Электронная библиотека » Дэвид Иглмен » » онлайн чтение - страница 5


  • Текст добавлен: 15 декабря 2021, 08:43


Автор книги: Дэвид Иглмен


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

Глава 4. Что в него ни поступает, все он, умница, постигает

Любой человек может, будь на то его желание, стать скульптором собственного мозга.

Сантьяго Рамон-и-Кахаль (1852–1934), испанский нейробиолог, нобелевский лауреат

Майкл Хорост от рождения страдал тугоухостью, но в молодые годы вполне обходился слуховым аппаратом. До тех пор, пока в один не очень прекрасный полдень не обнаружил, что батарейка в его аппарате совсем иссякла. Так он, во всяком случае, подумал. Батарейку Майкл заменил, однако звуки внешнего мира все равно не достигали мира внутреннего. Он тотчас же поехал в ближайший пункт скорой помощи, где и обнаружилось, что остатки его слуха – тоненькая звуковая ниточка, всю жизнь связывавшая его с окружающим миром, – почили в бозе, окончательно и безвозвратно[87]87
  Chorost M (2005). Rebuilt: how becoming part computer made me more human (Boston: Houghton Mifflin); Chorost M (2011). World wide mind: the coming integration of humanity, machines, and the internet (New York: Free Press). Также см. Chorost M (2005). My bionic quest for bolero, Wired.


[Закрыть]
.

Это означало, что слуховые аппараты ему больше не помогут: подобные устройства улавливают акустические сигналы и усиливают их громкость при передаче недужной слуховой системе. Для некоторых типов тугоухости такая стратегия действенна, но при условии, что остальные звенья системы, следующие за барабанной перепонкой, работают нормально. Если внутреннее ухо поражено и не выполняет свои функции, никакое усиление звука не поможет. Именно это произошло с Майклом. Все указывало на то, что он навеки распростился со способностью воспринимать звуковую картину мира.

Однако позже Майкл все же нашел еще одну возможность восстановить слух. Взвесив все за и против, в 2001 году он решился на операцию по вживлению кохлеарного имплантата. Это крошечное устройство обходит поврежденную часть внутреннего уха, чтобы напрямую передавать сигнал функционирующему нерву (представьте его как кабель передачи данных). По сути, это мини-компьютер, устанавливаемый во внутреннее ухо; звуковая информация из внешнего мира поступает на микрофон, а от него посредством крошечных электродов передается слуховому нерву.

Таким образом удается обойти поврежденное внутреннее ухо, но это вовсе не значит, что опыт акустического восприятия приобретается без труда. Майклу после имплантации пришлось учиться распознавать незнакомый язык электрических сигналов, поступающих в его слуховую систему:

«Когда через месяц после операции впервые включили имплантат, первые обращенные ко мне слова для меня звучали так: “Ззззззззз cзз сзвиззз тр звфзззззззз?” Мой мозг постепенно учился истолковывать эти чуждые моему пониманию звуки. Прошло немного времени, и прежняя абракадабра “Ззззззззз cзз сзвиззз тр звзззззззз?” превратилась в “Что ты ел на завтрак?” и стала понятна мне. Несколько месяцев практики, и я снова мог пользоваться телефоном и даже поддерживать разговор посреди гомона в баре или кафетерии».

Хотя на первый взгляд идея вживить в тело мини-компьютер кажется немного фантастической, кохлеарные имплантаты представлены на рынке с 1982 года, и более полумиллиона людей уже носят в своих головах эту бионику, радуясь звукам голосов, скрипу дверей, смеху и мелодиям из музыкальных автоматов. Программное обеспечение кохлеарного имплантата поддается как взлому, так и обновлению, поэтому Майкл потратил годы, чтобы получать с его помощью информацию и обходиться без нового хирургического вмешательства. Почти через год после активации имплантата Майклу удалось разработать программу с вдвое большим разрешением. Как он выразился, «если у моих друзей слух с годами неизбежно снизится, то мой только улучшится».

* * *

Терри Биланд живет неподалеку от Лос-Анджелеса. Ему диагностировали пигментный ретинит – дегенеративное заболевание сетчатки (это тонкий слой фоторецепторов на дне глаза). Вот как он отреагировал на страшную новость: «Самое последнее, что бы ты хотел узнать о себе в свои 37 лет, – это что ты слепнешь, а медицина в твоем случае бессильна»[88]88
  Fleming N (2007). How one man “saw” his son after 13 years, Telegraph.


[Закрыть]
.

Но потом Терри выяснил, что выход у него все-таки есть, если только ему достанет смелости воспользоваться им. И в 2004 году он стал одним из первых пациентов, которым провели экспериментальную процедуру по имплантации ретинального бионического чипа (это крошечное устройство с электронной схемой устанавливается по центру сетчатки с внутренней стороны глаза). К чипу по беспроводной связи поступает сигнал от встроенной в специальные очки видеокамеры. Электроды передают слабые электрические разряды неповрежденным клеткам сетчатки, благодаря чему в прежде пустынном канале зрительного нерва генерируются сигналы. Зрительный нерв Терри не был поврежден, и пускай фоторецепторы в его сетчатке погибли, сам нерв по-прежнему жаждал сигналов, которые мог бы передавать в мозг.

Операцию по пересадке миниатюрного чипа провела команда специалистов из Южнокалифорнийского университета. Сама операция прошла без сучка и задоринки, главное испытание началось позже. Исследователи не без внутреннего трепета включали электроды один за другим. Позже Терри рассказывал: «Так здорово было увидеть хоть что-то. Они по очереди проверяли электроды, и вроде как световые пятнышки вспыхивали – маленькие такие, даже меньше, чем десятицентовик[89]89
  Диаметр монеты – 17,91 мм. Прим. пер.


[Закрыть]
».

В первые дни глаза Терри улавливали только крошечные пятна света – нельзя сказать, чтобы такой успех окрылял. Однако постепенно зрительная кора приспособилась извлекать из поступающих к ней сигналов более понятную информацию. Через какое-то время Терри уже мог определить, что рядом с ним его восемнадцатилетний сын: «Сын шел рядом, мы гуляли… Я-то помнил его еще пятилетним мальчонкой и вот в первый раз с тех пор снова его видел. И не постыжусь признаться, что кое-кто в тот день даже немножко пустил слезу».

Четкая визуальная картинка у Терри не возникала; скорее он видел просто сетку из световых точек. Но, и это самое важное, теперь перед ним широко распахнулись заточавшие его во тьме двери. Со временем мозг научился лучше распознавать поступающие в зрительную кору сигналы. Мужчина не мог разглядеть отдельные черты лица человека, но общее впечатление о его внешности, пускай и смутное, все же складывалось. Хотя у ретинального чипа Терри степень разрешения невысока, ее хватает, чтобы дотронуться до расставленных в случайном порядке предметов в помещении, а на улице разглядеть белые полосы пешеходной зебры и самостоятельно перейти дорогу[90]90
  Ahuja AK et al. (2011). Blind subjects implanted with the argus ii retinal prosthesis are able to improve performance in a spatial-motor task, Br J Ophthalmol 95 (4): 539–543.


[Закрыть]
. Терри с гордостью рассказывает: «У себя дома или в гостях я могу войти в любую комнату и включить люстру или различить проникающий через окно свет. А идя по улице, не натыкаюсь на низко свисающие ветви: я вижу их края, вот и обхожу» (рис. 4.1).


Рис. 4.1. Эти цифровые устройства отправляют мозгу информацию на языке, несколько не совпадающем с естественно биологическим, к которому привычен мозг. Тем не менее мозг ухитряется сообразить, как воспользоваться этой информацией

Javier Fadul, Kara Gray, and Culture Pilot


Идея протезирования слуха и зрения десятилетиями всерьез обсуждалась в научном сообществе. Однако никто всерьез не рассчитывал, что подобного рода технологии могут дать желаемый эффект. В самом деле, внутреннее ухо и сетчатка глаза обрабатывают входные сенсорные сигналы поразительно сложными и изощренными способами. Сумеет ли остальная часть мозга расшифровать и понять сигналы, поступающие от микроскопического электронного чипа, который изъясняется на диалекте Кремниевой долины вместо родного для наших органов чувств языка биологии? Или, наоборот, нижележащие нейронные сети воспримут посылаемые чипами паттерны слабых электрических вспышек как полнейшую тарабарщину? Так недалекий умом чужестранец упорно выкрикивает что-то на своем языке в глупой надежде, что окружающие в конце концов поймут его вопли.

Как ни удивительно, в случае с мозгом такая топорная стратегия срабатывает: обитатели этой страны научаются понимать язык незнакомца.

Но как?

Ключ к пониманию данного феномена упрятан в мозге уровнем ниже: ваши полтора килограмма мозговой ткани не в прямом смысле слышат и видят звуки и образы внешнего мира. Напомню, эти полтора килограмма навеки заключены в безмолвных потемках черепа и умеют распознавать лишь электрохимические сигналы, потоками притекающие через различные каналы передачи данных. Ни с чем другим, кроме этих сигналов, мозг дела не имеет.

Нам еще предстоит изучить, как это происходит и почему, но мозг наделен уникальным даром принимать такие сигналы и искусно извлекать из них паттерны. И приписывать им смыслы. Из этих смыслов выстраивается ваш субъективный опыт. Мозг – это орган, который в своей кромешной тьме преобразует электрохимические разряды в красочное шоу на подмостках вашего мира. Буйство красок и переливы ароматов, эмоции и ощущения – все кодируют триллионы деловито снующих в кромешной тьме сигналов, точно так же, как вереницы скучных нулей и единиц кодируют в мозге компьютера роскошную картинку-заставку.

Мистер Картофельная Голова и его стратегия завоевания планеты

Представьте, что вы попали на остров, все обитатели которого слепы от рождения и не знают, что такое видеть. Зато все умеют читать по Брайлю и считывать кончиками пальцев входные сигналы в виде крохотных символов из выпуклых точек. Касаясь этих малюсеньких бугорков, они разражаются смехом или заливаются слезами. Но разве возможно вместить всю эту гамму эмоций в кончики пальцев? И вот вы пытаетесь растолковать островитянам, что при чтении хорошей книги вы направляете пару сферических органов, которые размещаются у вас на лице, на ряды символов из палочек и закорючек. Эти органы, говорите вы, изнутри выстланы клетками, которые фиксируют столкновения с фотонами, благодаря чему вы распознаете форму подобных символов. А до этого вы заучили набор правил, какими условными символами обозначаются те или иные звуки. При виде каждого символа вы мысленно произносите короткий звук, представляя, что услышите именно его, если кто-то произнесет этот звук вслух. Возникший таким образом паттерн нейрохимической сигнализации и определяет, развеселитесь вы или загрустите. И вы будете не вправе винить этих людей за то, что им трудно понять ваши разъяснения.

Логика в конце концов приведет вас с островитянами к пониманию простой истины: кончик пальца, как и глазное яблоко, представляет собой периферическое устройство, которое преобразует поступающую из окружающего мира информацию в электрические импульсы в нервах. А мозг берется за нелегкий труд их интерпретации. И вы придете к общему согласию, что все в конечном счете упирается в эти самые импульсы, триллионами снующие туда-сюда по мозгу, и что сам способ подачи входных сигналов не имеет значения.

Словом, какую информацию ни загружай в мозг, он обязательно приспособится к ней и научится извлекать из нее все, что может. Если входные данные структурированы и кодируют некое важное сведение об окружающей реальности (а также отвечают еще ряду требований, о которых пойдет речь в главе 5), мозг, будьте уверены, догадается, как его раскодировать (рис. 4.2).


Рис. 4.2. Органы чувств питают мозг из многих источников информации

Печатается с разрешения автора


Из сказанного выше проистекает любопытный вывод: мозг не знает – да ему это и неважно, – откуда к нему поступают данные. Какого бы рода ни была информация, он всегда сообразит, как извлечь из нее смысл и пользу.

Благодаря этому мозг относится к разряду машин с очень высокой эффективностью. В сущности, это универсальное вычислительное устройство. Мозг усваивает любые доступные ему сигналы и определяет – почти оптимально, – что с ними можно сделать. Данная стратегия, как я полагаю, развязывает руки Матушке-природе, позволяя экспериментировать с разнообразными каналами ввода данных.

Я называю это свойство мозга моделью эволюции имени мистера Картофельная Голова. И не случайно выбрал для метафоры такую игрушку – пластиковую картофелину, которой можно придать любой облик с помощью прилагающегося к ней набора ручек-ножек, фрагментов лица и разнообразных аксессуаров. Мне хотелось подчеркнуть, что наши органы чувств (глаза, уши, подушечки пальцев) – всего лишь периферические устройства типа plug-and-play («подключи и пользуйся»). Стоит только пожелать, и они тут же к вашим услугам. А мозг догадывается, что делать с поступающими от них сигналами (рис. 4.3).


Рис. 4.3. Гипотеза «Мистер Картофельная Голова»: подключай органы чувств, а мозг сам придумает, как их использовать

Javier Fadul, Kara Gray, and Culture Pilot


В итоге Мать-природа может создавать новые типы чувств, просто выстраивая новые периферии. Иными словами, определившись с принципами действия мозга, она может вволю перебирать и пробовать в действии разные виды входных каналов, чтобы подключаться к различным источникам питания в окружающем мире. Информацию, которую несут отраженные электромагнитные волны, улавливают фотонные детекторы в глазах. Колебания воздуха разной частоты (звуковые волны) улавливаются акустическими детекторами ушей. Информацию о температуре и характере поверхностей собирают простыни чувствительной материи, называемой в обиходе кожей. Химические сигнатуры запахов и вкусов вдыхаются через нос и ощущаются языком. Все это преобразуется в импульсы, проносящиеся по нервным волокнам во тьме черепа.

Поразительная способность мозга принимать любой входящий сенсорный сигнал перекладывает бремя исследования и освоения новых типов ощущений на внешние сенсорные устройства. Как мистеру Картошке можно приставить какой угодно нос, или глаза, или рот, так и природа приставляет к мозгу разного рода инструменты для обнаружения источников питания во внешней среде.

Посмотрите на периферические устройства стандарта plug-and-play для вашего компьютера. Чем этот стандарт так важен? Тем, что благодаря ему компьютеру вовсе не обязательно знать о существовании XJ-3000 Super WebCam, которая будет изобретена лет через несколько; ему достаточно, чтобы он был совместим с незнакомым произвольно выбранным устройством и мог получать потоки данных, когда оно будет подключено. Вот почему, когда на рынке появляется очередная периферия, вам нет нужды покупать новый компьютер, а можно спокойно подключить ее к тому, что уже живет у вас дома. Ваш компьютер и есть центральное устройство, порты которого предназначены для стандартного подключения любой периферии[91]91
  Моя аналогия слегка прихрамывает, потому что в мире компьютеров стандарт plug-and-play основан на согласованных правилах подключения: при выпуске периферическое устройство уже содержит некоторую информацию о себе и передает ее компьютеру, чтобы центральный процессор знал, что делать. В отличие от компьютера, мозг применяет несколько иной протокол. Предположительно, его периферические устройства – например, глаз – ничего о себе не знают, а просто делают то, что делают. Зато мозг способен научиться извлекать поступающую от них полезную информацию: проще говоря, указания, как ими пользоваться.


[Закрыть]
.

Догадываюсь, что вам представляется довольно странным рассматривать наши периферические детекторы сигналов как самостоятельные, отдельные от нас устройства. Разве в их создании не поучаствовали тысячи наших генов? И разве эти гены не совпадают с генами в других частях и органах тела? Неужели мы действительно можем рассматривать нос, глаз, ухо или язык как отдельное от нас устройство? Я глубоко исследовал данный вопрос. Ведь если модель имени мистера Картошки верна, не порождает ли она предположение, что мы смогли бы отыскать в нашей генетике простые тумблеры-переключатели, которые отвечали бы за наличие или отсутствие у нас какого-то из этих периферических устройств?

Как обнаружилось, не все гены равны. Они распаковываются в восхитительно точном порядке, и экспрессия одного дает толчок экспрессии следующего, подчиняясь изощренно сложному алгоритму прямой и обратной связи. Таким образом, в генетической программе присутствуют критические узлы для формирования периферии (скажем, носа). И, значит, такую программу можно включить или отключить.

Откуда нам это известно? Посмотрим, какие возникают мутации, когда генетика начинает немного барахлить. Возьмем, например, такую патологию, как аплазия носа (это когда ребенок рождается на свет без носа, то есть на лице нет и следов его присутствия). У младенца Эли, родившего в 2015 году в Алабаме, нос начисто отсутствует, равно как и носовая полость вкупе с системой обоняния (рис. 4.4)[92]92
  Фото сделано Sharon Steinmann, AL.com. Родившийся в Алабаме младенец без носа; его мама считает, что он безукоризненно совершенен, ABC News, www.abcnews.go.com.


[Закрыть]
. Информация о подобной мутации ужасает и не укладывается в голове, однако в рамках логики plug-and-play аплазия носа предсказуема: стоило генам легонько дрогнуть, и пожалуйста – периферия просто не выстроилась.


Рис. 4.4. Младенец Эли появился на свет без признаков носа

Sharon Steinmann / AL.com / The Birmingham News


Если наши органы чувств можно рассматривать как устройства стандарта plug-and-play, значит, допустимо предположить, что имеются случаи, когда младенец рождается без какого-либо органа чувств (скажем, без глаз). И такая патология, называемая анофтальмией, действительно имела место: в 2014 году в Чикаго родился мальчик Джорди с таким дефектом (рис. 4.5)[93]93
  Lourgos AL (2015). Family of peoria baby born without eyes prepares for treatment in Chicago, Chicago Tribune, www.chicagotribune.com.


[Закрыть]
. Под его веками была только гладкая лоснящаяся кожа. Хотя поведение малыша и нейровизуализация указывали, что остальные области его мозга функционируют как полагается, периферические устройства, способные улавливать фотоны, отсутствовали. Бабушка Джорди говорит: «Он будет узнавать нас через осязание». Браниа Джексон, мама мальчика, сделала на правой лопатке татуировку шрифтом Брайля: «Я люблю Джорди», чтобы сын, пока подрастает, обнимая маму, все время осязал ее любовь.


Рис. 4.5. Младенец Джорди родился без глаз; под веками у него только гладкая кожа

Anthony Souffle / Chicago Tribune / Getty Images


Некоторые дети рождаются без ушей. При этой редкой патологии – анотии – у ребенка полностью отсутствует ушная раковина, внешняя часть уха (рис. 4.6).


Рис. 4.6. Ребенок с врожденным отсутствием ушей

Печатается с разрешения KTTC News


Подобным же образом мутация в одном-единственном белке приводит к врожденному отсутствию внутреннего уха[94]94
  Данная патология называется LAMM-синдромом (labyrinthine aplasia, microtia, and microdontia – аплазия лабиринта, микротия, микродентия). Проявляется в аномалии развития ушей и зубов, а внешне – в виде ушных раковин очень малого размера и очень мелких разреженных зубов. Причина в том, что мутировавший ген (FGF3) запускает каскад клеточных реакций, которые ведут к формированию структур внутреннего и внешнего уха, а также зубов. В результате мутации ген FGF3 не посылает правильного сигнала активации клеток, что и приводит к LAMM-синдрому.


[Закрыть]
. Излишне говорить, что дети с такими генными мутациями абсолютно лишены слуха, поскольку у них отсутствуют периферические устройства, способные преобразовывать колебания волн сжатого воздуха в электрические импульсы.

Можно ли родиться без языка, будучи в остальном практически здоровым человеком? Конечно. Именно такой случай наблюдался в Бразилии у новорожденной девочки по имени Ауристела. С самого рождения дышать, есть и говорить было для нее сущим мучением. Уже во взрослом возрасте Ауристеле сделали операцию, в результате которой она обрела язык. Теперь девушка дает многочисленные интервью, в которых, не жалея драматических красок, описывает, каково ей было расти безъязыкой[95]95
  Wetzel F (2013). Woman born without tongue has op so she can speak, eat, and breathe more easily, Sun, Jan. 18, 2013.


[Закрыть]
.

Перечень органов и членов, без которых могут рождаться люди, бесконечен. Так, у некоторых детей на коже и на внутренних органах от рождения отсутствуют болевые рецепторы, что делает их совершенно нечувствительными к несильным мучениям и страданиям[96]96
  Такую аномалию называют врожденной нечувствительностью к боли, или врожденной анальгезией. См. Eagleman DM, Downar J (2015). Brain and behavior (New York: Oxford University Press).


[Закрыть]
. (На первый взгляд может показаться, что свобода от боли дает определенное преимущество. Увы, это не так: тела детей, неспособных чувствовать боль, сплошь покрывают шрамы и рубцы, и часто они умирают в очень молодом возрасте, поскольку не знают, чего именно следует избегать.) Помимо болевых кожа снабжена многими другими рецепторами, в том числе тензорецепторами (рецепторами растяжения), рецепторами зуда, а также терморецепторами. Ребенок может родиться с отсутствием кожных рецепторов одного из этих типов, тогда как остальные рецепторы у него в полном наличии. Отсутствие тех или иных кожных рецепторов носит собирательное название анафия – потеря или ослабление осязания.

Стоит только задуматься об этом скопище всевозможных аномалий, и сразу понимаешь, что наши периферические органы чувств формируются (распаковываются) в силу конкретных генетических программ. Малейший сбой в работе генов может остановить программу, и периферический орган не разовьется, а мозг не будет получать потока сигналов данного типа.

* * *

Идея об универсальности коры головного мозга позволяет предположить, каким образом в процессе эволюции могли добавляться новые сенсорные навыки: при мутации периферического устройства новый поток данных попадает в какой-нибудь участок мозга и запускаются механизмы их нейронной обработки. Таким образом, новые сенсорные навыки всего-то требуют образования новых сенсорных устройств.

Вот почему в животном царстве мы находим богатое разнообразие диковинных периферических устройств, каждое из которых выковывалось миллионами лет эволюции. Будь вы змеей, ваша последовательность ДНК скомандовала бы телу распаковать у вас на голове термочувствительные ямки, способные воспринимать инфракрасное излучение. Родись вы рыбой хвостопёрой ножетелкой (ее еще называют «черный нож»), буковки в вашем генетическом коде распаковали бы вам особый сенсорный орган – электрорецепторы, улавливающие малейшие возмущения в электрическом поле. Родись вы бладхаундом или поисковой собакой другой породы, ваш генетический код содержал бы указания снабдить вас огромной мордой, густо усеянной обонятельными рецепторами. Или, например, вы могли бы родиться раком-богомолом, и тогда, согласно генетическим инструкциям, обзавелись бы глазами с шестнадцатью типами фоторецепторов. У звездоноса[97]97
  Звездонос, или звездорыл (лат. Condylura cristata) – небольшое млекопитающее семейства кротовых. Прим. ред.


[Закрыть]
кожные наросты на носу наподобие пальчиков, расположенные по 11 штук с каждой стороны, выполняют роль органов осязания и создают в его мозге трехмерную модель системы прокопанных им подземных ходов. Многие птицы, коровы, а также насекомые обладают магниторецепцией, это чувство дает им возможность ощущать магнитное поле Земли, и потому они прекрасно ориентируются в пространстве.

Требовалось ли мозгу каждый раз заново перестраиваться под соответствие каждому из этих разнообразных периферических устройств? Думаю, что нет. На протяжении эволюции случайные мутации приводили к образованию самых необычных органов чувств, и принимающий от них информационные потоки мозг всякий раз сам додумывался, каким образом использовать их. А когда главные принципы действия мозга раз и навсегда установились, природе остается только одна забота – изобретать новые периферийные сенсоры.

Такая точка зрения подсказывает нам интересный вывод: сенсорные устройства, с которыми мы приходим в мир (глаза, носы, уши, языки, кончики пальцев), далеко не исчерпывают всего спектра сенсоров, какими теоретически мы могли бы обладать. Наш конкретный инструментарий просто унаследован нами в результате долгого и прихотливого эволюционного пути.

Однако вполне возможно, что мы совсем не обречены пользоваться только тем набором органов чувств, каким снабдила нас природа. В конце концов, способность мозга извлекать смысл и пользу из поступающих к нему данных самого разного рода намекает нам на предположение довольно неожиданное и где-то даже сумасбродное: какой-либо сенсорный канал мог бы передавать мозгу информацию, которая в норме поступает через другой сенсорный канал. Например: а что, если преобразовать поток данных от видеокамеры в тактильные ощущения на коже? Сумеет ли мозг, хорошенько подумав, выстроить зрительную картину окружающего мира, просто осязая ее?

Добро пожаловать в мир, что всякой выдумки странней[98]98
  Перефразированная цитата из поэмы Джорджа Байрона «Дон Жуан» (у Байрона: «Но правда всякой выдумки странней»). Прим. ред.


[Закрыть]
, – мир сенсорного замещения.

Сенсорное замещение

Сама по себе мысль, что мозгу можно поставлять информацию по неправильным каналам, вероятно, выглядит слишком умозрительной и даже дикой (рис. 4.7). Между тем первая научная статья, где продемонстрировано практическое воплощение этой идеи, уже полвека как опубликована в журнале Nature.


Рис. 4.7. Сенсорное замещение: отправляйте мозгу информацию непривычными для него проводящими путями

Javier Fadul, Kara Gray, and Culture Pilot


Эта история берет начало еще в 1958 году, когда практикующий врач Пол Бах-и-Рита[99]99
  Пол Бах-и-Рита (1934–2006) – американский нейрофизиолог. Наиболее известна его деятельность в области нейропластичности. Прим. ред.


[Закрыть]
получил трагическую весть, что его отца, 65-летнего преподавателя, поразил обширный инсульт. И что отныне он, наполовину парализованный и почти утративший речь, будет прикован к инвалидному креслу. Это был практически приговор, но Пол и его младший брат Джордж, изучавший медицину в Национальном автономном университете Мексики, не пожелали смириться и принялись искать способы помочь отцу. Общими силами они разработали и применили новую уникальную индивидуализированную программу реабилитации.

Как отзывался о ней Пол: «Мы действовали жестоко, но нами двигала любовь. Джордж обычно бросал что-нибудь на пол и просил отца: “Пап, иди подбери”»[100]100
  Abrams M, Winters D (2003). Can you see with your tongue? Discover.


[Закрыть]
. Также они занимали его мелкими домашними делами, например давали подметать крыльцо, – под осуждающими взглядами соседей. Тем не менее мучительные старания отца выполнять эту элементарную работу более чем оправдывали себя. Пол так выразил мнение отца по поводу такой трудотерапии: «Этот никчемный малый хоть на что-то да сгодился».

Жертвы инсульта обычно восстанавливаются лишь частично – а нередко вообще не восстанавливаются, – и потому братья Бах-и-Рита не хотели обольщаться ложными надеждами. Они-то хорошо знали, что если инсульт убил мозговую ткань, то она потеряна безвозвратно.

Между тем отец восстанавливался неожиданно хорошо. Настолько хорошо, что не только вернул себе способность ходить и говорить, но даже возобновил преподавательскую деятельность и прожил дольше, чем можно было рассчитывать (а умер он от сердечного приступа во время очередного похода в горы, на высоте 2700 м над уровнем моря).

Пола глубоко впечатлили масштабы восстановления двигательных функций отца, а накопленный им опыт постинсультной реабилитации ознаменовал крутой поворот в жизни его самого. Он осознал, что мозг способен переучиваться. И даже когда навсегда утрачивает некоторые области, их функции способны брать на себя другие, неповрежденные. Пол оставил профессорскую должность в Научно-исследовательском офтальмологическом институте Смит-Кеттлуэлл в Сан-Франциско и поступил в резидентуру (последипломная больничная подготовка врачей в США) по реабилитационной медицине в Медицинском центре Санта-Клара-Вэлли. Пол намеревался исследовать состояние перенесших инсульт, таких же, как его отец. Мало того, он хотел выяснить, как заставить мозг действовать иначе, чем тот привык.

К концу 1960-х годов Пол Бах-и-Рита уже вовсю работал над собственной схемой реабилитации, хотя большинство коллег считали ее нелепой. В своей лаборатории Пол усаживал незрячего добровольца в переоборудованное стоматологическое кресло, в спинку которого на уровне поясницы была вмонтирована плата из 400 тефлоновых стерженьков конфигурации 20 × 20. Стерженьки могли выдвигаться и втягиваться под действием механических катушек индуктивности (соленоидов). Поверх головы испытуемого устанавливалась видеокамера на треноге. Поступающий от камеры видеопоток преобразовывался в покалывания стерженьков по коже на спине добровольца.

Перед камерой перемещали какой-либо предмет, а участник эксперимента должен был внимательно прислушиваться к тактильным ощущениям у себя на спине (рис. 4.8). С течением дней он натренировался лучше различать предметы, руководствуясь ощущениями, которые они вызывали. Это чем-то походило на игру, когда один человек пальцем рисует на спине другого буквы, а тот по форме отгадывает их. Такой чувственный опыт не стал в точности идентичным зрению, но это было только начало.


Рис. 4.8. Входящая видеоинформация трансформируется в прикосновения к спине

Javier Fadul, Kara Gray, and Culture Pilot


Обнаруженный Бах-и-Ритой феномен поразил ученых в его области: оказалось, что незрячие индивиды способны обучиться различать горизонтальные, вертикальные и диагональные линии. А те, кто продвинулся в тренировках дальше, могли научиться различать объекты простой формы и даже лица, причем только на основании покалываний на коже спины. Свои результаты Бах-и-Рита опубликовал в журнале Nature и дал статье необычное название «Замещение зрения тактильными проекциями» (Vision Substitution by Tactile Image Projection). Так было положено начало новой эре – эре сенсорного замещения[101]101
  Macpherson F, ed. (2018). Sensory substitution and augmentation (Oxford: Oxford University Press); Lenay C et al. (2003). Sensory substitution: limits and perspectives, in touching for knowing: Cognitive Psychology of Haptic Manual Perception, ed. Y Hatwell, A Streri, and E Gentaz (Philadelphia: John Benjamins), 275–292; Poirier C, De Volder AG, Scheiber C (2007). What neuroimaging tells us about sensory substitution, Neurosci Biobehav Rev 31: 1064–1070; Bubic A, Striem-Amit E, Amedi A (2010). Large-scale brain plasticity following blindness and the use of sensory substitution devices, in Multisensory Object Perception in the Primate Brain, ed. MJ Naumer and J Kaiser (New York: Springer), 351–380; Novich SD, Eagleman DM (2015). Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput, Exp Brain Res 233 (10): 2777–2788; Chebat DR et al. (2018). Sensory substitution and the neural correlates of navigation in blindness, in Mobility of Visually Impaired People (Cham: Springer), 167–200.


[Закрыть]
. Бах-и-Рита сформулировал свои выводы просто: «Мозг способен использовать поступающую от кожи информацию, как если бы она поступала от глаз».

Затем Бах-и-Рита с сотрудниками решительно улучшили методику простым изменением: если раньше видеокамера размещалась на подголовье кресла, то теперь незрячему пользователю разрешили самостоятельно направлять ее объектив и выбирать, на что смотреть «глазу»[102]102
  Bach-y-Rita P (1972). Brain mechanisms in sensory substitution (New York: Academic Press); Brain mechanisms in sensory substitution; Bach-y-Rita P (2004). Tactile sensory substitution studies, Ann NY Acad Sci 1013: 83–91.


[Закрыть]
. Почему? Потому что сенсорные сигналы лучше всего усваиваются, когда человек активно взаимодействует с окружающей средой. Предоставив пользователям возможность самим управлять камерой, Бах-и-Рита со товарищи позволили замкнуться петле между мускульным актом и входящей сенсорной информацией[103]103
  Hurley S, Noë A (2003). Neural plasticity and consciousness, Biology and Philosophy 18 (1): 131–168; Noë A (2004). Action in Perception (Cambridge, Mass: MIT Press).


[Закрыть]
.

Восприятие можно рассматривать не как пассивный, а, наоборот, как активный способ исследования окружающей обстановки, связывающий определенное действие с конкретным изменением в картине, которая в итоге возвращается в мозг. Ему неважно, как устанавливается эта петля – действием ли глазодвигательных мышц или мышц руки, держащей камеру. Как бы это ни происходило, задача мозга – увязать двигательную реакцию с входящими сигналами.

Вследствие этого пользователи методики приобретали субъективный опыт, осознавая, что зрительные образы на самом деле располагаются «где-то снаружи», во внешней среде, а не на коже спины[104]104
  Bach-y-Rita P et al. (2003). Seeing with the brain, Int J Human-Computer Interaction, 15 (2): 285–295; Nagel SK et al. (2005). Beyond sensory substitution – learning the sixth sense, J Neural Eng 2 (4): R13–R26.


[Закрыть]
. Иными словами, данное ощущение было похоже на зрение. Даже притом что вид вашего друга, замеченного вами в кофейне, воздействует непосредственно на ваши фоторецепторы, вы не воспринимаете это так, будто сигнал располагается у вас в глазах. А понимаете, что друг где-то снаружи и с расстояния машет вам рукой. Точно так же «зрительные» образы воспринимались пользователями зубоврачебного кресла в новом варианте.

Устройство Бах-и-Риты первым попало в поле зрения публики, но на самом деле это была не первая попытка сенсорного замещения. Еще в 1890-х годах польский офтальмолог Казимир Ноишевский разработал для слепых прибор Elektroftalm – электрофтальм, или электрический глаз (от греч. «электричество» + «глаз»). На лоб незрячему человеку помещали фотоэлемент (рис. 4.9), и чем больше света на него попадало, тем громче звучал сигнал в ухе. Исходя из громкости звука, незрячий мог различать в окружающем пространстве освещенные и темные участки.


Рис. 4.9. Электрофтальм преобразовывал запечатленный камерой образ в вибрации на коже головы (1969)


К сожалению, прибор Ноишевского был громоздок, тяжел и имел разрешение всего в один пиксель, из-за чего не получил практического применения. Но к 1960 году польские коллеги подхватили эстафету Ноишевского и продвинули его изобретение на шаг вперед[105]105
  Starkiewicz W, Kuliszewski T (1963). The 80-channel elektroftalm, in Proceedings of the International Congress on Technology and Blindness (New York: American Foundation for the Blind).


[Закрыть]
. Понимая, насколько важен для незрячих слух, они решили транслировать информацию не через ухо, а через прикосновения. Была разработана система вибрирующих моторчиков, устанавливаемых на шлем, который «рисовал» зрительные образы на коже головы. Незрячие участники испытаний могли передвигаться по специально подготовленным помещениям, где дверные проемы и выступающие углы и ребра предметов обстановки для большей контрастности были обведены краской. Это срабатывало. Но, увы, прибор, как и его предшественники, был тяжелым и раскалялся во время работы, однако сам принцип он доказал.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 4.4 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации