотка, ни причины, просто математический факт: наборы из 4 шариков чаще дают однородные результаты, чем наборы из 7.
А теперь представьте население США шариками в огромном сосуде, причем некоторые шарики помечены буквами «РП», что говорит о раке почки. Вы извлекаете наборы шариков и по очереди населяете каждый округ. Выборки в сельских местностях меньше остальных. Как и в игре Джека и Джилл, экстремумы – то есть очень высокие и/или очень низкие уровни заболеваемости раком – с большей вероятностью окажутся в малонаселенных округах. Вот и вся история.
Мы начали с факта, который требует объяснения: уровень заболеваемости раком почки сильно меняется в зависимости от округа, и в этих изменениях есть закономерность. Я предложил статистическое объяснение: экстремумы (высокие и низкие показатели) вероятнее появятся в маленьких выборках, чем в больших. Это – не причина. Маленькое население округа не порождает рак и не спасает от него. Оно просто позволяет уровню заболеваемости быть намного выше (или намного ниже), чем в более многочисленной популяции. Истина состоит в том, что объяснять здесь нечего. На самом деле уровень заболеваемости раком не выше и не ниже нормы; если в округе маленькое население, она лишь кажется такой в отдельно взятом году из-за случайности выборки. Если повторить анализ на следующий год, мы заметим, что в целом ситуация с экстремумами в малых выборках та же, но округа, где в предыдущем году было много случаев рака, необязательно и на этот раз покажут высокий уровень заболеваемости. Если так, то разница между плотно населенными и сельскими округами не считается, это просто артефакты, то есть явления, порожденные исключительно каким-то аспектом метода исследования, в данном случае – различиями в размере выборки.
Вы, может, и удивились моему рассказу, но не восприняли его как откровение. Вам давно известно, что результаты исследований надежнее на больших выборках, и о законе больших чисел слышали даже те, кто статистики совершенно не знает. Но просто «знать» недостаточно, и, возможно, вы обнаружите, что в отношении вас справедливы следующие утверждения:
• Вы не придали значения признаку «малонаселенный», когда читали историю об исследовании частоты заболеваний раком.
• Вы сильно удивились, узнав о разнице между выборками в 4 и 7 шариков.
• Даже сейчас вам требуются определенные умственные усилия, чтобы понять, что следующие два утверждения означают совершенно одно и то же:
– Большие выборки дают более точный результат, чем маленькие.
– Маленькие выборки чаще больших дают экстремумы.
Первое утверждение кажется истинным, но нельзя считать, что вы его поняли, пока интуиция не приняла второе.
Итак, вы знали, что результаты на больших выборках точнее, но сейчас вы, наверное, понимаете, что знали это не очень хорошо. Вы не одиноки. Наше с Амосом первое совместное исследование показало, что даже у опытных исследователей плохая интуиция и зыбкое представление о значении объема выборки.
Закон малых чиселМое сотрудничество с Амосом в 1970-е годы началось с дискуссии об утверждении, что люди обладают интуитивным статистическим чутьем, даже если их статистике не обучали. На семинаре Амос рассказал нам об исследователях из Мичиганского университета, которые в целом оптимистично относились к интуитивной статистике. Меня эта тема очень волновала по личным причинам: незадолго до того я обнаружил, что я – плохой интуитивный статистик, и мне не верилось, что я хуже других.
Для психолога-исследователя изменчивость выборки – не просто странность, это неудобство и помеха, которая дорого обходится, превращая любое исследование в игру случая. Предположим, вы хотите подтвердить гипотезу, что словарный запас шестилетних девочек в среднем больше, чем словарный запас мальчиков того же возраста. В объеме всего населения гипотеза верна, у девочек в шесть лет словарный запас в среднем больше. Однако девочки и мальчики бывают очень разными, и можно случайно выбрать группу, где заметной разницы нет, а то и такую, где мальчики набирают больше баллов. Если вы – исследователь, такой результат вам дорого обойдется, поскольку, потратив время и усилия, вы не подтвердите правильность гипотезы. Риск снижается только использованием достаточно большой выборки, а те, кто работает с маленькими выборками, отдают себя на волю случая.
Риск ошибки в каждом эксперименте оценивается при помощи довольно простой операции, однако психологи не пользуются вычислениями для определения размера выборки, а принимают решения в соответствии с собственным, зачастую ущербным, пониманием. Незадолго до дискуссии с Амосом я прочитал статью, прекрасно иллюстрирующую типичные ошибки исследователей. Автор отмечал, что психологи сплошь и рядом используют настолько маленькие выборки, что рискуют не подтвердить верные гипотезы с вероятностью 50 %! Ни один разумный исследователь не примет такой риск. Правдоподобным объяснением казалось то, что решения психологов относительно размера выборок отражали господствующие интуитивные заблуждения о диапазоне изменчивости.
Меня поразили содержащиеся в статье объяснения, проливающие свет на проблемы с моими собственными исследованиями. Как и большинство психологов, я постоянно использовал слишком маленькие выборки и часто получал бессмысленные, странные результаты, оказывавшиеся артефактами, которые порождал сам метод моих исследований. Мои ошибки были тем постыднее, что я преподавал статистику и умел вычислять размер выборки, необходимый для снижения риска неудачи до приемлемого уровня. Но я никогда этим не занимался при планировании экспериментов и, подобно другим исследователям, верил традиции и собственной интуиции, не задумываясь о проблеме всерьез. К моменту, когда Амос посетил мой семинар, я уже осознал, что моя интуиция не работает, а во время самого семинара мы быстро пришли к выводу, что ошибаются и оптимисты из Мичиганского университета.
Мы с Амосом решили выяснить, есть ли среди исследователей такие же наивные глупцы, как я, и допускают ли те же ошибки ученые, обладающие математическими знаниями. Мы разработали опросник с описанием реалистичных исследований и успешных экспериментов. Опрашиваемые должны были определить размеры выборок, оценить связанные с этими решениями риски и дать советы гипотетическим аспирантам, планирующим научно-исследовательскую работу. На конференции Общества математической психологии Амос провел опрос присутствующих (включая авторов двух учебников по статистике). Результаты оказались очевидны: я был не одинок. Почти все респонденты повторили мои ошибки. Выяснилось, что даже эксперты недостаточно внимательны к размеру выборки.
Первая статья, написанная мной в соавторстве с Амосом, называлась «Вера в закон малых чисел». В ней шутливо пояснялось, что «…интуитивная оценка размера случайных выборок, похоже, удовлетворяет закону малых чисел, гласящему, что закон больших чисел с тем же успехом применим и к малым». Также мы включили в статью настойчивую рекомендацию для исследователей относиться к своим «статистическим предчувствиям с недоверием и при любой возможности заменять впечатления вычислениями».
Предпочтение уверенности сомнениюПо результатам телефонного опроса 300 пенсионеров, 60 % поддерживают президента.
Если бы вас попросили изложить смысл этого предложения в трех словах, как бы вы это сделали? Почти наверняка вы бы сказали: «Пенсионеры поддерживают президента». Эти слова передают суть истории. Опущенные детали опроса (то, что его проводили по телефону, и количество респондентов) сами по себе неинтересны, они просто описывают исходные условия. При другом размере выборки вы все равно сказали бы то же самое. Конечно, абсурдное количество – 6 или 60 миллионов – привлекло бы внимание. Но если вы профессионально этим не занимаетесь, вы, возможно, почти одинаково отреагируете на выборку из 150 и 3000 человек. Фраза «Люди не уделяют должного внимания размеру выборки» именно это и означает.
Сообщение об опросе содержит информацию двух типов: историю и ее источник. Естественно, вы больше обращаете внимание на саму историю, чем на достоверность результатов. Однако, если достоверность невысока, сообщение не усвоят. Услышав, что «Группа сторонников провела некорректный и тенденциозный опрос, чтобы показать, что пенсионеры поддерживают президента», вы, конечно же, отвергнете эту информацию, результаты опроса не станут частью того, во что вы верите. Вместо этого некорректный опрос и его фальшивые результаты превратятся в очередную историю о вранье политиков. В таких явных случаях вы можете принять решение не верить. Но достаточно ли хорошо вы ощущаете разницу между «Я прочел в The New York Times…» и «Я слышал возле кулера…»? Умеет ли ваша Система 1 различать степени веры? Принцип WYSIATI предполагает, что нет.
Как уже упоминалось, Система 1 не склонна к сомнениям. Она подавляет неоднозначность и самопроизвольно составляет когерентные истории. Если сообщение не отвергается немедленно, то связанные с ним ассоциации будут распространяться так, как если бы оно было верным. Система 2 способна сомневаться, поскольку может одновременно рассматривать несовместимые варианты. Однако поддерживать сомнения труднее, чем уверяться в чем-либо. Закон малых чисел – проявление общей склонности к уверенности вместо сомнений, которая под разными видами еще не раз появится в следующих частях.
Сильная предрасположенность верить, что маленькие выборки точно представляют все население, означает и нечто большее: мы склонны преувеличивать последовательность и когерентность увиденного. Излишняя вера исследователей в результаты нескольких наблюдений сродни эффекту ореола, часто возникающему у нас чувству, что мы знаем и понимаем человека, о котором нам, по сути, известно мало. Система 1 предвосхищает факты, составляя по обрывочным сведениям полную картину. Механизм для поспешных выводов ведет себя так, будто верит в закон малых чисел. В целом он создает чересчур осмысленную картину реальности.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?