Электронная библиотека » Джереми Тейлор » » онлайн чтение - страница 7


  • Текст добавлен: 3 октября 2016, 13:00


Автор книги: Джереми Тейлор


Жанр: Зарубежная образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 24 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

Не утратив присутствия духа, Прийя снова забеременела спустя два месяца после потери Александра, но на десятой неделе врачи не смогли услышать сердцебиение плода. Ей сделали операцию, известную как дилатация и кюретаж (выскабливание матки), чтобы удалить плод и плацентарную ткань. За этой неудачной беременностью последовало еще шесть, каждая из которых длилась от четырех до десяти недель. «Я видела, как трудно моему мужу провожать меня на очередную операцию по выскабливанию матки. И я видела, что все наши друзья уже обзавелись детьми. Это было поистине страшно. Я очень эмоциональный человек и легко расстраиваюсь по любому поводу, но тут я понимала, что мне нельзя сдаваться. Мне трудно смириться с тем, что есть вещи, над которыми я не властна».

Все попытки Прийи забеременеть естественным образом заканчивались неудачей. Поэтому спустя два месяца она прошла первый цикл ЭКО – первый из шести, пять из которых привели к краткосрочным беременностям. В промежутке между этими процедурами ей даже удалось забеременеть естественным путем, но эта беременность продолжалась всего семь недель. В этот момент она обратилась к Яну Бросенсу. Лабораторный анализ тканей ее пятого плода показал, что он имел серьезную хромосомную аномалию и у него не было шансов выжить. Прийя возлагала большие надежды на шестую искусственную беременность, но та превратилась в сплошной кошмар: отмененный из-за выкидыша отпуск на Карибах, неудачная операция, тяжелая инфекция матки, кровотечение и недельное пребывание в больнице. Ее муж Мэтт, человек со стоическим характером, в эту неделю не мог удержаться от слез и в конце концов сказал: «Все, хватит попыток. Ничто не заставит меня сделать это снова». Прийя тоже была совершенно сломлена, но в годовщину свадьбы два месяца спустя она попросила: «Пожалуйста, давай попробуем еще раз. Дай мне еще один шанс, и я обещаю, что у меня получится». Потребовался целый месяц, чтобы уговорить Мэтта.

Бросенс считает, что Прийя находится на крайнем конце спектра сверхфертильности и страдает дисфункцией матки, которая характеризуется удлиненным периодом восприимчивости, нарушением процесса децидуализации и отбора эмбрионов. Другими словами, у нее нарушен механизм контроля эмбрионального качества, что приводит к таким клиническим последствиям, как быстрое зачатие – и ранние выкидыши.

При следующем – и последнем – цикле ЭКО удалось получить удивительные двадцать яйцеклеток, четырнадцать из которых были оплодотворены. Ей ввели два шестидневных эмбриона и в скором времени позвонили и сказали, что ее тест на беременность дал положительный результат и все показатели были высокими, что свидетельствовало об успешной имплантации. Но через три дня их уровни начали падать. Даже когда шесть недель спустя врачи услышали сердцебиение плода, она не могла поверить в то, что плод выжил. Бросенс, который на этот раз наблюдал за ее беременностью, между шестой и двенадцатой неделями каждую неделю проводил сканирование, чтобы показать Прийе, что ее ребенок успешно растет. На самом деле она вынашивала два плода, один из которых погиб примерно на седьмой неделе, но девочка Майя продолжала упорно цепляться за жизнь. На шестнадцатой неделе Прийе ушили шейку матки, чтобы предотвратить выкидыш, но на восемнадцатой неделе у нее началось кровотечение. «Я снова проснулась среди ночи и обнаружила, что моя постель полна крови. Мы встали, и я спокойно сказала Мэтту: "Собери мою сумку. Я поеду в больницу. Видно, судьбой нам не предназначено иметь детей". Но когда они добрались до больницы, выяснилось, что у плода прослушивается сердцебиение. Обследовав ее на следующий день, Бросенс увидел рядом с плацентой довольно большой сгусток крови. На двадцать второй неделе ребенок почти перестал расти из-за значительной аномалии плаценты, которая была недостаточно хорошо подсоединена к материнской системе кровообращения в матке. Кроме того, плацента покрывала всю шейку матки, что делало естественные роды невозможными. Тем не менее беременность продолжалась, пока, наконец, на тридцать пятой неделе врачи не решили, что низкая скорость роста и плохое кровообращение в плаценте создают угрозу для жизни ребенка. В результате кесарева сечения родилась девочка Майя – здоровый ребенок весом почти два килограмма. Через пять дней пребывания в больнице врачи согласились выписать мать и ребенка домой. «Они спросили у меня, все ли готово у меня дома к принятию ребенка. У меня не было готово ничего! Не было даже ни одного подгузника! Они спросили, почему я не подготовилась, и я объяснила им, что после всего, что со мной было, я уже не надеялась вернуться домой с ребенком».

Клеточные и иммунные изменения в стенке матки, которые определяют успех или неудачу имплантации, представляют собой чрезвычайно сложный феномен, который в настоящее время вызывает пристальный интерес исследователей – и немалые разногласия в их среде. Значительная часть наших знаний об этих явлениях получена благодаря экспериментам на мышах, и не всегда известно, в какой степени их можно экстраполировать на людей. Тем не менее становится очевидным, что нарушение процесса децидуализации, затрагивающее нарушение дифференциации фибробластов стромы в децидуальные клетки, не только влияет на способность женского организма обеспечить надлежащую проверку и имплантацию эмбриона, но и создает предпосылки для дальнейших патологий беременности, таких как ранний выкидыш и преэклампсия.

Бросенс и его коллеги Мадхури Салкер, Шивон Квинби, Гейс Текленбург и другие постарались изучить процесс децидуализации в мельчайших подробностях. Оказалось, что важнейшую роль в нем играет один из представителей семейства провоспалительных цитокинов, известный как интерлейкин 33 (ИЛ-33). Как мы уже знаем, высокий уровень прогестерона запускает дифференциацию стромальных клеток в децидуальные. Когда клетки начинают дифференцироваться, они секретируют интерлейкин 33 и связывают его с рецепторной молекулой STL2, что позволяет им запустить в стенке матки выработку целого коктейля из хемокинов, цитокинов, С-реактивного белка и других воспалительных факторов. Это временное воспаление является необходимой прелюдией к имплантации, поскольку оно включает целый ряд генов, отвечающих за восприимчивость матки. Данное воспаление носит самоограничивающийся характер, поскольку, как только процесс децидуализации завершается, эти клетки активируют петлю обратной связи и начинают производить рецептор-ловушку для интерлейкина 33, который называется sST2. Такой маневр позволяет эффективно нейтрализовать интерлейкин 33 и прекратить воспалительную реакцию. Когда исследователи сравнили активность генов, кодирующих рецепторную молекулу STL2, в стромальных клеточных культурах, взятых у здоровых женщин и женщин, страдающих привычным невынашиванием беременности, они обнаружили одну интересную вещь: первоначально уровень продуцирования STL2 повышался во всех случаях, но у здоровых женщин он снижался через два дня после начала децидуализации, тогда как у второй группы женщин он оставался высоким на протяжении восьми дней после запуска децидуализации, а уровень производства рецепторов-приманок sST2, наоборот, был значительно ниже. Хотя у этих женщин происходила имплантация эмбрионов, кумулятивные воспалительные эффекты, вызванные более продолжительной выработкой воспалительных цитокинов и STL2, создавали очень враждебную среду для эмбрионов, поскольку децидуальная ткань была повреждена и наполнена иммунными атакующими клетками.

При трансформации стромальных клеток в децидуальные также меняется тип продуцируемых ими сигнальных молекул – цитокинов, что позволяет этим клеткам служить привратниками в важнейшей зоне соприкосновения между матерью и эмбрионом. Через секрецию интерлейкинов 11 и 15 они запускают мобилизацию и дифференциацию специализированного типа белых клеток крови, называемых натуральными (естественными) киллерами или NK-клетками. Как правило, эти клетки циркулируют в периферической крови и, как следует из их названия, обладают высокой цитотоксичностью, уничтожая клетки, зараженные вирусами, и опухолевые клетки. Однако маточные натуральные киллеры (uNK-клетки) действуют совершенно иначе: вместо того чтобы вырабатывать клеточные токсины, они продуцируют ряд цитокинов, которые, судя по всему, очень важны для продолжения беременности. Маточные NK-клетки составляют 70 процентов популяции всех белых кровяных клеток, присутствующих в децидуальной оболочке, и способствуют формированию плаценты, стимулируя рост новых кровеносных сосудов и проникновение эмбриона в материнскую ткань. В то же время децидуальные клетки защищают плод – аллогенный (чужеродный) в силу несомых им отцовских генов – от нападения цитотоксических Т-клеток. Они делают это путем отключения своих собственных ключевых генов, кодирующих цитокины, которые в ином случае они могли бы производить, натравливая Т-киллеров на эмбриональную цель.

Эмбрион, которому удалось успешно выдержать материнскую проверку, начинает более глубоко вторгаться в стенку матки, чтобы сформировать плаценту. По мере того как клетки эмбриона продолжают делиться, часть из них образует внешний клеточный слой, называемый трофэктодермой, из которого далее формируются клетки трофобласта с чрезвычайно высокой инвазивной активностью, а другая часть образует внутреннюю клеточную массу – эмбриобласт и затем сам плод. Проникая все глубже в стенку матки, трофобласт формирует древовидно-разветвленные структуры, называемые хорионическими ворсинками. Эти ворсинки богаты кровеносными сосудами и прикрепляют плод к матке. Далее трофобласт, который на этом этапе называют вневорсинчатым трофобластом, дорастает до спиральных артерий в стенке матки и образует в них открытые устья, которые открываются в большой просвет между материнской и фетальной тканью, известный как межворсинчатое пространство. Таким образом, из открытых устьев артерий кровь начинает свободно изливаться в межворсинчатое пространство и циркулировать между разветвленными ворсинками хориона. Хорионические ворсинки и межворсинчатое пространство покрыты специальным слоем клеток, называемым синцитиотрофобластом. Спиральные артерии претерпевают значительную перестройку. Гладкие мышечные и эластические волокна, образующие стенку артерий, разрушаются и заменяются клетками трофобласта. В результате из мышечных структур малого объема с высоким давлением артерии превращаются в объемные сосуды с низким сопротивлением – биологический эквивалент обвисших, растянутых рейтуз.

К двадцатой неделе нормальной беременности завершается формирование такой удивительной структуры, как плацента. На момент рождения ребенка общая площадь ее поверхности достигает одиннадцати квадратных метров, что делает ее почти такой же эффективной с точки зрения газообмена, как и легкие. Кроме того, перестройка материнских спиральных артерий означает, что мать не может ограничить приток крови к плаценте путем их сужения. Еще одним важным следствием такой глубокой плацентации является то, что плацента может выпускать вещества непосредственно в кровоток матери, чтобы манипулировать ее метаболизмом, тогда как мать не может делать того же самого в отношении эмбриона, поскольку поступающие с кровью вещества должны сначала пройти через синцитиотрофобласт, а затем и через эпителий плода, прежде чем они смогут попасть внутрь плода.

Стенки матки, плод и плацента образуют привилегированную в иммунном отношении зону, где действуют особые правила. Вместо того чтобы немедленно начинать атаку на вторгшиеся клетки, подающие сигнал «чужой», матка в процессе эволюции приобрела способность внимательно проверять «захватчиков» и затем запускать либо враждебный, либо, наоборот, благоприятный ответ. Плаценты впервые появились у млекопитающих около 120 миллионов лет назад, а такая сложная и глубокая форма плацентации, как гемохориальная плацента, развилась только у нас, людей, а также у человекообразных обезьян и некоторых других видов животных. Гемохориальная плацента дала возможность млекопитающим вынашивать своих детенышей на протяжении более длительного срока, эффективно снабжая их большим количеством питательных веществ и кислорода, но в то же время она потребовала огромных затрат со стороны матери, включая глубокую и значительную перестройку матки в результате вторжения эмбрионального трофобласта, и необходимости локальной модуляции нормальной активности иммунной системы. В этом процессе участвуют и врожденная, и адаптивная иммунная система в форме специализированных маточных натуральных киллеров и Т-клеток соответственно, которые ведут себя совершенно иначе, чем их собратья в периферической системе кровообращения. Чтобы развился такой тип плацентации, в геномах млекопитающих должны были произойти значительные изменения, и некоторые из них носили явно случайный характер.

С регуляторными Т-лифмоцитами мы уже встречались в предыдущей главе, где говорили о «старых друзьях» и о том, как эти лимфоциты защищают нас от аллергических и аутоиммунных реакций посредством ингибирования перепроизводства эффекторных Т-лифмоцитов. Они также играют важнейшую роль в обеспечении иммунной толерантности к плоду. Раньше эти клетки называли супрессорами, поскольку первые эксперименты с пересадкой тканей показали, что они могут предотвращать отторжение, однако они впали в немилость из-за того, что их предполагаемые побочные эффекты преувеличивались, а возможности их количественного анализа имели серьезные технические ограничения. Открытие в Т-клетках важного гена-маркера, транскрипционного фактора FOXP3, заставило исследователей вновь обратить на них внимание. Было установлено, что мыши и люди, у которых отсутствует фактор FOXP3, не имеют регуляторных Т-клеток и подвержены различным аутоиммунным заболеваниям.

Непосредственно перед овуляцией происходит значительное увеличение популяции регуляторных Т-клеток в периферической крови. Предположительно это вызывается повышением уровней эстрогена и прогестерона и помогает объяснить, почему беременные женщины с таким аутоиммунным заболеванием, как ревматоидный артрит, часто испытывают ремиссию во время беременности. Группа исследователей под руководством Тамары Тилберг из Гарвардского университета показала, что Т-клетки могут распознавать специфические варианты человеческих лейкоцитарных антигенов – молекулы HLA-C, единственные из этой группы антигенов, которые являются полиморфными в том плане, что могут существовать в 1600 потенциальных версиях. Это один из примеров механизма гистосовместимости, о котором мы говорили выше. Данные варианты HLA-C присутствуют в эмбриональной и фетальной ткани, и способность распознавать их позволяет Т-клеткам запускать либо враждебную, либо благоприятную реакцию в зависимости от того, что они узнают о совместимости с отцовскими генами. При несовместимости HLA-C, когда отцовские антигены HLA-C значительно отличаются от материнских антигенов HLA-C, начинают увеличиваться популяции продуцирующих цитокин Т-клеток и регуляторных Т-клеток. Именно присутствие регуляторных клеток сдерживает потенциально враждебную реакцию со стороны эффекторных Т-клеток, а ряд исследований также показал, что недостаточная популяция регуляторных Т-клеток связана как с привычным невынашиванием беременности, так и с преэклампсией.

Роберт Самстейн из Онкологического центра Слоун-Кеттеринг в Нью-Йорке помог нам взглянуть на вклад регуляторных Т-клеток в обеспечение иммунной толерантности к плоду под совершенно новым, эволюционным углом зрения. Бóльшая часть регуляторных Т-клеток производится в вилочковой железе, или тимусе, отсюда и буква Т в их названии. Однако было обнаружено, что отдельная популяция регуляторных Т-клеток может продуцироваться из наивных Т-клеток в периферической кровеносной системе. Именно эта популяция Т-регуляторов участвует в обеспечении иммунной толерантности к плоду, и Самстейн считает, что она появилась в ходе эволюции специально для того, чтобы смягчать конфликт между матерью и плодом, который неизбежно возникает у плацентарных млекопитающих вследствие более тесного контакта между отцовскими антигенами и материнским организмом. Самстейн показал, что дифференцирование этих периферийных регуляторных Т-клеток требует наличия гена FOXP3 в паре с некодирующим генетическим элементом CNS1, который усиливает его действие. В то же время CNS1 не требуется для созревания тимусных Т-регуляторов. Самстейн изучил наличие генетического элемента CNS1 у широкого спектра видов животных и обнаружил, что он неожиданно появляется только у плацентарных млекопитающих. Оказалось, что CNS1 относится к разряду «прыгающих генов» (ученые называют их транспозонами), которые были впервые исследованы Барбарой Макклинток в 1950-х годах. Судя по всему, элемент CNS1 появился в какой-то части генома и затем «перепрыгнул» на другую хромосому, где приземлился чуть ниже гена FOXP3 таким образом, что в ходе совместной эволюции стал усиливать экспрессию этого гена. Самстейн сообщил о серии экспериментов на самках мышей, которые показали, что CNS1-дефицитные мыши продуцировали гораздо меньше регуляторных Т-клеток в децидуальной оболочке. У CNS1-дефицитных самок, даже когда они спаривались с самцами с несовпадающим ГКГС (главным комплексом гистосовместимости), наблюдался ранний некроз спиральных артерий, воспаление и отек – и резорбция плода.

Эта новая, эволюционная модель специализированных регуляторных Т-клеток, отвечающих за иммунную толерантность к плоду, представляется весьма убедительной, поскольку позволяет объяснить упомянутый выше факт – женщины, которые быстро беременеют от нового партнера, более склонны к преэклампсии. Причина может быть в том, что они попросту не успевают приобрести толерантность к специфическому типу молекул HLA-C, которые предварительно презентуются им в сперме партнера. Эта модель также объясняет, почему риск преэклампсии возрастает при длительном интервале между беременностями от одного и того же партнера – причина может быть в ослаблении иммунной памяти. Наконец, эта модель помогает объяснить значение очень высоких уровней цитокина, известного как трансформирующий фактор роста бета (TGF-β), в человеческой сперме, о чем сообщила Сара Робертсон и ее коллеги. TGF-β необходим для дифференциации специализированных регуляторных Т-клеток, которые в конечном итоге мобилизуются в матке. Если бы во время развития плаценты в стенке матки не собиралась армия таких Т-регуляторов, ничто бы не мешало материнскому организму начать атаку на чужеродный вторгающийся плод.

Когда плод начинает развиваться, перетягивание каната между матерью и плодом начинает идти в полную силу, поскольку, по словам Дэвида Хейга, теперь в интересах матери сдержать необузданный рост и прожорливость плода, а в интересах плода – получить от матери как можно больше питательных веществ. Поскольку плод несет две копии (аллели) всех генов, одна из которых достается ему от матери, а другая от отца, его ДНК содержит представителей геномов обоих родителей. Эволюция нашла решение этому материнско-отцовскому конфликту у млекопитающих в форме механизма геномного импринтинга, который состоит в подавлении экспрессии материнских или отцовских аллелей определенных генов посредством метилирования ДНК – попросту говоря, к этим аллелям присоединяются так называемые метильные группы и «выключают» их. Когда импринтируется материнский аллель гена, у плода экспрессируется отцовский аллель, и наоборот, когда импринтируется отцовский аллель, активным становится материнский. На настоящий момент у млекопитающих обнаружено примерно 150 генов, подверженных импринтингу (и, вероятно, в скором времени будет открыто множество других), и многие из этих генов связаны с плацентой и плодом. Как вы могли догадаться, эти гены, как правило, обладают взаимно противоположным действием – в полном соответствии с теорией перетягивания каната, выдвинутой Хейгом. Исследователи провели ряд экспериментов, в ходе которых они выключали либо материнский, либо отцовский аллель в импринтируемых генах, чтобы увидеть, что происходит, когда нарушается обеспечиваемая импринтингом симметричность. Другими словами, они намеренно вмешались в процесс перетягивания каната, чтобы узнать, что произойдет, если одна из сторон перестанет тянуть канат.

Например, одна из пар генов, которая импринтируется на очень раннем этапе, – ген, кодирующий синтез инсулиноподобного фактора роста 2 (IGF2). Этот белковый гормон способствует росту плода, поэтому в норме импринтингу подвергается материнский аллель, а отцовский остается активным. Когда исследователи отключили у мышей отцовскую копию гена, отвечающего за синтез IGF-2, тем самым они склонили баланс сил в пользу матери, в результате чего родившиеся детеныши весили на 40 процентов меньше, чем обычно. В нормальной ситуации материнский организм уравновешивает воздействие IGF2 при помощи гена с противоположным действием – IGF2R, который кодирует соответствующие рецепторы (понятно, что отцовский аллель этого гена предусмотрительно отключается). Когда же исследователи заблокировали материнский аллель этого гена, баланс сил сместился в пользу отца, что привело к увеличению выработки плацентарных гормонов на 35 процентов и, как следствие, к рождению более крупных детенышей, которые весили на 25 процентов больше нормы.

Недавно ученые из Университета Бата дополнили эту картину антагонистического генетического контроля роста плода еще двумя генами, находящимися на противоположных концах каната, – это ген Dlk1 (кодирующий вещество, известное как дельта-подобный гомолог), у которого экспрессируется отцовский аллель и отключается материнский, и ген Grb10 (кодирующий белок, связывающий гормон роста 10), у которого, наоборот, экспрессируется материнский аллель и блокируется отцовский. Мышата с отключенным материнским аллелем гена Grb10 при рождении весили на 40 процентов больше, чем их нормальные собратья, а также имели больший процент жировых отложений. И наоборот, мышата, у которых блокировали отцовский аллель гена Dlk1, были на 20 процентов легче нормального потомства. Оба этих гена действуют через один и тот же метаболический путь, поэтому их антагонистические эффекты обеспечивают нормальный, сбалансированный рост.

Ген PHLDA2 (кодирующий плекстрин-гомологичный домен) экспрессирует материнский аллель, который ограничивает рост плаценты. Это объясняет, почему гиперактивность этого гена ведет к задержке внутриутробного развития плода. Одно исследование также связало его гиперактивность с повышенным риском невынашивания беременности и рождения мертвого плода, что может быть связано с тем, что он нарушает способность плаценты перестраивать спиральные артерии в стенке матки. Эффектам гена PHLDA2 противостоит ген под названием PEG10 (Paternally Expressed Gene 10), который кодирует определенный вид белка и экспрессируется только в отцовской копии. Этот ген малоактивен в начале беременности, но на десятой-двенадцатой неделе резко увеличивает свою активность и сохраняет ее на высоком уровне вплоть до родов.

Ген CDKN1C (кодирующий синтез белка – игнибитора циклин-зависимой киназы 1С) в норме имеет активный материнский аллель и отключенный отцовский, и отключение материнского аллеля приводит к чрезмерному росту плаценты. Валария Романелли и ее коллеги исследовали группу женщин, у которых вследствие генной мутации был дезактивирован ген CDKN1C. Во время беременности эти женщины перенесли тяжелую форму синдрома HELLP (см. выше), а рожденные ими дети имели избыточный вес и страдали синдромом Беквита-Видемана, который приводит к рождению младенцев с непропорционально большими конечностями и органами, а также с целым рядом других дефектов. Похоже, что в этом случае баланс смещается в пользу отцовских генетических интересов, способствуя ненормальному росту плода и повышенным потребностям в питании.

Два других связанных между собой дефекта в импринтируемых генах как нельзя нагляднее демонстрируют, какое значение имеет правильный геномный баланс для нормального развития плода. Синдром Ангельмана вызывается генетическими мутациями, при которых теряется или инактивируется материнская часть генома в 15-й хромосоме (в норме она является активной, тогда как отцовская часть отключается). Для детей с этим синдромом характерно нарушение сна, длительные периоды сосания при грудном вскармливании и частый смех. Их ангельский внешний вид вместе с доверчивостью и улыбчивостью (недаром таких детей называют «счастливыми куклами») с головой выдает стремление отцовских генов манипулировать материнским вниманием. И наоборот, дефект отцовской части генома в 15-й хромосоме ведет к рождению детей с синдромом Прадера-Вилли (в норме активируются отцовские аллели этих генов и инактивируются материнские). Для таких детей характерна низкая подвижность, повышенная сонливость и плохой сосательный рефлекс. Однако ко второму году жизни, когда детей обычно отлучают от груди, у них развивается повышенный аппетит, и они часто страдают склонностью к перееданию и ожирению. В этом случае мы наглядно видим материализацию материнских интересов, поскольку этот синдром – из-за нарушения сосательного рефлекса – ограничивает потребление ребенком молока в период грудного вскармливания, когда питательные ресурсы ограничены, но резко повышает его прожорливость, когда ребенок переходит на обычное питание и может порадовать маму «хорошим аппетитом».

Недавно Дэвид Хейг продолжил эту линию рассуждений, чтобы объяснить явление, с которым хорошо знакомы многие матери, – частые пробуждения ребенка среди ночи с требованием груди. Поскольку прерывистый сон и длительные периоды сосания характерны для детей с синдромом Ангельмана, при котором из-за инактивации материнских генов верх берут в норме молчащие отцовские гены, Хейг предполагает, что, возможно, те же самые отцовские копии генов у нормальных детей вызывают этот вид адаптационного поведения, который позволяет малышам получить более частый доступ к материнской груди и питанию. Кроме того, интенсивное грудное вскармливание тормозит восстановление нормальных овуляторных циклов и задерживает рождение следующего ребенка – таким образом снижая вероятность возникновения соперничества за материнское питание, уход и внимание. Такая вот теория Дарвина в духе Макиавелли!

Примерно на двадцатой неделе беременности завершается перестройка спиральных артерий в стенке матки. С этого времени и вплоть до рождения ребенка у матери увеличивается частота пульса и количество красных кровяных клеток, поскольку ее метаболизм адаптируется к тому, чтобы обеспечивать всем необходимым и ее саму, и ребенка. У многих женщин повышается кровяное давление, поскольку даже нормальные плаценты выбрасывают в материнскую систему кровообращения клеточный мусор, что вызывает умеренное воспаление в кровеносных сосудах. Ян Сарджент и Крис Редман с факультета акушерства и гинекологии Колледжа Наффилда Оксфордского университета утверждают, что ранняя преэклампсия, которая обычно начинается именно на этом сроке беременности и сопровождается дефектами плацентации, является всего лишь результатом интенсификации этого воспалительного процесса. Некоторые исследователи предполагают, что корень проблемы кроется в том, что из-за недостаточной перестройки спиральных артерий уменьшается приток крови к плаценте и развивается гипоксия плода, что и провоцирует возникновение преэклампсического состояния. Однако Сарджент и Редман считают, что ключевым фактором является не сам по себе объем кровотока, а его прерывистость из-за не перестроившихся узких артерий. Эта прерывистость вызывает временную ишемию в плаценте, и, когда кровоток восстанавливается, в ней развиваются точно такие же дополнительные реперфузионные повреждения, как и в сердечной мышце (миокарде) при сердечном приступе, когда происходит сначала закупорка, а затем внезапное возобновление кровотока по коронарной артерии. Резкий приток крови, кислорода и питательных веществ, вместо того чтобы оказывать благотворное действие, вызывает воспаление и окислительный стресс в результате выброса свободных радикалов. Поврежденная плацента сбрасывает в кровяное русло матери воспалительные белки и мусор в виде поврежденных и мертвых клеток, что быстро индуцирует системную воспалительную реакцию в материнских артериях, повреждая их внутреннюю эндотелиальную оболочку и резко повышая кровяное давление.

Из теории Хейга следует, что, когда плод и плацента подвергаются вышеописанной опасности, они должны дать отпор материнскому организму и восстановить достаточное кровоснабжение, используя специфическое биохимическое оружие. Хейг предполагает, что первым делом плацента старается увеличить сердечный выброс, но, если этого оказывается недостаточно, следующим шагом она пытается повысить сопротивление и, следовательно, кровяное давление в периферической кровеносной системе матери, что обеспечивает приток крови к ее основным органами, в том числе к матке и плаценте. Это предположение было подтверждено Анантом Каруманчи, специалистом по нефрологии из Гарвардской медицинской школы.

В 2000 году Каруманчи начал наблюдать за группой беременных женщин, которые страдали высоким кровяным давлением вкупе с почечной недостаточностью. Заинтригованный отсутствием глубоких исследований и консенсуса в отношении причин преэклампсии, он начал собственную исследовательскую программу, используя отделяемые после родов плаценты для того, чтобы узнать, какие гены – из тех, которые кодируют белки, способные попадать в систему кровообращения матери, – увеличивали свою активность в поврежденных плацентах. Безусловным лидером оказался ген sFlt1, который кодирует белок, называемый растворимой fms-подобной тирозинкиназой. И, когда Каруманчи исследовал кровь женщин, страдающих тяжелой формой преэклампсии, он обнаружил, что уровень sFlt1 в их крови в пять раз превышает уровень sFlt1 у женщин с нормальной беременностью. Более того, когда он ввел белок sFlt1 крысам, у них развились типичные симптомы преэклампсии. Он опубликовал результаты своих исследований в 2003 году, и в скором времени с ним связался Дэвид Хейг, который был очень рад тому, что его теория нашла еще одно реальное подтверждение. С тех пор Каруманчи стал убежденным сторонником Хейга, поскольку тот обеспечил его убедительной теоретической парадигмой, позволяющей в том числе объяснить, почему создание подобного хаоса в кровеносной системе матери может отвечать интересам плаценты и плода.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации