Автор книги: Дэвид Иглмен
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]
Глава 3. Внутреннее как зеркало внешнего
Дело обезьянок из Сильвер-Спринг
В 1951 году нейрохирург Уайлдер Пенфилд[32]32
Уайлдер Пенфилд (1891–1976) – канадский нейрохирург. Вместе с другими исследователями разрабатывал методы хирургического лечения эпилепсии, а затем использовал полученные результаты для исследования структуры мозга и его функциональной организации. Прим. ред.
[Закрыть] опустил кончик тонкого электрода внутрь мозга оперируемого пациента[33]33
Penfield W (1952). Memory mechanisms, AMA Arch Neurol Psychiatry 67 (2): 178–198; Penfield W (1961). Activation of the Record of Human Experience, Ann R Coll Surg Engl 29 (2): 77–84.
[Закрыть] и обнаружил удивительное явление в мозговой ткани, ровно под той полоской кожи на голове, куда приходилась дуга надетых наушников. Когда Пенфилд стимулировал определенную точку в этом участке коры слабым электрическим разрядом, у пациента возникало ощущение, что кто-то дотронулся до его руки. При стимуляции рядом расположенного участка пациент ощущал прикосновение к туловищу. А другой участок, получив электрический разряд, вызывал у пациента ощущение, что дотронулись до его колена. Дальше выяснилось, что каждая область тела представлена в этой области мозга соответствующей чувствительной точкой.
Позже Пенфилду открылись новые глубины обнаруженного им явления: участки мозга, отвечающие за чувствительность прилежащих частей тела, тоже располагаются в коре мозга по соседству. Кисть руки представлена по соседству с предплечьем, предплечье – по соседству с локтем, а отвечающий за локоть участок соседствует с тем, который отвечает за плечо. И так далее. Словом, вдоль этой полоски мозговой ткани располагается подробная топографическая карта тела. Медленно двигаясь вдоль соматосенсорной коры, Пенфилд мог получить карту всего тела человека[34]34
Кора головного мозга представляет собой его внешний слой толщиной около 3 мм. Ее еще называют серым веществом, поскольку ее клетки имеют более темный оттенок по сравнению с расположенным ниже белым веществом. У крупных животных она обычно собрана в складки (извилины), разделенные бороздами. Часть коры, в которой Пенфилд впервые обнаружил отвечающие за разные части тела участки, носит название соматосенсорной коры, которая отвечает за ощущения, поступающие от тела, или сомы.
[Закрыть].
Более того: он нашел еще одну кортикальную карту. Выяснилось, что при последовательной стимуляции участков, расположенных вдоль двигательной (моторной) коры (область непосредственно перед соматосенсорной корой), результат был примерно тем же: слабый разряд тока заставлял сокращаться мышцы в конкретных расположенных по соседству участках тела. Причем представительства прилежащих участков тела в двигательной коре повторяли их расположение в соматосенсорной коре (рис. 3.1).
Рис. 3.1. Карты тела обнаружены в тех участках коры, куда поступают входные сигналы (соматосенсорная кора, вверху), откуда исходят ответные сигналы (двигательная кора, внизу). Частям тела с более высокой чувствительностью или более тонким управлением соответствуют большие области коры
Печатается с разрешения автора
Пенфилд назвал эти карты тела гомункулусом[35]35
Гомункулус – в представлении средневековых алхимиков существо, подобное человеку, которое можно получить искусственным путем. Прим. ред.
[Закрыть].
Разве можно ожидать, что в мозге имеются подобные карты тела? Не странно ли это? Как они вообще там существуют, ведь мозг заключен в черепе, причем в полной темноте? Примерно 1,3 кг мозговой ткани не могут знать, как выглядит ваше тело; мозг лишен возможности напрямую видеть его. У мозга есть доступ лишь к потокам электрических импульсов, которые стремительно проносятся по густым сплетениям информационных кабелей, называемых в обиходе нервами, он, по идее, не может иметь представления, какие конечности, в каких местах и в каком порядке присоединяются к туловищу. Но тогда откуда в абсолютной темноте под сводами черепа берется карта схемы тела?
Небольшое умственное усилие тут же подскажет вам, как просто открывается этот ларчик: схема тела наверняка генетически заложена в коре мозга. Отличная догадка!
Но только неправильная. Все обстоит с точностью до наоборот: разгадка бесподобно изящна и дьявольски хитроумна.
* * *
Ключик к тайнам карты тела нашелся спустя десятилетия, и то в силу непредвиденного стечения обстоятельств. Научный сотрудник Института поведенческих исследований в Сильвер-Спринг Эдвард Тауб изучал возможности восстановления двигательной активности после тяжелых мозговых повреждений. В ходе экспериментов на 17 обезьянах (макаках) он планировал определить, возможна ли регенерация поврежденных нервов. Каждому животному Эдвард аккуратно перерезал чувствительные нервы, связывающие мозг с одной из конечностей. Как он и ожидал, подопытные животные теряли чувствительность в «отключенной» конечности. Тауб приступил к исследованиям с целью выяснить, существуют ли способы восстановить пользование бездействующей конечностью.
В 1981 году в лаборатории Тауба начал работать молодой волонтер Алекс Пачеко. Он представился студентом, которого якобы весьма интересовала исследуемая Таубом научная проблематика, а на самом деле был лазутчиком и действовал в интересах набиравшей обороты некоммерческой организации «Люди за этичное отношение к животным» (англ. PETA: People for the Ethical Treatment of Animals), сооснователем которой являлся. По ночам Пачеко фотографировал подопытных макак. Некоторые его фото носили явно постановочный характер и преувеличивали страдания животных[36]36
Ettlin D (1981). Taub denies allegations of cruelty, Baltimore Sun, Nov. 1, 1981.
[Закрыть], но, как бы там ни было, желаемого эффекта он добился. В 1981 году полиция округа Монтгомери провела рейд в лабораторию и закрыла ее на основании жестокого обращения с животными. Доктору Таубу предъявили обвинение по шести пунктам в неоказании должной ветеринарной помощи. В ходе апелляции все обвинения были сняты, но тем не менее события в Сильвер-Спринг привели к тому, что в 1985 году был принят Закон о благополучии животных (Animal Welfare Act), в котором конгресс США прописал новые правила содержания животных в исследовательских лабораториях.
Хотя эта история стала поворотным пунктом в защите прав животных, ее значение не ограничивается баталиями в стенах конгресса. В нашем контексте нас прежде всего интересует, что потом происходило с теми семнадцатью травмированными обезьянками. По следам полицейского рейда в лабораторию набежали активисты PETA и унесли зверьков с собой, что дало повод к обвинениям в краже вещественных доказательств по делу. Разгневанные сотрудники института потребовали вернуть животных. Судебные страсти разгорались все жарче, пока спор о владении подопытными обезьянами не достиг высшей судебной инстанции – Верховного суда США.
Верховный суд отклонил прошение PETA вернуть обезьян и передал опекунство над ними третьей стороне – национальным институтам здравоохранения. Пока «старшие братья» пререкались в залах суда за тридевять земель от Сильвер-Спринг, обезьянки-инвалиды наслаждались досрочной отставкой и беззаботно предавались радостям жизни: ели, пили и играли друг с другом. Так пролетели десять лет.
Под конец эпопеи одна обезьянка неизлечимо заболела. Суд дал согласие на усыпление. Тут-то в сюжете и произошел важный поворот. Группа нейробиологов обратилась к суду с предложением: нанесенное животному жестокое увечье можно будет хоть как-то оправдать, если ученым дадут разрешение перед эвтаназией провести под наркозом картирование мозга животного. После некоторых дебатов суд пошел им навстречу.
14 января 1990 года исследователи поместили регистрирующие электроды в соматосенсорную кору обезьянки. Далее они проделали то же самое, что в свое время Уайлдер Пенфилд на мозге пациента-человека: по очереди дотрагивались до кисти, локтя, мордочки и прочих частей тела животного и фиксировали реакцию нейронов мозга. Таким путем была описана карта тела обезьянки, существующая в коре ее мозга.
Полученные результаты вызвали большой переполох в нейробиологическом сообществе. Оказалось, что карта тела с годами претерпела изменения. То, что от легкого прикосновения к обездвиженной из-за перерезанных нервов конечности животного больше не активировался соответствующий участок коры, сюрпризом не стало: этого и следовало ожидать. Ученых поразило другое: крошечный участок коры, прежде отвечавший за руку, теперь возбуждался в ответ на прикосновение к мордочке[37]37
Pons TP et al. (1991). Massive cortical reorganization after sensory deafferentation in adult macaques, Science 252: 1857–1860; Merzenich M (1998). Long-term change of mind, Science 282 (5391): 1062–1063; Jones EG, Pons TP (1998). Thalamic and brainstem contributions to large-scale plasticity of primate somatosensory cortex, Science 282 (5391): 1121–1125; Merzenich M et al. (1984). Somatosensory cortical map changes following digit amputation in adult monkeys, J Comp Neurol 224: 591–605.
[Закрыть]. Иными словами, карта тела перестроилась. Гомункулус все еще выглядел как обезьянка, но обезьянка без правой лапы.
Открытие исключило всякую возможность, что отображаемая в мозге карта тела задана генетически. Напротив, выяснилось, что все обстоит намного любопытнее: карта тела в мозге гибко определялась активными входными сигналами от тела. Когда структура тела меняется, соответственно меняется и кортикальный гомункулус.
В том же году нейробиологи провели аналогичные исследования по мозговому картированию других обезьян из Сильвер-Спринг. В каждом случае обнаружилась значительная перестройка соматосенсорной коры: оказалось, что ее участки, ответственные за «отключенные» конечности, перехвачены прилежащими участками, и гомункулус каждой обезьянки перестроился под новый план ее тела[38]38
Помимо коры значительную реорганизацию претерпели и другие области головного мозга, в том числе таламус и стволовой отдел; к этим темам мы еще вернемся.
[Закрыть].
Какие ощущения возникают, когда мозг подобным образом сам себя реорганизует? К сожалению, обезьяны не могут рассказать об этом. Зато могут люди.
Вице-адмирал Горацио Нельсон и посмертная жизнь его правой руки
Командующий британским флотом вице-адмирал Горацио Нельсон (1758–1805), прославленный герой нации, вознесен на пьедестал, с высоты которого взирает на Трафальгарскую площадь[39]39
Knight R (2005). The Pursuit of victory: the life and achievement of Horatio Nelson (New York: Basic Books).
[Закрыть]. Величественная статуя на коринфской колонне высотой 46 м – дань признанию его заслуг как вдохновенного человечного военачальника, искусного тактика и гения военной изобретательности. Перечисленные качества помогли Нельсону одержать немало решающих побед на морях и океанах от обеих Америк до Нила и Копенгагена. Он героически пал в решающем морском сражении при мысе Трафальгар, которое стало одной из величайших в истории Великобритании морских побед.
Вдобавок к военно-морским подвигам вице-адмирал Нельсон в некотором роде помог нейрофизиологии. Правда, исключительно волей прихотливого случая. Его пути пересеклись с нейробиологией при штурме гавани Санта-Крус-де-Тенерифе. За час до полуночи 24 июля 1797 года пуля вылетела из ствола испанского мушкета с начальной скоростью около 305 м/с и завершила стремительный полет в правой руке Нельсона, раздробив кость. Пасынок адмирала туго перетянул рану шарфом, чтобы остановить хлеставшую кровь, а гребцы шлюпки (Нельсон лично возглавлял вылазку в гавань) налегли на весла, чтобы поскорее доставить раненого на флагманский корабль, где в страшном беспокойстве его поджидал врач. После быстрого медицинского осмотра врач с облегчением сообщил, что у Нельсона хорошие шансы выжить, однако следом шла плохая новость: ввиду риска гангрены руку следовало ампутировать. Сказано – сделано. Нельсону тут же провели операцию, отхватив часть руки выше локтя, а ампутированная конечность последовала за борт.
В следующие недели Нельсон учился обходиться без правой руки – во время еды, умывания и даже стрельбы. Он даже стал в шутку называть культю «мой плавник».
По прошествии нескольких месяцев Нельсон вдруг стал замечать за собой некую странность. Адмирал чувствовал – в буквальном смысле чувствовал, – что у него по-прежнему есть правая рука. Он испытывал ощущения, как будто идущие от ампутированной конечности. И мог поклясться, что чувствует, как сжимает отсутствующую правую руку в кулак и ногти отсутствующих пальцев больно вонзаются в отсутствующую правую ладонь (рис. 3.2).
Рис. 3.2. В музеях Британии во множестве представлены живописные и скульптурные изображения адмирала Горацио Нельсона, но мало кто из посетителей замечает, что у героя нет правой руки. После ампутации в 1797 году у Нельсона наблюдался один из первых случаев фантомной чувствительности ампутированной конечности, что навело его на любопытную, хотя и ошибочную метафизическую интерпретацию сего необычного явления
Нельсон истолковал неведомо откуда взявшуюся чувствительность фантомной руки в оптимистическом духе: он считал, будто обладает неопровержимым доказательством, что жизнь есть и после смерти. В самом деле, если правая рука, которой у него нет, способна вызывать явственное ощущение своего присутствия – как вечный призрак самой себя, – так же должно ощущаться и отсутствующее тело.
Горацио Нельсон не единственный испытывал эти странные ощущения. Спустя годы доктор Сайлас Уир Митчелл по другую сторону Атлантики фиксировал в одном из госпиталей Филадельфии точно такие же фантомные ощущения у многих раненых, лишившихся конечностей на полях Гражданской войны. Его сильно интриговал тот факт, что многие раненые прямо-таки настаивали, что чувствуют свои ампутированные конечности, как будто те по-прежнему на месте[40]40
Mitchell SW (1872). Injuries of nerves and their consequences (Philadelphia: Lippincott).
[Закрыть]. Служило ли это подтверждением идеи Нельсона о телесном бессмертии?
Как потом выяснилось, адмирал слегка поспешил с выводами. Мозг перестраивал карту его тела под его новый план в точности так же, как это происходило у обезьянок из Сильвер-Спринг. Со временем нейробиологи по примеру историков, которые десятилетиями наблюдали, как раздвигаются границы Британской империи, научились отслеживать сдвиги границ в человеческом мозге[41]41
Все началось с магнитоэнцефалографии (МЭГ), которая открыла возможность измерять и визуализировать магнитные поля, создаваемые электрической активностью мозга; вскоре удалось перейти к функциональной магнитно-резонансной томографии (фМРТ). Подробнее обзор методов функциональной визуализации см. Eagleman DM, Downar J (2015). Brain and behavior (New York: Oxford University Press).
[Закрыть].
При современных технологиях визуализации можно видеть, что, когда человеку ампутируют кисть руки, территорию ее кортикального представительства забирают соседние представительства. В этом случае, как показано на рис. 3.3, с кортикальными представительствами кисти и предплечья соседствуют те, что отвечают за плечо и лицо. Как и в случае с обезьянами, кортикальные карты преобразуются, чтобы отобразить изменения в плане тела.
Рис. 3.3. Мозг редактирует отображаемый им план тела. Когда человеку ампутируют кисть, прилежащие кортикальные проекции узурпируют освободившуюся территорию, которая ранее принадлежала кисти
Печатается с разрешения автора
Но во всем этом сокрыта еще одна тайна. Почему Нельсон продолжал чувствовать руку, когда ее уже не было, и почему, случись вам в те времена прикоснуться к его лицу, он уверял бы вас, что его фантомная рука ощущает ваше прикосновение? Как же так? Разве соседние участки не забрали и не поделили между собой кортикальное представительство ампутированной руки? Дело в том, что прикосновение к руке представлено не только клетками соматосенсорной коры, но и теми, которым они «спускают» сигналы вдоль нисходящей цепочки, и теми, что расположены еще ниже по цепочке и получают сигналы от предыдущих.
Хотя в первичной соматосенсорной коре карта тела быстро модифицируется под его новое строение, в нижележащих областях она меняется все меньше и меньше. У родившегося без руки ребенка карта будет выглядеть совершенно иначе, но у взрослого человека, например у того же Нельсона, система не настолько гибка, чтобы полностью перестроиться. В глубинах его мозга нейроны, расположенные ниже соматосенсорной коры, не могли в такой же степени поменять свои связи и потому продолжали пребывать в уверенности, что любая передаваемая им активность все еще вызвана прикосновением к руке. В итоге Нельсон чувствовал призрачное присутствие отсутствующей руки[42]42
Фантомные боли свидетельствуют о том, что, когда мозг перерисовывает свои карты, изменения отображаются на них не во всей полноте: хотя нейроны, прежде отвечавшие за кисть руки, стали отвечать за лицо, нейроны нижележащих слоев все еще «думают», что получают информацию от кисти. В результате подобной путаницы индивид после ампутации обычно ощущает боли в фантомной конечности. В целом вследствие кортикальных изменений большего масштаба он испытывает более сильные фантомные боли. См. Flor et al. (1995). Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation, Nature 375 (6531): 482–484; Karl A et al. (2001). Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain, J Neurosci 21: 3609–3618. Выяснив, что различные области мозга трансформируются с различной скоростью, мы сумеем лучше разобраться с фантомными болями.
[Закрыть].
* * *
Случаи обезьянок из Сильвер-Спринг, адмирала Нельсона и ветеранов Гражданской войны в США свидетельствуют об одном и том же явлении: когда поток входных сигналов внезапно обрывается, сенсорные корковые поля не остаются бесхозными; напротив, соседи немедленно занимают их[43]43
Singh AK et al. (2018). Why does the cortex reorganize after sensory loss? Trends Cogn Sci 22 (7): 569–582; Ramachandran VS et al. (1992). Perceptual correlates of massive cortical reorganization, Science 258: 1159–1160; Barinaga M (1992). The brain remaps its own contours, Science 258: 216–218; Borsook D et al. (1998). Acute plasticity in the human somatosensory cortex following amputation, Neuroreport 9: 1013–1017.
[Закрыть]. Тысячи исследований, проводимых сегодня методами сканирования мозга пациентов с ампутированными конечностями, показывают, насколько отличается мозговая ткань от хардвера – аппаратных средств с жестко заданной схемой – тем, что умеет динамично перераспределяться.
Притом что ампутация приводит к кардинальной реорганизации кортикальной ткани, конфигурация мозга способна меняться и в ответ на менее значительные видоизменения в теле. Например, если мне придется затянуть у вас на предплечье манжетку для измерения давления, ваш мозг подстроится под слегка ослабшие входные сигналы от руки тем, что выделит меньшую площадь для этой части тела[44]44
Weiss T et al. (2004). Rapid functional plasticity in the primary somatomotor cortex and perceptual changes after nerve block, Eur J Neurosci 20: 3413–3423.
[Закрыть]. То же самое произойдет в мозге, если обслуживающие вашу руку нервы будут надолго заблокированы действием анестезии. И если вы просто свяжете два соседних пальца на руке – так, что вы сможете действовать ими только как единым целым, – их прежде отдельные кортикальные представительства в конце концов сольются в целостную структуру[45]45
Clark SA et al. (1988). Receptive-fields in the body-surface map in adult cortex defined by temporally correlated inputs, Nature 332: 444–445.
[Закрыть].
Но тогда каким образом мозг, обреченный торчать на высоком насесте в полной тьме, исхитряется непрерывно отслеживать форму тела и любые перемены, происходящие с ней?
Тайминг решает все
Представьте, что вы рассматриваете окрестности с высоты птичьего полета. Вы заметите, что одни собачники обычно выгуливают своих питомцев в шесть утра, другие выходят на прогулку не раньше девяти, третьи выводят своих любимцев на улицу после полудня. Ну а некоторые предпочитают прогулки под покровом ночи. Если вы какое-то время понаблюдаете за ходом жизни в вашей округе, то увидите, что собачники, выбирающие для выгула одно и то же время, обычно знакомы, раскланиваются друг с другом, останавливаются поболтать, а то и ходят друг к другу в гости на барбекю. Совпадение во времени ведет к дружбе.
То же самое происходит и у нейронов. В состоянии возбуждения они проводят лишь крохотную толику времени, когда посылают короткие электрические импульсы (их еще называют спайками). Время их возникновения критически важно. Присмотримся к отдельно взятому типичному нейрону. Он пытается установить контакт с десятком тысяч соседей, но не формирует одинаково прочные связи со всеми ними. Прочность связей зависит от времени. Если нейрон выдал импульс, а сразу следом импульс выдает связанный с ним нейрон, то контакт между ними усиливается. Это правило, известное как правило Хебба[46]46
Дональд Хебб (1904–1985) – канадский физиолог и нейропсихолог. Известен работами, приведшими к пониманию значения нейронов для процесса обучения. Его также называют одним из создателей теории искусственных нейронных сетей. Прим. ред.
[Закрыть], можно кратко обобщить так: нейроны, которые возбуждаются вместе, соединяются вместе (см. также главу 10)[47]47
Правило Хебба было предложено в 1949 году. Hebb DO (1949). The organization of behavior (New York: Wiley & Sons). Часто оно оказывается немного сложнее: если нейрон A срабатывает непосредственно перед нейроном B, то связь между ними усиливается; если A срабатывает сразу после B, – ослабляется. Это явление известно как пластичность, зависящая от времени всплеска.
[Закрыть]. В тканях мозга новорожденного нервы, ведущие от тела к мозгу, активно разветвляются. Однако постоянные связи формируются только между нейронами, чьи импульсы очень близки по времени. В силу синхронности контакты между ними укрепляются. Правда, нейроны не ходят друг к другу на барбекю, а вместо этого выделяют больше нейромедиаторов или создают больше рецепторов для их получения, что усиливает связь между ними.
Каким же образом этот нехитрый прием приводит к образованию карты тела? Задумаемся, что происходит, когда вы физически взаимодействуете с объектами окружающего мира, например натыкаетесь на них, трогаете, прижимаете к себе, ударяете, похлопываете. Так, когда вы берете кружку с кофе, соответствующие участки кожи на ваших пальцах обязательно активируются, и притом одновременно. Так же активируются участки кожи на ступнях, когда вы надеваете обувь, и тоже одновременно. А вот противоположный пример: прикосновения к безымянному пальцу руки и к мизинцу ноги не могут похвастаться частой синхронностью, потому что в жизни редко возникают ситуации, в которых они активировались бы в одно и то же время. Та же логика распространяется на все тело: прилежащие участки чаще активируются более синхронно, чем участки не соседствующие. После взаимодействия с миром между участками кожи, которые активируются одновременно, возникает связь, а те, чья активность не сопрягается по времени, как правило, остаются не связанными друг с другом. Вследствие многолетних коактиваций вырисовывается атлас прилежащих участков, это и есть топографическая карта тела. Иными словами, карта тела содержится в мозге благодаря простому правилу, которое диктует отдельно взятым мозговым клеткам, как им образовывать связи между собой: нейроны, чья активность близка по времени, склонны устанавливать и поддерживать взаимные связи. Таким путем в вечной темноте мозга проступает карта тела[48]48
Есть также генетические причины, влияющие на формирование карты тела; например, расположение головы на одном конце карты, а ступней на другом зависит от того, каким образом нервные волокна прикрепляются к телу.
[Закрыть].
А почему карта меняется с изменением входных сигналов?
Колонизация в режиме нон-стоп
В начале XVII века Франция развернула колонизацию Северной Америки. Каким образом? К берегам новой земли отправлялись суда, под завязку набитые французскими переселенцами. Такая практика оказалась действенной: переселенцы осваивали и обживали новые территории. В 1609 году французы основали факторию для скупки мехов у местного населения. Со временем поселение выросло в город Квебек, которому судьба уготовила стать столицей Новой Франции. Через четверть века французы распространили колонизацию на Висконсин. Потоки все новых и новых французских переселенцев пересекали Атлантику. Новая Франция расширялась.
Однако удерживать колонизованную территорию оказалось не так-то просто. Франция сталкивалась с неослабной конкуренцией со стороны других великих держав, главным образом Великобритании и Испании, которые тоже посылали в Новый Свет суда с переселенцами. С какого-то момента французский король Людовик XIV начал интуитивно постигать важный урок: если он желает прочно закрепить Новую Францию как заморское владение французской короны, следует непрерывно отправлять за океан французские суда, потому что британцы посылали через Атлантику еще больше судов. Кроме того, чутье подсказало Людовику, что население Квебека растет медленно из-за недостатка женщин, и он отправил в колонию 850 девушек на выданье («королевских невест», как их называли), чтобы стимулировать умножение местного французского населения. Замысел короля дал свои плоды: к 1674 году население Новой Франции выросло до 7 тысяч человек, а к 1689 году достигло 15 тысяч (рис. 3.4).
Рис. 3.4. Северная Америка, 1750 год
Печатается с разрешения автора
Но вот досада: Британия отправляла в колонии еще больше молодых мужчин и женщин. Если Новую Францию в 1750 году населяли 60 тысяч человек, то население британских колоний разрослось до миллиона. Это и решило исход последующих колониальных войн между двумя державами: несмотря на добрые союзнические отношения с местными индейскими племенами, превосходящие силы оставались на стороне британцев. Одно время французское правительство с целью повышения численности населения даже принуждало освобождавшихся из тюрем мужчин жениться на местных проститутках, после чего молодоженов сковывали цепью, чтобы не разбежались, и отправляли в Луизиану осваивать новые земли. Однако этих усилий оказалось недостаточно.
К исходу шестой войны с британцами французы осознали, что их дело проиграно. Составлявшие Новую Францию территории растащили противники: остатки Канады перешли под контроль Великобритании, а Луизиана – к новообразованному государству Соединенные Штаты Америки[49]49
Исторической справедливости ради стоит отметить, что Луизиана сначала отошла к Испании. В 1802 году Испания вернула Луизиану Франции. А Наполеон в 1803 году продал ее Соединенным Штатам, поскольку к тому времени расстался со своими мечтами о Новом Свете.
[Закрыть].
Причина, по которой Франция сначала прочно удерживала свои заморские колонии, а потом ее хватка безвозвратно ослабла, имеет самое непосредственное отношение к количеству посылаемых в колонии судов. В условиях беспощадной конкуренции французы отправляли в Новую Францию слишком мало переселенцев, чтобы те смогли прочно закрепиться там и удержать территорию. И от французского присутствия в Новом Свете осталось разве что топонимическое воспоминание в виде названных на французский лад Луизианы, Вермонта и Иллинойса.
Легко колонизовать новые земли, когда тебе никто не мешает, зато, когда на них претендуют могущественные соперники, требуются постоянные усилия, иначе окажешься в проигрыше. Такая же нескончаемая колониальная война протекает у нас в мозге. Когда какая-либо часть тела перестает посылать в мозг сигналы, она теряет свою кортикальную территорию. Руку адмирала Нельсона можно уподобить Франции, а кору его мозга – Новому Свету. Все начиналось со здоровой колонизации: несущие информацию электрические импульсы от руки адмирала исправно поставляли по нервным волокнам полезную информацию в адмиральский мозг, и в юности его правая рука надежно удерживала закрепленную за ней территорию. Но прилетела мушкетная пуля, а спустя несколько часов раздробленная рука сгинула в морской пучине и мозг Нельсона перестал получать сигналы от этой части тела. Со временем ампутированная рука утратила кортикальную недвижимость, в коре сохранились лишь слабые отзвуки ее былого присутствия в виде фантомных болей.
Эти уроки колонизации применимы не только к руке, они распространяются на любую систему организма, посылающую информацию мозгу. Когда у индивида повреждены оба глаза, визуальная информация больше не проходит по сигнальным путям в затылочную кору (участок в задней части мозга, часто называемый зрительной корой). Соответственно, эта часть коры перестает быть зрительной. Груженные визуальной информацией суда больше не пристают к ее берегам, и на бесхозную территорию тут же находятся охотники – конкурирующие царства-государства сенсорной информации[50]50
Elbert T, Rockstroh B (2004). Reorganization of human cerebral cortex: the range of changes following use and injury, Neuroscientist 10: 129–141; Pascual-Leone A et al. (2005). The plastic human brain cortex, Annu Rev Neurosci 28: 377–401; D’Angiulli A and Waraich P (2002). Enhanced tactile encoding and memory recognition in congenital blindness, Int J Rehabil Res 25 (2): 143–145; Collignon O et al. (2006). Improved selective and divided spatial attention in early blind subjects, Brain Res 1075 (1): 175–182; Collignon O et al. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects, Exp Brain Res 192 (3): 343–358; Bubic A, Striem-Amit E, Amedi A (2010). Large-scale brain plasticity following blindness and the use of sensory substitution devices, in Multisensory Object Perception in the Primate Brain, ed. MJ Naumer and J Kaiser (New York: Springer), 351–380.
[Закрыть]. И когда незрячая женщина скользит пальцами по выпуклым точкам набранного шрифтом Брайля стихотворения, ее затылочная кора активируется от простого прикосновения[51]51
Amedi A et al. (2010). Cortical activity during tactile exploration of objects in blind and sighted humans, Restor Neurol Neurosci 28 (2): 143–156; Sathian K, Stilla R (2010). Cross-modal plasticity of tactile perception in blindness, Restor Neurol Neurosci 28 (2): 271–281. Обратите внимание, что эта трансформация может проявляться и другими путями: например, импульс магнитной стимуляции затылочной доли коры у незрячего читателя набранной шрифтом Брайля книги создаст тактильные ощущения в пальцах (притом что у зрячего индивида подобный магнитный импульс не даст такого же эффекта). См. Ptito M et al. (2008). TMS of the occipital cortex induces tactile sensations in the fingers of blind braille readers, Exp Brain Res 184 (2): 193–200.
[Закрыть]. Если у этой женщины в результате инсульта будет повреждена затылочная доля коры, она утратит способность понимать шрифт Брайля[52]52
Hamilton R et al. (2000). Alexia for braille following bilateral occipital stroke in an early blind woman, Neuroreport 11 (2): 237–240.
[Закрыть], потому что после утраты зрения эта часть ее мозга колонизирована осязанием (рис. 3.5).
Рис. 3.5. Кортикальная реорганизация: неиспользуемый участок коры захвачен соседями-конкурентами. На скане мозга можно видеть, что у незрячего индивида звук и прикосновение активируют затылочную долю коры, которая у зрячего человека от звука или прикосновения не активируется (черной заливкой отмечены участки, более активные у незрячего индивида по сравнению со зрячим). Для лучшей видимости образуемых корой головного мозга холмов и долин изображение мозга слегка «раздуто» компьютерными методами[53]53
Адаптированный рисунок из Renier et al. (2010).
[Закрыть]
Печатается с разрешения автора
Все это относится не только к осязанию, но и к другим поставляющим мозгу информацию органам чувств. Когда незрячие индивиды слышат звуки, у них активируется не только слуховая зона коры мозга, но и зрительная[54]54
Voss P et al. (2006). A positron emission tomography study during auditory localization by late-onset blind individuals, Neuroreport 17 (4): 383–388; Voss P et al. (2008). Differential occipital responses in early-and late-blind individuals during a sound-source discrimination task, Neuroimage 40 (2): 746–758. Во втором эксперименте, описанном в данной статье, участники угадывали, где располагается источник звука, и при этом обнаруживался тот же феномен: активировалась зрительная кора.
[Закрыть].
У слепца активировать прежде закрепленный за зрением участок коры способны не только звуки и прикосновения, но и запахи, вкус, а также вспоминание событий или решение математической задачи[55]55
Renier L, De Volder AG, Rauschecker JP (2014). Cortical plasticity and preserved function in early blindness, Neurosci Biobehav Rev 41: 53–63; Raz N, Amedi A, Zohary E (2005). V1 Activation in congenitally blind humans is associated with episodic retrieval, Cereb Cortex 15: 1459–1468; Merabet LB, Pascual-Leone A (2010). Neural Reorganization Following Sensory Loss: The opportunity of change, Nat Rev Neurosci 11 (1): 44–52.
Замечу, кстати, что можно проследить, как данная связь работает в противоположную сторону: если у незрячего индивида активность затылочной доли временно нарушена (в результате магнитной стимуляции), у него возникнут трудности с чтением шрифта Брайля и с обработкой вербальной информации (verbal processing). См. Amedi A et al. (2004). Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects, Nat Neurosci 7: 1266.
[Закрыть]. Так же, как могущественные колониальные державы в Новом Свете отобрали земли у побежденного конкурента, в мозге жестоко конкурирующие органы чувств забирают у зрения его корковую территорию.
В последние годы история кортикальных захватов украсилась еще более любопытными подробностями: когда новоявленные оккупанты захватывают территорию зрительной коры, они сохраняют часть прежней архитектуры – так в Турции бывшие римско-католические храмы перестроили в мечети. Приведу пример: область коры у зрячего человека, отвечающая за обработку визуально воспринимаемого письменного языка, – это та же самая область, которая у незрячего активируется при чтении текста, набранного шрифтом Брайля[56]56
Этот участок называется визуальной областью словоформы (visual word form area, или VWFA). См. Reich L et al. (2011). A ventral visual stream reading center independent of visual experience, Curr Biol 21: 363–368; Striem-Amit E et al. (2012). Reading with sounds: sensory substitution selectively activates the visual word form area in the blind, Neuron 76: 640–652.
[Закрыть]. Аналогично область, обрабатывающая визуальные движения у зрячих, активируется при тактильных движениях у слепых (например, когда человек что-то трогает пальцами или языком)[57]57
Это так называемая срединная височная зрительная область (middle temporal visual area, или МТ). См. Ptito M et al. (2009). Recruitment of the middle temporal area by tactile motion in congenital blindness, Neuroreport 20: 543–547; Matteau I et al. (2010). Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals, Brain Res Bull 82: 264–270.
[Закрыть]. Главная нервная сеть, задействованная у зрячего индивида в визуальном распознавании объектов, у незрячего активируется от прикосновений к ним[58]58
Данную область обозначают как LOC (Lateral Occipital Cortex – латеральная затылочная кора). См. Amedi et al. (2010).
[Закрыть]. Данные наблюдения привели к гипотезе, что мозг представляет собой скорее «машину для решения задач» (например, для распознавания движения или объектов окружающего мира), чем систему, организацию которой определяют конкретные органы чувств[59]59
Мы вправе перефразировать этот тезис так: мозг можно назвать метамодальным оператором. «Метамодальный» означает, что производимые операции независимы от сенсорной модальности (а зависимы именно от того, по какому сенсорному каналу поступила информация). См. Pascual-Leone A, Hamilton R (2001). The metamodal organization of the brain, Prog Brain Res 134: 427–445; Reich L, Maidenbaum S, Amedi A (2011). The brain as a flexible task machine: implications for visual rehabilitation using noninvasive vs. invasive approaches, Curr Opin Neurol 25: 86–95. См. также Maidenbaum S et al. (2014). Sensory Substitution: Closing the gap between basic research and widespread practical visual rehabilitation, Neurosci Biobehav Rev 41: 3–15; Reich L et al. (2011). A ventral visual stream reading center independent of visual experience, Curr Biol 21 (5): 363–368; Striem-Amit E et al. (2012). The large-scale organization of “visual” streams emerges without visual experience, Cereb Cortex 22 (7): 1698–1709; Meredith MA et al. (2011). Crossmodal reorganization in the early deaf switches sensory, but not behavioral roles of auditory cortex, Proc Natl Acad Sci USA 108 (21): 8856–8861; Bola Ł et al. (2017). Task-specific reorganization of the auditory cortex in deaf humans, Proc Natl Acad Sci USA 114 (4): E600–E609. Обзоры см. в Bavelier and Hirshorn (2010) and Dormal, Collignon (2011).
[Закрыть]. Иными словами, области мозга заботятся о решении определенного типа задач независимо от того, по какому из сенсорных каналов поступает информация.
Попутно замечу, что возраст играет здесь свою роль, к чему мы вернемся немного позже. У индивидов с врожденным отсутствием зрения вся затылочная кора перехвачена представительствами других органов чувств. Если человек теряет зрение в раннем возрасте (скажем, лет в пять), захват затылочной доли коры происходит не полностью. У поздно ослепших (утративших зрение позже десятилетнего возраста) кортикальные захваты еще меньше. Чем старше мозг, тем меньше в нем остается гибкости для перераспределения кортикальной территории – как у государственных границ на североамериканском континенте, которые почти не меняются с тех пор, как установились три века тому назад.
Происходящее в мозге ослепшего человека наблюдается и при утрате функции любого другого органа чувств. Например, у глухих индивидов территорию слуховой коры перехватывают и используют зрение, а также другие чувства[60]60
Finney EM, Fine I, Dobkins KR (2001). Visual stimuli activate auditory cortex in the deaf, Nat Neurosci 4 (12): 1171–1173; Meredith MA et al. (2011).
[Закрыть]. Как потеря руки у адмирала Нельсона привела к кортикальным захватам освободившейся территории соседними представительствами, так и потеря слуха, обоняния, вкуса или другого чувства влечет за собой подобного же рода передел кортикальных границ. Картография мозга постоянно меняется, чтобы входящие данные могли быть представлены наилучшим образом[61]61
Elbert, Rockstroh (2004); Pascual-Leone et al. (2005).
[Закрыть].
Стоит только присмотреться, и вы увидите, что конкуренция за территории происходит постоянно и повсеместно. Возьмем для примера аэропорт в крупном городе. Если он принимает много рейсов одной авиакомпании (пусть это будет United), а рейсов, выполняемых другой авиакомпанией (скажем, Delta), меньше, то вполне ожидаемо, что количество стоек регистрации United станет увеличиваться, а тех, что обслуживают пассажиров Delta, наоборот, – уменьшаться. Авиакомпании United аэропорт отведет больше ворот выхода на посадку, больше места в зоне получения багажа и больше пространства на мониторах воздушных диспетчеров. Если какая-то из авиакомпаний свернет свою деятельность (вспомните Trans World Airlines[62]62
Прекратила работу 1 декабря 2001 года в связи с поглощением авиакомпанией American Airlines. Прим. пер.
[Закрыть]), отведенные ей пространства в аэропорту будут тут же перехвачены другими авиакомпаниями. То же самое происходит в мозге при распределении кортикальных территорий, принимающих входные потоки сенсорной информации.
Теперь мы понимаем, как конкуренция приводит к захвату территорий более успешными конкурентами. Возникает следующий вопрос: когда одно из чувств расширяет свое представительство в коре мозга, обостряется ли оно, расширяются ли его возможности?
Чем больше, тем лучше
Мать бросила Ронни в возрасте одного года, вскоре после того как стало понятно, что малыш слеп. Она заявила, что слепоту сына Господь послал ей в наказание. До пяти лет Ронни воспитывался в бедности на попечении бабки и деда, а потом его отослали в школу для незрячих.
Когда мальчику было шесть лет, его навестила мать, единственный раз за все время. К тому моменту у нее появился второй ребенок, девочка. «Рон, я хочу, чтобы ты потрогал ее глаза. У нее, понимаешь ли, очень миленькие глазки. Она не опозорит свою мамочку, как это сделал ты. Она видит». С тех пор Ронни больше ни разу не встречался со своей мамашей.
Мальчику досталось тяжелое детство, но при всех невзгодах со временем стало ясно, что он необычайно музыкально одарен. Воспитатели заметили его дар и определили изучать классическую музыку. Через год Ронни научился играть на скрипке, да так, что учителя объявили его виртуозом. Затем освоил фортепиано, гитару и еще несколько струнных и деревянных духовых инструментов.
Отсюда и начался его взлет: Ронни завоевал невероятную популярность, был признан одним из выдающихся певцов и исполнителей своего времени, его композиции в жанрах поп-музыки и кантри-вестерн 40 раз взлетали на вершины чартов, а сам Ронни удостоился шести премий «Грэмми».
Ронни Милсап если и первый, то далеко не единственный незрячий музыкант, вознесшийся к вершинам славы; в этой плеяде – Андреа Бочелли, Рэй Чарльз, Стиви Уандер, Дайан Шуур, Хосе Фелисиано и Джефф Хили. Не получая зрительной информации, их мозг выучился полагаться на слуховые и тактильные сигналы от окружающего мира и более искусно обрабатывать их, чем мозг зрячих людей.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?