Электронная библиотека » Дэйв Зобель » » онлайн чтение - страница 3


  • Текст добавлен: 17 мая 2017, 11:33


Автор книги: Дэйв Зобель


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Но если две волны накладываются таким образом, что гребни одной совпадают с подошвой другой, как это происходит внутри шумопоглощающих наушников, то в результате получается ничто. Волны уничтожают друг друга, и получается, будто и не было никаких волн: что дает одна волна, забирает другая.


Шум – это любой нежелательный звук. Шумопоглощающие наушники созданы для того, чтобы гасить звуки, которые направляются к вашему уху извне (для них все эти звуки нежелательны и потому сразу относятся к шуму). Они не могут убрать неприятные звуки, являющиеся частью звукового сигнала, исходящего от вашего МР3-плеера, или голоса, доносящиеся из вашей головы.

Шумопоглощающие наушники бывают активные и пассивные. Пассивные модели обычно выпускаются с пластиковой оболочкой (чтобы отражать звуковые волны) и поролоновой прокладкой (чтобы заглушить те волны, которые смогли пройти внутрь). Активные модели похожи на пассивные, но они также способны создавать собственную звуковую волну, которая уменьшает давление входящих областей высокого давления и увеличивает давление низких. Каждый наушник содержит маленький микрофон, обращенный наружу, который улавливает звуки, поступающие извне. Электронные схемы воссоздают то, как эти звуки будут воздействовать на пассивные части наушников, и отправляют противоположный сигнал динамику в наушнике. Там, где у первой волны увеличивается давление, у второй уменьшается, и наоборот. Они постоянно гасят друг друга. (Это все равно как наполнять ванну, у которой кран и слив контролируются одним и тем же вентилем.) Входящий шум и его искусственно созданная противоположность в сумме производят тишину.

Гашение звука путем добавления противоположного ему звука приводит к тишине, но это не то же самое, что отсутствие какого-либо исходного шума. В процессе используется энергия. Это как четко отрегулированный канат для перетягивания: хоть веревка и не двигается с места, обе команды прилагают для этого огромные усилия. Каждый раз, когда внешний звук пытается потянуть «канат» воздушного давления в одну сторону, шумопоглощающая схема двигает его в противоположном направлении настолько, насколько нужно, чтобы погасить эффект первоначального шума. Когда микрофон улавливает увеличивающееся давление, которое способно надавить на барабанные перепонки, динамик выдвигается вперед, уменьшая это давление; когда регистрируется низкое давление, которое способно выгнуть барабанную перепонку, динамик втягивается, увеличивая давление. Таким образом, входящие звуки постоянно гасятся противоположными действиями динамика.

После всего выше сказанного один из возможных способов решения проблемы шумопроизводящего соседа – это равноценный шум, направленный в противоположном направлении. Когда ваш сосед вздохнет, вздохните ему в ответ, когда он стонет, стоните, когда он рыдает, тоже поплачьте. Или просто воткните пальцы в уши и изобразите рвотные позывы.



эврика! @ caltech.edu

Инновация с/без изобретения

Хоть жизнь без его бесценных наушников и невыносима для Шелдона, он немногим отличается от нас с вами. Сколько вы сможете продержаться без вашего смартфона? Или пульта от телевизора? Или наручного радиопередатчика?

Но при этом у основания так называемой пирамиды находятся около четырех миллиардов человек, которые выживают на три доллара в день, и для них импортируемая бытовая электроника, так обязательная для нас, остается непозволительной роскошью. Для них каждодневные проблемы не о том, как «повосхищаться любимой песней, уложившись в 140 знаков», а о том, «как удержать ферму на плаву и избежать ее продажи» или «как потерять меньше пожилых родственников от теплового удара в этом году».

Калтеховский профессор инженерной механики Кен Пикар при поддержке некоммерческой организации «Инженеры для обновляемого мира» создал ряд обучающих курсов, концентрирующихся на технологических решениях для развивающихся стран. Пикар считает, что эффективные решения скорее возникают из недорогостоящего винегрета уже существующих технологий, чем из новеньких сияющих изобретений. Например, его студенты соединили миниатюрную турбину и генератор, чтобы создать карманную зарядку для телефонов, которую можно вывесить из окна автобуса по дороге на работу под воздействием ветра. (В развивающихся странах мобильные телефоны доступны, но электричество очень дорогое.)

И это не просто умные идеи. Самые крутые гаджеты останутся ничем, если никогда не покинут чертежную доску. Поэтому Пикар заставляет своих студентов создавать бизнес-планы для описания производства, реализуемости, выхода на рынок и дохода на инвестиции. В качестве выпускного экзамена студентам нужно представить свой продукт комиссии из настоящих производителей, бизнесменов и венчурных инвесторов. В результате получается что-то вроде некоммерческого проекта Intelligent Mobility International, получившегося из метода, разработанного пикаровскими студентами, превратившими два горных велосипеда в инвалидную коляску-внедорожник. (Во многих развивающихся странах много недорогих и надежных велосипедов, а вот с медицинским оборудованием туговато.)

Так что, когда вы услышите, что кто-то жалуется, что в этом мире нет ничего нового, расскажите им об автобусах, увешанных жужжащими телефонными зарядками, и инвалидных креслах с крутыми шинами.


[НАУЧНАЯ ВСТАВКА]

От 0 до 60 за 2,74 секунды

Одним из многочисленных вкладов в науку Галилея было наблюдение за тем, как объекты ускоряются с постоянной интенсивностью в приближении к поверхности Земли. Если первоначально предмет оставался неподвижным, то первые 4 фута (1,2 метра) он пролетит за полсекунды (это вы сможете легко подтвердить, сбросив что-нибудь с этой высоты), следующие 12 футов (3,6 метра) – за следующие полсекунды, потом за то же время 20 футов (6 метров), 28 футов (8,5 метра) за следующие полсекунды и так далее. За одну секунду он упадет на 16 футов (4,8 метра), за две – на 64 (19,5), и с каждой новой секундой его вертикальная скорость увеличится на чуть более 20 миль в час (32 километра в час).

Он также заметил, что ускорение не зависит от массы предмета. При одинаковом сопротивлении воздуха два предмета, сброшенных одновременно с одинаковой высоты, упадут на землю одновременно, независимо от их веса. Более тяжелый предмет не падает быстрее легкого, хотя нам кажется, что именно так и должно быть. (Калтеховские студенты празднуют достижения Галилея каждый Хэллоуин, сбрасывая в полночь замороженные тыквы разных размеров с самого высокого здания на территории, которые падают и разбиваются на мелкие кусочки в унисон.)

Добавление горизонтального аспекта не меняет эффект. Если один из предметов брошен в сторону, а второй просто отпущен, они все равно достигают земли в то же самое время. За каждую секунду полета их вертикальная скорость увеличивается на ту же величину.

Добавление вертикального аспекта также не меняет эффект, только результат. Если бросить предмет вверх или вниз, его вертикальная скорость по-прежнему меняется каждую секунду в той же пропорции. Разница лишь в том, что предмету потребуется больше или меньше времени, чтобы достигнуть земли, в зависимости от того, был ли он подброшен в воздух или просто отпущен вниз.

В один из безрассудных моментов Леонард вскрывает двери лифта на своем этаже и бросает (только что опустошенную) бутылку из-под алкоголя в шахту. Он засекает время полета, завершенного звуком разбитого стекла 2,1 секунды спустя, делает быстрые подсчеты и удовлетворенно объявляет: «30 футов» (9,1 метра). Если разделить все это на приблизительную высоту этажей в данном здании (хотя внешность может быть обманчива – см. главу 17), получается, что бутылка разбилась где-то в районе второго этажа, возможно, о крышу лифта. Только он плохо посчитал в уме. В первые 2,1 секунды свободного падения предмет – любой предмет – преодолеет вертикальное расстояние не в 30, а 70 футов (21,3 метра). Не важно, обо что разбилась бутылка, но это явно было на уровне двух этажей ниже первого.

Шелдон проводит подобный эксперимент, но получает совсем другой результат, когда он выбрасывает свою доску из окна гостиной. Через какие-то 1,2 секунды она приземляется на дорогу, создавая проблемы для машин, что немного странно, поскольку окно выходит во двор. Этот полет максимум равняется расстоянию в 23 фута (7 метров), хотя, вероятнее всего, на деле было всего футов 10 (3 метра), принимая во внимание существенное сопротивление воздуху этой доски. Приблизительно такие же результаты получает и Пенни, когда она швыряет айпод из того же окна, который разбивается об асфальт где-то через полсекунды. За полсекунды гравитация может притянуть предмет к земле только на какие-то жалкие 4 фута (1,2 метра). Нисходящее движение ее броска, без сомнения, помогает ускорить полет айпода к его рандеву с тротуаром, но даже с учетом этой детали, первый этаж все равно оказывается где-то у середины третьего. (С другой стороны, это открытие уменьшает угрозу со стороны Шелдона, когда он говорит: «Если ты воспользуешься моей зубной щеткой, я выпрыгну из окна».)

Существует проверенный киношный способ, чтобы оценить высоту скалы или глубину ямы, – бросить камень и послушать, когда он достигнет дна. Но в случае с «Теорией Большого взрыва» я бы не стал делать ставки.

4
Я модельного организма сплошное воплощение

ШЕЛДОН: Я МОГУ ПОСОВЕТОВАТЬ ТЕБЕ ОДНУ КОМПАНИЮ ПО ПРОДАЖЕ ЛАБОРАТОРНЫХ ЖИВОТНЫХ В РЕСЕДЕ. НО ЕСЛИ ТЕБЕ НУЖНЫ ОБРАЗЦЫ, МАКСИМАЛЬНО ПОХОЖИЕ НА ЛЮДЕЙ, ТО Я БЫ ПРЕДЛОЖИЛ БЕЛЫХ МЫШЕЙ.

«АЛКОГОЛЬНЫЙ ЭКСПЕРИМЕНТ» (СЕЗОН 1, ЭПИЗОД 8)

Бедная Пенни. Она же всего лишь учится смешивать коктейли и ищет пару человек, которые могут их попробовать. Шелдон, как обычно, все не так понимает и решает, что она ищет модельные организмы, среди которых наиболее популярными являются белые мыши и морские свинки.

Что же дает какому-нибудь виду честь стать модельным организмом? В основном он должен быть предметом многих исследований, заменяя один или несколько организмов. Курящие обезьяны Эми – это один из примеров (использованных вместо курящих людей), другой пример – мелкие грызуны Бернадетт, которых специально инфицировали плотоядными бактериями (использованные вместо любого существа со вкусной плотью [25]25
  «Препарирование соглашения» (сезон 4, эпизод 21) и «Экстрасенсорный вихрь» (сезон 3, эпизод 12) соответственно.


[Закрыть]
).

Модельный организм – один из организмов, широко используемых для опытов. Предполагается, что схожие организмы будут иметь подобные результаты, полученные при опытах.

Еще один из видов, широко используемый для опытов, это Danio rerio, данио (рыба-зебра). Это широко распространенный вид тропической рыбки около дюйма величиной, золотистого оттенка, с пятью темно-синими полосками вдоль тела с каждой стороны.

Зебра – это темное животное со светлыми полосами, рыба-зебра – это светлое существо с темными полосами. (Вообще-то без полосок рыба-зебра так же похожа на зебру, как и стрекоза на козу.) На самых ранних этапах развития, до появления этих самых полос, эти рыбки практически прозрачны – одно из преимуществ, делающих их отличными модельными организмами. Например, очень легко наблюдать биение их сердца.

Что примечательно, сердце малька данио похоже на сердце человеческого зародыша – такая же эластичная петля без клапанов. Как же эта петля без клапанов может качать? Мышца, обволакивающая сердце, периодически сжимает его. Удивительно, но сжатие происходит не вдоль петли, а поперек, эдакое простое ритмическое сокращение – сжатие / расслабление / сжатие / расслабление – обеспечивает продвижение крови в одном направлении.


Петля Льебо: смещенное сокращение менее плотной ее части вызывает поток жидкости


Это эффект Льебо в действии: если один из отделов петли наполнен жидкостью, сравнительно менее плотной, чем его соседние отделы, то его периодическое сжатие в любом месте, кроме центральной части этого отдела, заставит жидкость циркулировать. Это происходит из-за того, что хоть жидкость и направляется в обе более плотные соседние области, она встречает сопротивление ближайшей из них и направляет поток во вторую.

Данио – не единственный модельный организм, который не является млекопитающим. В числе других обывателей лабораторий есть Drosophila melanogaster (вездесущие плодовые мушки) и Caenorhabditis elegans (прозрачный микрочервь с мегаименем).

Эксперименты на живых существах (и особенно на милых живых существах, которых иногда называют обаятельной макрофауной) остаются незаменимой частью научного процесса. (Не зря Шелдон говорит: «В новом часто бывает что-то плохое, поэтому мы сначала и тестируем наши лекарства и косметику на кроликах» [26]26
  «Откровение от Ринита» (сезон 5, эпизод 6).


[Закрыть]
.) При этом некоторые люди приходят в негодование, считая этот процесс жестоким и несправедливым, и среди них есть и сторонники тестирования только на людях, и противники тестирования вовсе. Оба этих полярных подхода совершенно безответственны. Экспериментов на людях не избежать, но эти тесты всегда будут тщательно проверяться и ограничиваться.

Кормят ли испытуемых плацебо или скрещивают ли их с гориллами (как в сомнительной истории Шелдона про Сталина и фильме Пенни «Насильник из джунглей-2»), все равно на кону серьезные вопросы этики и личных прав. Каждое исследование несет риск физиологического или психического характера, который невозможно предсказать и проконтролировать [27]27
  «Профессорское решение» (сезон 8, эпизод 2) и «Ликвидация гориллы» (сезон 7, эпизод 23) соответственно.


[Закрыть]
.

Не все последствия были непредумышленными в истории невероятной жестокости в науке. Некоторые страшнейшие зверства Холокоста проявились в виде простых, но летальных экспериментов над людьми вроде погружения пленников в ледяную воду, чтобы вызвать фатальное кровоизлияние в мозг и доказать важность меховых воротников для летчиков. Профессиональная этика стояла гораздо ниже важности знаний, которые, несомненно, спасут чьи-то жизни. Цели оправдывали средства.

В 1963 году йельский психолог Стенли Милграм тщательно исследовал то, что историк Ханна Арендт назвала «банальностью зла» в своем анализе поведения мелких чиновников, из которых состоял практически весь Третий рейх [28]28
  Ханна Арендт. Банальность зла. Эйхман в Иерусалиме. Нью-Йорк: Viking Press, 1963.


[Закрыть]
. Он организовал мета-эксперимент с участием людей, пригласив обычных американцев в качестве лабораторных ассистентов, и обнаружил, что у него легко получилось убеждать их совершать абсолютно жестокие действия и затем оправдывать их.

Испытуемые могут принимать иррациональные решения, но этим грешат и многие подготовленные экспериментаторы. В 1971 году стендфордский профессор Филипп Зимбардо устроил искуственную тюрьму как часть психологического эксперимента. Он нанял студентов колледжа на роль надзирателей и узников. К своему удивлению, быстро проявилось странное и жестокое поведение, на большинство повлияло что-то большее, чем жажда крови и желание подавить других. Зимбардо сам с ужасом заметил, что им овладело искушение властью в его собственной роли тюремного начальника. Он отменил эксперимент после шести дней из намеченных четырнадцати, заметив, что участники продолжали плохо обращаться друг с другом, и опасаясь за их безопасность [29]29
  Одно из наиболее ужасающих наблюдений Зимбарго было в том, что, несмотря на то что все участники эксперимента имели возможность покинуть его в любой момент, они не сделали этого. Все «узники» остались, хоть и подвергались существенным физическим и моральным издевательствам со стороны «надзирателей».


[Закрыть]
.



эврика! @ caltech.edu

Новая волна, выделяющая энергию

В калтеховском центре бионики инженер-механик Джон Мейер исследовал способы использования эффекта Льебо в создании искусственных микроскопических и биомедицинских насосов без клапанов и только с одной двигающейся деталью. Но этим он не ограничился. Мог ли этот эффект быть использован в качестве центра альтернативной энергопроизводящей системы?

Приложение к докторской диссертации Мейера 2011 года описывает его дизайн инновационного берегового прибора для извлечения энергии из океана. Вода, циркулирующая в генераторе, будет в постоянном движении, созданном не более чем периодическим «сжатием» прибрежных волн. Возможно, решение простое, но, как осознал Мейер, простое не всегда является очевидным.


Предложение Эми проверить поток информации среди своих друзей путем распространения ложных слухов кажется безвредным и смешным. Но, поскольку она не способна контролировать поведение и реакцию окружающих, существует риск нанести серьезный физический или моральный вред. И объявление Шелдона о том, что эксперименты над людьми – это «один вид взаимодействия с людьми, против которого я ничего не имею против» [30]30
  «Разведение пряных трав» (сезон 4, эпизод 20).


[Закрыть]
, кажется забавным ввиду его всем известной мизантропии. Но, если подумать на трезвую голову, смешного тут мало.



Бескрайние просторы

«Представьте себе, я открыл для себя поэзию в Калтехе». Фрэнк Капра (выпускник Калтеха 1918 года) был режиссером многих известных фильмов, включая «Эта прекрасная жизнь» и «Потерянный горизонт». В 1915 году сицилиец Капра поступил в Технологический колледж Трупа (как тогда назывался Калтех), чтобы изучать химическую инженерию. Несмотря на то что у него были лучшие оценки на первом курсе и он закончил обучение всего за три года, он не спешил работать по специальности. Вместо этого он сменил несколько временных работ, пока не наткнулся на киноиндустрию.

В конце 20-х, когда техническая сторона новых «говорящих» фильмов усложнила жизнь многим режиссерам, инженерное прошлое Капры дало ему новое преимущество. Это также помогло ему создать серию научных фильмов в 50-х, которая включала в себя «Гемо Великолепный» (о кровообращении) и «И наш мистер «Солнце» (введение в гелиофизику).

В наши дни часто можно увидеть имя режиссера над названием фильма, но Капра был первым, кто этого добился.

5
Восьмой угол

ШЕЛДОН [САМОМУ СЕБЕ]: ЭЛЕМЕНТАРНАЯ ЯЧЕЙКА СОДЕРЖИТ ДВА АТОМА УГЛЕРОДА. ВНУТРЕННИЙ ГЕКСАГОНАЛЬНЫЙ УГОЛ РАВЕН 120 ГРАДУСАМ.

ГОВАРД [ЛЕОНАРДУ]: ТЫ НЕ ПРОБОВАЛ ЕГО ПЕРЕЗАГРУЗИТЬ?

ЛЕОНАРД: НЕТ, У НЕГО СКОРЕЕ ВСЕГО СЛЕТЕЛА ПРОШИВКА.

«АППРОКСИМАЦИЯ ЭЙНШТЕЙНА» (СЕЗОН 3, ЭПИЗОД 14)

Почему вдруг Шелдон лихорадочно рисует множество геометрических фигур снова и снова? Неужели он нашел новое вдохновение в геометрии? Или ему просто нравится изображать схематически личную жизнь своего соседа? Или, может, он думает поменять карьеру теоретического физика на карьеру архитектора или (мурашки по коже) инженера?

Сферы науки и математики гораздо больше переплетены, чем многие предполагают. На самом деле они черпают друг в друге вдохновение и доказательства. Многие открытия в теоретической физике начались с математических наработок. Принципы относительности были получены не путем отправки близнеца в космос на ракете или гонками на машине со скоростью света с включенными фарами, а путем логических рассуждений с использованием только базовых арифметических исчислений. Бумага и карандаш наметили путь к таким открытиям, как антивещество и известный принцип неопределенности Гейзенберга, задолго до того, как лабораторные опыты их подтвердили (см. главу 25). Пять десятилетий усилий, чтобы доказать существование бозона Хиггса, вышли из математического анализа, утверждающего, что он существует (см. главу 1).

Попытка Шелдона визуализировать поток электронов сквозь графеновую поверхность требует возврата к углам преткновения геометрии, и в этом нет ничего постыдного. Вы, должно быть, в курсе, что углы можно измерить градусами (обозначенными маленьким кружочком вверху) и они бывают в количестве:


• 360 градусов в полном круге (как в выражении «вид на 360 градусов»);

• 180 градусов в полукруге («он повернулся на 180 градусов и оказался лицом в противоположном направлении»);

• 90 градусов в одном углу квадрата или прямоугольника.


Вот еще несколько распространенных углов:


• 120 градусов: любой угол восьмиугольника (как в пчелиных сотах);

• 60 градусов: любой угол равностороннего треугольника;

• 45 градусов: любой из двух острых углов сложенного по диагонали квадрата;

• 30 градусов: расстояние между двумя часовыми отметками, расположенными рядом;

• 6 градусов: расстояние между минутными отметками, расположенными рядом.


Подвижная секундная стрелка часов меняет свой угол на один градус на каждую шестую долю секунды. Минутная стрелка, которая в шестьдесят раз медленнее, преодолевает это расстояние за каждые десять секунд. Часовая стрелка преодолевает расстояние в один градус за полные две минуты. Но это все равно в два раза быстрее, чем Солнце, Луна или звезды, которые могут проползти на один градус на запад только за четыре минуты (или, вернее, они вообще не двигаются, а ждут на небесах, пока Земля повернется на один градус на восток вокруг своей оси). Луна немного отстает от звезд, так как в течении этих же четырех минут она ползет на 3% от градуса в восточном направлении вокруг своей орбиты. И Солнце не торопится: за четыре минуты оно движется на 1/360 градуса на восток на пути годового обхода созвездий зодиака.

Спутник или космический аппарат на нижней орбите Земли поднимается и опускается каждые полтора часа, продвигаясь на один градус вокруг Земли где-то каждые пятнадцать секунд. А спутник на геосинхронной орбите не поднимается и не опускается вовсе, поскольку он двигается так же быстро по отношению к звездам фона, как и они двигаются по отношению к горизонту: на один градус каждые четыре минуты.

Геосинхронный – проходящий расстояние, равное точно одной орбите Земли от запада до востока за один день. С Земли видно, как спутник на геостационарной орбите выполняет небольшой танец, плавно двигаясь с севера на юг и исполняя небольшие буги-вуги с востока на запад, и возвращается на исходную позицию каждый день.

Геосинхронная орбита требует очень большой высоты, в среднем где-то 22 000 миль (десятая часть расстояния до Луны и где-то в 100 раз выше, чем Международная космическя станция).

Геостационарный – находящийся на круговой геосинхронной орбите над экватором. Предмет, находящийся на геостационарной орбите, «висит» неподвижно над определенной точкой земли, практически без всяких буги-вуги.

Каждый градус дуги (изображается °) разделен на шестьдесят минут (изображается '), а каждая минута равна шестидесяти секундам (изображается "). Эти величины используются для измерения дуги и практически не имеют ничего общего с знакомыми нам минутами и секундами, которые мы используем для измерения времени. В обоих случаях слова минута и секунда подразумевают деление на шестьдесят, но то, что делится (время в одном случае и углы в другом), не имеет ничего общего.

Например, за один день (24 × 60 = 1440 временных минут) Земля вращается на 360 градусов (360 × 60 = 21 600 угловых минут). За две временные минуты Луна движется на одну угловую минуту по отношению к звездам фона.

Ну и что? Как будто слова минута и секунда более противоречивые, чем само слово градус. В «Теории Большого взрыва» можно посмотреть отличный метеоритный дождь в 34,48 градуса северной широты и 118,31 восточной долготы (или снять очередной эпизод «Звездного пути»), Шелдон устанавливает свой термостат на 22 градуса, Радж может разговаривать только под градусом [31]31
  «Недостаточность самоклеющихся уток» (сезон 3, эпизод 8), «Бейкерсфилдская экспедиция» (сезон 6, эпизод 13) и «Алкогольный эксперимент» (сезон 1, эпизод 8) соответственно.


[Закрыть]
, а у Говарда только степень магистра, и разговоры об этом доводят его до высокого градуса белого каления.

° ' " Символ, использованный для обозначения угловых минут ('), а также для футов, – это маленькая римская цифра один (I). Символ для секунды (") и дюйма – это римская цифра два (II). Хотелось бы сказать, что маленький кружочек, обозначающий градусы (°), представляет все остальные кружочки, но нет, на самом деле он стал использоваться как маленький ноль. Правда-правда.

Невооруженный взгляд не может увидеть угол у́же, чем угловая минута. Это примерно столько, сколько вы смогли бы закрыть большим пальцем из панорамы в 360 градусов… если бы ваша рука была длиной более 90 метров. Даже целый градус – это немного: это столько, сколько горизонта вы можете закрыть мизинцем на вытянутой руке. Чтобы закрыть весь горизонт, вам понадобится 180 мизинцев на каждой руке. (Но опять же, если у вас 360 мизинцев или 90-метровые руки, то скорее всего ваш горизонт все равно закрыт разъяренными крестьянами с факелами.)

Сколько же мизинцев понадобится, чтобы закрыть все Солнце (или Луну)? Два? Шесть? Возможно, вы удивитесь, но одного мизинца вполне достаточно. Вид Солнца или Луны с Земли всего лишь в полградуса или в полмизинца шириной. (Не верите? Проверьте!)

Углы так же важны для химиков, как и для астрономов и часовщиков. Когда атомы объединяются, чтобы сформировать молекулы, они редко выстраиваются в прямые линии и остаются в одной плоскости. Электромагнитные поля между положительно заряженными ядрами и отрицательно заряженными электронами двигают их в самые различные позиции. Хорошим примером служит башня молекулярной модели, которая стоит у кладовки в гостиной Шелдона и Леонарда, представляющая фрагмент очень известной (и очень неплоской) двойной спирали ДНК. На самом деле, ДНК не только похожа на кривую лесенку, но она еще изгибается в причудливую спираль [32]32
  Эта конкретная модель ДНК была составлена из двух наборов, соединенных друг с другом. ДНК одной-единственной клетки потребовала бы почти миллиарда таких наборов, и ее можно было бы обернуть вокруг Земли восемь раз.


[Закрыть]
. Даже старая добрая вода – атом кислорода в сэндвиче из двух водородов – выстраивается не в линеечку, а в широкую фигуру V, по счастливой случайности с почти таким же углом, как и у стрелок на 10:08 [33]33
  Это приблизительно время, образующее «счастливую улыбку» на всех часах в рекламе. Понятное дело, часы улыбаются, потому что им нравится рассказывать нам о геометрии и молекулах (ср. с саркастической фразой Шелдона «Это он от геометрии такой веселенький?» («Арахисовая реакция» (сезон 1, эпизод 16).


[Закрыть]
.

Один исторический момент, в котором математика указала путь науке, запечатлен на рисунке, который можно увидеть мельком на холодильнике Леонарда и на доске доктора Гейблхаузера (хотя у последнего он с ошибкой). В 60-х было замечено, что, когда используется восьмиугольное расположение для диаграмм семейства частиц, называемых мезонами, образуются определенные закономерности. Попытки их объяснить привели к открытию частиц, ныне известных как кварки [34]34
  «Дуальность Иерусалима» (сезон 1, эпизод 12) и «Эффект светящейся рыбки» (сезон 1, эпизод 4) соответственно.


[Закрыть]
.

А вот за 360 градусов окружности (почему в ней именно столько, а не десять, или не пятьдесят, или не миллион) мы должны благодарить матушку-природу: небесная дуга сама себя разделила на очень четкие градусы. Рисунок звезд, видимый только при восходе или закате солнца, смещается примерно на один градус в день. Это происходит потому, что Земля с трудом преодолевает около 1/360 за каждый день пути по своей практически круглой орбите вокруг Солнца. Вам это может показаться пустяком, но для ваших предков это было знанием великого значения. Задолго до того, как они договорились о том, какое небесное тело ворочается вокруг другого, они посчитали, сколько дней понадобилось, чтобы рисунок звезд повторился при закате, и назвали это годом. Этот метод был гораздо точнее наблюдений за такими климатическими явлениями, как смена времен года или наводнения.

И поскольку у предков не было особых развлечений по вечерам, кроме созерцаний звезд перед закатом (и кто сказал, что наши занятия гораздо интереснее?), они знали, что в году немногим больше 360 дней. Но число было близко к 360, и с числом 360 очень приятно работать. Оно, к примеру, делится на любое целое число от одного до десяти (за одним исключением, которые вы сами определите с легкостью). Ни одно число меньше 500 не может этим похвастаться. На деле, число 360 можно поделить на целую кучу чисел. Это особенно полезно для деления круга на две части (или на три, или двенадцать, или девяносто). Это случается гораздо чаще, чем вы думаете.

Помимо этого в числе 360 и градусах нет ничего особенного. Можно использовать любую систему для измерения углов, и это не изменит их свойств. Например, мера под названием град (или гон) похожа на градус, только в окружности таких 400, а не 360. Поэтому град где-то на 11% у́же градуса, и это значит, что гораздо меньше углов будут иметь величину, выраженную круглым числом: например, 120-градусные углы шелдоновских восьмиугольников равны 1331/3 града. Грады используются в основном военными и в геодезических измерениях, и несложно понять почему. Мы, люди, очень падки на прямые углы и красивые круглые цифры вроде 100. И представьте себе – прямой угол равен точно 100 градам. Это было придумано специально теми же умниками, которые составили метрическую систему (см. главу 2).

Третий способ измерения углов – радианная мера. Радиан – это довольно большой угол (почти 60 градусов), и их всего шесть с четвертью во всей окружности. И какая от этого польза?

Представьте вращающееся колесо. Каждый раз, когда оно поворачивается на угол, равный одному радиану, оно продвигается вперед на расстояние, равное собственному радиусу (отсюда и название). Радианы – это способ деления окружности, используя одну из ее частей, а не выбирая искусственное условное число, как мы делали с градусами (360) и градами (400). Это то, что делает эту меру любимицей ученых, математиков и этих помешанных на геометрии крутильщиков колес, которых так любит высмеивать Шелдон: инженеров. Правда, это он делает, только когда сам не съезжает с катушек на почве геометрии.



эврика! @ caltech.edu

Форма всегда следует за функциональностью

Когда вы имеете дело с большими и сложными молекулами вроде белка, здесь все будет упираться в углы. Белки – это строительные кирпичи клетки: они дают ей структуру, заставляют молекулы взаимодействовать, растягивая их в линию, и передают сигналы. Они состоят из аминокислотных цепей, которые отказываются лежать спокойно, а складываются, выворачиваются и сворачиваются в причудливые формы, наподобие тех кривобоких скрученных гадов, созданных воображением детсадовца из разноцветной проволоки. И это плюс, потому что именно физическая структура каждого белка и дает ему его способности.

В последние годы ученые модифицировали существующие аминокислоты и создали невиданные до этого протеины для выполнения особых задач. Азурит, совершенно новый долгоживущий ярко-синий флуоресцентный белок, был создан путем небольшого изменения некоторых аминокислот в зеленых флуоресцентных белках, которые очень удачно были названы «зелеными флуоресцентными белками» (ЗФБ). Прямое воздействие на последовательность оснований позволило моделировать такие свойства, как стабильность и устойчивость к высоким температурам, непосредственно в их структуру.

Будут ли белки вести себя так, как было задумано при их создании, зависит от того, как они укладываются, что в свою очередь определяется электромагнитными полями между аминокислотами. Их трудно просчитать, и архитекторы новых белков всегда ищут способ попроще, но в настоящее время компьютеризированный дизайн белков – это наука напополам с искусством. Соединение фрагментов оснований, скопированных из базы уже существующих компонентов, является более эффективным подходом, чем беспорядочное смешение аминокислот или, еще хуже, работа с чистого листа. Белковые цепочки обычно состоят из сотен аминокислот, и каждое звено может быть создано из нескольких десятков вариантов. Это дает множество возможностей.

Стив Мейо, одна из светлых голов, ответственных за создание азурита, является деканом факультета биологии и биоинженерии Калтеха и мастером укладки белков. Он разрабатывает процесс автоматизации построения новых дизайнов белков, который не требует большого количества удачи.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации