Электронная библиотека » Джеймс Уотсон » » онлайн чтение - страница 11


  • Текст добавлен: 26 октября 2018, 19:20


Автор книги: Джеймс Уотсон


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 11 (всего у книги 39 страниц) [доступный отрывок для чтения: 11 страниц]

Шрифт:
- 100% +

Когда патенты затрагивают технологии, имеющие фундаментальное значение для выполнения необходимых операций в молекулярной биологии, владельцы патента могут в буквальном смысле заблокировать целую исследовательскую область, требуя оплаты за работу в этой области. Несмотря на то что любая патентная заявка должна оцениваться по конкретным достоинствам именно этой заявки, все равно существуют некоторые общие правила, которые необходимо соблюдать. Патентование методов, ключевое значение которых для научного прогресса очевидно, должно рассматриваться по образцу прецедента, связанного с делом Коэна – Бойера: технология должна быть общедоступной (не контролироваться единственным лицензиатом) и подчиняться разумному ценообразованию. Эти ограничения ни в коем случае не идут вразрез с этикой свободного предпринимательства. Если новый метод представляет собой подлинный «шаг вперед» в науке, то и использоваться он будет очень широко, и даже умеренные проценты лицензионного вознаграждения принесут существенную прибыль. Однако патентование продуктов – например, лекарств или трансгенных организмов – должно распространяться лишь на конкретное наименование, а не на весь спектр других продуктов, которые могут быть созданы по образцу созданного и запатентованного.


Фил Ледер со своей «гарвардской» онкомышью


Триумфальный инсулиновый проект компании Genentech стал бенефисом биотехнологии того времени. Сегодня генная инженерия с использованием рекомбинантной ДНК – рутинная процедура, существенный элемент в деле разработки новых лекарств. Такие процедуры обеспечивают массовое производство человеческих белков, которые сложно получить другим способом. Зачастую генно-инженерные белки безопаснее использовать в лечебных или диагностических целях, нежели любые другие белковые продукты. Так, крайне малый рост (карликовость) часто развивается из-за недостатка человеческого гормона роста (СТГ). В 1959 году карликовость впервые стали лечить при помощи СТГ, который на тот момент можно было получить лишь из мозга трупов. Лечение шло удачно, но, как выяснилось впоследствии, пациенты рисковали заразиться крайне неприятной болезнью. Иногда в процессе лечения у пациентов развивалась болезнь Крейцфельдта – Якоба, тяжелое дистрофическое заболевание коры головного мозга, базальных ганглиев и спинного мозга с крайне высокойлетальностью, приводящее к психическим расстройствам и сенсорным нарушениям и напоминающее так называемое коровье бешенство. В 1985 году Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) запретило использовать СТГ, взятый из тканей трупов. По счастливому совпадению в том же году был получен рекомбинантный СТГ, разработанный компанией Genentech и не угрожающий пациентам заражением.

На первом этапе развития биотехнологической индустрии большинство компаний сосредоточились на получении белков, функция которых уже была известна. Клонированный человеческий инсулин был просто обречен на успех: в конце концов, к моменту появления продукта Genentech люди уже более полувека принимали инсулин. Другой пример – эритропоэтин (ЭПО), белок, стимулирующий в организме синтез эритроцитов. В ЭПО жизненно нуждались пациенты, постоянно проходившие диализ почек, которые страдают из-за анемии, связанной с потерей красных кровяных телец. Чтобы удовлетворить потребность в этом продукте, компания Amgen, расположенная в Южной Калифорнии, и Genetics Institute независимо друг от друга разработали варианты рекомбинантного эритропоэтина. Такой ЭПО по определению являлся полезным и коммерчески выгодным продуктом; оставалось лишь выяснить, какая из компаний захватит рынок сбыта. Хотя Джордж Ратман, генеральный директор компании Amgen, и не изучал таинственных нюансов физической химии, он вполне приспособился к суровым законам большого бизнеса. В конкурентной борьбе он проявлял самые «некуртуазные черты» своего характера: его переговоры с конкурентами напоминали схватку с дюжим медведем, в горящем взоре Ратмана читалась уверенность в том, что он может вас поколотить лишь потому, что так принято в бизнесе. Amgen и ее гарант Johnson & Johnson ожидаемо выиграли судебную тяжбу против Genetics Institute, и продажи эритропоэтина в 2006 году принесли пять миллиардов долларов одной лишь компании Amgen; впоследствии они стали снижаться. На сегодняшний день Amgen – один из крупнейших игроков на биотехнологическом рынке; стоимость компании оценивается в 125 миллиардов долларов.

После того как первопроходцы биотехнологического рынка разобрали между собой все легкодоступные активы – белки с известными физиологическими свойствами, в частности инсулин, тканевый активатор плазминогена (TPA), человеческий гормон роста (СТГ) и эритропоэтин (ЭПО), начался второй, более спекулятивный этап в развитии этой индустрии. Поделив все однозначно выигрышные продукты, компании, изыскивающие новые источники обогащения, предприняли попытки застолбить другие перспективные продукты с прицелом даже на отдаленную перспективу. Знающим, что некое вещество «работает», производителям оставалось лишь надеяться, что потенциальный продукт не подведет. К сожалению, производителям приходилось сталкиваться со значительной неопределенностью, техническими сложностями и бюрократическими препонами, прежде чем препарат получал одобрение Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA), и многие биотехнологические стартапы, построенные лишь на энтузиазме, разваливались на пути к цели.

Открытие факторов роста – белков, обеспечивающих размножение и выживаемость клеток, – также породило активный рост новых биотехнологических компаний. В частности, две из них – Regeneron, расположенная в Нью-Йорке, и Synergen (позже поглощенная Amgen), находящаяся в Колорадо, – пытались найти лекарство от бокового амиотрофического склероза (БАС), также известного в США под названием «болезнь Лу Герига». Это тяжелое, медленно прогрессирующее, неизлечимое заболевание нервной системы, связанное с дегенеративным расстройством нервных клеток. В принципе, обе компании руководствовались верными идеями, но на практике в те времена было попросту слишком сложно определить, как работают нервные факторы роста, так что это практически поиски вслепую. Клинические испытания на двух группах пациентов с боковым амиотрофическим склерозом провалились, и болезнь по сей день остается неизлечимой. Однако эксперименты дали интересный побочный эффект: те, кто принимал лекарство, хорошо сбрасывали вес. Это показывает, какие неожиданные повороты случаются в биотехнологическом бизнесе. Компания Regeneron опробовала модифицированную версию препарата как средство для похудения, но результаты клинических испытаний получились противоречивыми, и лекарство так и не попало на рынок. Тем не менее компания Regeneron добилась своего процветания благодаря разработке некоторых других сверхуспешных препаратов, среди которых ингибитор фактора роста эндотелия сосудов (Eylea), применяемый для лечения старческого макулярного отека, который формируется, когда жидкость и белковые отложения накапливаются на макуле или под макулой глаза (желтое пятно в центральной части сетчатки) и заставляют ее утолщаться и набухать, вызывая отек, который может привести к искажению центрального поля зрения человека, так как пятно располагается рядом с центром сетчатки в задней части глазного яблока.

Другое, исходно спекулятивное начинание, похоронившее изрядное количество коммерческих надежд, было связано с технологией получения моноклональных антител. Когда в середине 1970-х годов Сезар Мильштейн и Жорж Кёлер получили такие антитела в Лаборатории молекулярной биологии Совета по медицинским исследованиям (MRC) при Кембриджском университете, моноклональные антитела восхваляли как «серебряные пули», которые вскоре изменят облик медицины. Тем не менее MRC допустил немыслимый по нынешним меркам просчет и не позаботился о том, чтобы их запатентовать. Серебряных пуль из моноклонов не вышло, но спустя целые десятилетия разочарований эти антитела наконец-то заняли достойную них нишу.

Антитела – это молекулы, которые синтезируются факторами адаптивной иммунной системы; их назначение – идентифицировать враждебные микроорганизмы, антигены и связываться с ними. Моноклональные антитела происходят от одной и той же линии антителообразующих клеток (плазмоцитов), и они «запрограммированы» на связывание с уникальной для каждого антитела мишенью. В организме мышей они быстро образуются в ответ на инъекцию вещества-мишени, вызывающего иммунный ответ. Затем в культуре клеток выращиваются мышиные В-лимфоциты, продуцирующие моноклональные антитела. Поскольку данный тип антител способен распознавать конкретные молекулы и связываться с ними, ученые надеялись, что их можно будет с прицельной точностью использовать для борьбы против многочисленных патологических образований, содержащих антигены, например раковых клеток. На волне такого оптимизма был основан целый ряд компаний, занятых разработкой мышиных моноклональных антител, но очень скоро все они столкнулись с трудностями. По иронии судьбы, основным препятствием оказался человеческий иммунитет как таковой, воспринимавший мышиные моноклоны как инородные тела и уничтожавший их еще до того, как они успевали добраться до мишеней в макроорганизме. Предлагались различные методы по «очеловечиванию» мышиных моноклональных антител – ученые пытались максимально сблизить по составу антитела мыши с человеческими. Последнее поколение таких антител – это наиболее бурно развивающаяся отрасль современных биотехнологий[10]10
  Сегодня моноклональные антитела – сложившаяся технология лечения многих онкологических и аутовоспалительных реакций. – Примеч. науч. ред.


[Закрыть]
.

Компания Centocor, располагавшаяся близ Филадельфии, а сегодня принадлежащая Janssen Biotech, разработала препарат ReoPro (абциксимаб) – антитело, специфичное к белку, появляющееся на поверхности бляшек, которые приводят к образованию тромбов. ReoPro не допускает склеивания бляшек и поэтому, например, снижает вероятность смерти от тромбоэмболии у пациентов, проходящих ангиопластику. Genentech, никогда не дававшая спуску конкурентам в биотехнологической гонке, в 1998 году успешно запатентовала герцептин – антитело, нацеленное на борьбу с некоторыми разновидностями рака груди (см. в главе 14). Пятнадцать лет спустя Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США одобрило Kadcyla – гибридный конъюгат антител с лекарственным препаратом, который вскоре стал новым многомиллиардным проектом, «тяжелой артиллерией» против рака груди. Компания Immunex из Сиэтла (приобретенная Amgen) производит препарат Enbrel, используемый в лечении ревматоидного артрита. Это расстройство возникает из-за избыточной продукции конкретного белка, фактора некроза опухолей (ФНО), участвующего в регуляции иммунного гомеостаза. Enbrel захватывает лишние молекулы ФНО, ослабляя таким образом активность иммунного реагирования на антигены собственных тканей суставов. Это был один из самых востребованных препаратов в 2014 году, его продажи составили восемь миллиардов долларов.

Есть и такие биотехнологические компании, которые занимаются клонированием генов, чьи белковые продукты являются потенциальными мишенями для новых препаратов. Так, весьма активно отыскиваются гены поверхностных белков, располагающихся на поверхности клетки и выполняющих функции рецепторов для нейромедиаторов, гормонов и факторов роста. Именно при помощи таких химических мессенджеров с плейотропным действием человеческий организм координирует работу каждой отдельной клетки с работой триллионов других клеток, осуществляя гомеостатическое регулирование. Недавно выяснилось, что лекарственные средства, ранее разработанные практически вслепую методом проб и ошибок, воздействуют именно на такие рецепторы.

Крупнейшая и, пожалуй, наиболее важная группа подобных препаратов – это рецепторы, сопряженные с G-белком (G-protein-coupled receptors, GPCR), – семейство трансмембранных рецепторов, выполняющих функцию активаторов внутриклеточных путей передачи сигнала, приводящих в итоге к клеточному ответу. Это тип молекул, которые находятся снаружи клетки и служат проводником сигналов между клеткой и окружающей ее средой. GPCR обеспечивают работу органов зрения, обоняния, участвуют в работе иммунной системы и многих других сигнальных систем. Так, когда человек принимает атропин, расширяющий зрачки, либо морфин, притупляющий невыносимую боль, эти препараты модулируют сигнальные пути различных GPCR. В 2012 году Роберт Лефковитц (Университет Дьюка) и Брайан Кобилка (Стэнфордский университет) совместно получили Нобелевскую премию по физиологии и медицине за сложные исследования атомной структуры и биохимической функции GPCR. Известно, что сотни уже изученных GPCR служат мишенью примерно для 30 % лекарств, присутствующих на современном рынке; среди них Zyprexa для лечения шизофрении и Zantac для борьбы с язвой желудка.

Теперь, когда мы рассматриваем механизм действия этих лекарств на новом, молекулярном уровне, становится понятным, почему многие лекарства, мишенью для которых являются рецепторы, дают побочные эффекты. Рецепторы зачастую относятся к большим семействам схожих по структуре белков. Препарат действительно может «бить по непосредственной цели», то есть по рецептору, вызывающему заболевание, с которым мы боремся, но при этом случайно затрагивать и схожие рецепторы, провоцируя побочные эффекты. Интеллектуальный подход к разработке лекарств должен обеспечить более избирательное действие на отдельные рецепторы, так чтобы блокировались исключительно те из них, на которые нацелено действие препарата. Однако большинство моноклональных антител, которые на бумаге кажутся просто превосходными, очень часто пробуксовывают при практическом применении, и извлечь из них прибыль оказывается еще более сложным делом.

Несмотря на имеющиеся успехи препаратов, действие которых направлено на рецепторы, иногда даже самые «высоконаучные» попытки по разработке такой терапии терпят фиаско. Возьмем, к примеру, SIBIA – стартап из Сан-Диего, связанный с Институтом Солка. Открытие мембранного рецептора для нейромедиатора никотиновой кислоты сулило настоящий прорыв в лечении болезни Паркинсона, но, как часто бывает в биотехнологиях, хорошая идея оказалась лишь первым шагом в начале долгого пути к научному достижению. Потенциальное лекарство, разработанное SIBIA, в итоге показало хорошие результаты только в испытаниях на обезьянах, но для людей оказалось непригодным. Другая многообещающая биотехнологическая компания, EPIX Pharmaecuticals, разработала несколько препаратов, нацеленных на GPCR, но была расформирована в 2009 году.

Тем не менее иногда такие решения оправдывают себя самым неожиданным образом. Мы уже упоминали разработанный Regeneron фактор роста нервной ткани, неожиданно проявивший себя в качестве средства для похудения. Многие другие биотехнологические прорывы также связаны с чистым везением, а не с точным расчетом и тщательной разработкой. Например, в 1991 году компания ICOS из Сиэтла, которой руководил Джордж Ратман, прославившийся еще в Amgen, работала с классом ферментов под названием фосфодиэстеразы, которые разрушают молекулы, обеспечивающие клеточную сигнализацию. Компания искала новые препараты для борьбы с повышенным давлением, но при разработке обнаружился весьма удивительный «побочный эффект». Оказалось, что полученные вещества действуют подобно «Виагре» и лечат эректильную дисфункцию, так что здесь производителям удалось сорвать такой джекпот, о котором никто даже и не мечтал[11]11
  Препарат «Виагра» имеет аналогичную историю. Это лекарство изначально также разрабатывалось для борьбы с повышенным давлением, но при испытаниях на студентах-медиках удалось выявить и другие его свойства.


[Закрыть]
.

Несмотря на процветание рынка препаратов по лечению эректильной дисфункции, все-таки основной и важнейшей движущей силой биотехнической индустрии (что совсем неудивительно) стал поиск лекарства от рака. Классический способ борьбы с раком, связанный с уничтожением клеток (при помощи облучения или химиотерапии), неизбежно губит и нормальные, здоровые клетки, что обычно дает чрезвычайно губительные для организма побочные эффекты. Научившись работать с ДНК, исследователи наконец-то начинают синтезировать препараты, нацеленные на белки, среди которых много факторов роста и их рецепторов, расположенных на поверхности клеток. Белки, на которые обратила внимание научная общественность при изучении проблем рака, обеспечивают рост и деление раковых клеток. Разработка препарата, который ингибирует лишь конкретный белок, не затрагивая другие жизненно необходимые структуры, – чудовищно сложная задача даже для экспертов по клинической биохимии. Тернистый путь от определения мишени лекарственного препарата до одобрения лекарства в Управлении по санитарному надзору за качеством пищевых продуктов и медикаментов США и его широкого применения на рынке лекарственных средств – это подлинная одиссея, редко занимающая менее десяти лет. При этом каждый препарат, который успешно пройдет этот непростой путь через доклинические и клинические испытания и будет одобрен, требует подстраховки со стороны биотехнологических и фармацевтических компаний, поскольку приходится тратиться и на разработку других лекарств, которые в итоге останутся не у дел.

Еще совсем недавно истории успеха таких проектов оставались единичными, теперь я с облегчением наблюдаю, как их число постоянно преумножается. Классический образец успешного противоракового лекарства – препарат Gleevec от компании Novartis, один из представителей нового класса таргетных цитостатиков, избирательно воздействующих на клетки, имеющие те или иные характерные для опухолей генетические дефекты, эффективный в лечении хронического миелолейкоза. Препарат прицельно блокирует ростстимулирующую активность аберрантного белка, который в переизбытке синтезируют раковые клетки такого типа, и ингибирует гибридную тирозинкиназу BCR-ABL, ген которой находится на «филадельфийской хромосоме» (Ph), образующейся вследствие реципрокной транслокации между 9-й и 22-й хромосомами, происходящей при данной патологии. Обычно, если прием Gleevec начинается на ранней стадии болезни, препарат обеспечивает длительные периоды ремиссии, а иногда и полное излечение. Однако к некоторым несчастным пациентам болезнь возвращается из-за новых мутаций онкогена, после которых Gleevec теряет эффективность. На основе Gleevec разработано несколько препаратов второго поколения, помогающих эффективнее сдерживать рак (мы более подробно поговорим о противораковой терапии в главе 14).

В 1998 году – ни много ни мало в пятницу тринадцатого – Джон и Эйлин Кроули узнали убийственную новость: оказалось, что их дочь Меган (в возрасте года и трех месяцев) страдает болезнью Помпе – редким генетическим расстройством, из-за которого организм не в состоянии перерабатывать сахар (гликоген). В результате сахар накапливается в теле и становится токсичен, повреждая мышечные и нервные клетки по всему организму. Ожидаемая продолжительность жизни при такой болезни обычно составляет всего два года. Джон Кроули бросил прежнюю работу в фармацевтической сфере и основал небольшую биотехнологическую компанию Novazyme специально для того, чтобы найти лекарство для Меган. Кроули продал свою компанию примерно за 135 миллионов долларов фирме Genzyme, завершившей разработку нового препарата, названного Myozyme. В 2006 году вышла книга о мытарствах Кроули под названием The Cure («Лекарство»), и после публикации Джону позвонил актер Харрисон Форд (естественно, Джон подумал, что это розыгрыш). Форд хотел снять фильм об истории семьи Кроули. В итоге вышла лента «Крайние меры», в которой Харрисон Форд сыграл ведущего исследователя. Премьера фильма состоялась в 2010 году. Миниатюрного Кроули сыграл высокорослый Брендан Фрейзер, звезда фильма «Джордж из джунглей». Кроули тогда грустно пошутил, что у кого-то в отделе подбора актеров на роли явно была дислексия.

Немногие руководители биотехнологических компаний удостоились внимания Хана Соло, но в биотехнологическом мире хватает драматизма – от захватывающих историй успеха до бесславных поражений и забытых технологий. Прошлое десятилетие характеризовалось стабильным развитием биотехнологической индустрии. В 2015 и 2016 годах этот сегмент фармацевтической индустрии получил более чем по семь миллиардов долларов ежегодных инвестиций от венчурных компаний. Среди многочисленных новых лекарств, одобренных Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов в 2013 году, есть не менее семи потенциальных «тяжеловесов» (каждый из которых может принести более миллиарда долларов прибыли ежегодно). Кроме того, инвесторы вложили еще миллиарды долларов в стартапы, продвигая новые диагностические средства и методы терапии.

В индустрии произошла явная «смена караула» – те компании, что ранее классифицировались как биотехнологические (то есть занятые разработкой биохимических лекарств или миноклональных антител), в частности Amgen, Gilead Sciences и Regeneron Pharmaceuticals, в настоящее время окрепли и диверсифицировались. Сейчас они оцениваются выше, чем многие традиционные гиганты фармацевтической индустрии, не справившиеся с «патентным обвалом», из-за которого они практически за одну ночь лишились миллиардов долларов прибыли из-за истечения срока действия патента на их флагманский препарат. Учитывая, как растут активы биотехнологических компаний, эти амбициозные фирмы всерьез вкладываются в развитие геномики, считая, что именно она – ключ к дальнейшему прогрессу в разработке лекарств. Так, Amgen за 415 миллионов долларов приобрела deCODE Genetics – исландскую компанию, прославившуюся тем, что ей удалось собрать полную базу данных о геномах всех 320 тысячах жителей Исландии. Regeneron, в свою очередь, объединила усилия с Geisinger, одной из крупнейших американских компаний, занятых в сфере здравоохранения, чтобы секвенировать геномы 100 тысяч добровольцев и найти ответы или подсказки, которые позволили бы превратить рекомбинантные ДНК в новые лекарства. В 2016 году компания AstraZeneca анонсировала десятилетнюю программу по секвенированию геномов двух миллионов человек, руководить которой будет стэнфордский генетик Дэвид Голдстейн. Компания собирается инвестировать сотни миллионов долларов в поиск редких патологических разновидностей генов. По-видимому, наконец-то настали времена геномики.

Биотехнология зародилась в Сан-Франциско, поэтому совершенно неудивительно, что и специалисты из Кремниевой долины всерьез присматриваются к этой отрасли. Так, компания Google (от лица своего холдинга Alphabet) пригласила на работу Арта Левинсона (Art Levinson), легендарного бывшего директора Genentech, а также ряд других ключевых управленцев и основала новую биотехнологическую компанию Calico (это своеобразная аббревиатура названия California Life Company, которое является реверансом в адрес Genentech, где действовало такое правило именования). Calico изучает генетику процессов старения и долголетия – эта тема, по-видимому, вызывает у предпринимателей из Кремниевой долины настоящую одержимость. Компания 23andMe, занимающаяся персонифицированной геномикой, была основана при участии Анны Воджицки, бывшей жены сооснователя Google Сергея Брина, и в начале деятельности ее иногда порицали как «компанию по развлекательной генетике» (об этом мы поговорим в главе 8). Тем не менее компания 23andMe, подписавшая контракты с крупными игроками на фармацевтическом рынке на доступ к базе ДНК по одному миллиону клиентов, четко обозначила, что собирается сама стать одним из таких игроков. Фирма пригласила на работу Ричарда Шеллера, бывшего директора Genentech по исследованиям и разработкам, возглавившего в 23andMe их собственную программу по поиску новых лекарственных средств. Двое ветеранов Twitter основали Color Genomics – диагностическую компанию, предлагающую секвенировать набор из 30 раковых генов (в том числе BRCA1) за неслыханно низкую цену – всего 224 доллара.

Двое других ученых – «титанов» от геномики также развивают амбициозные биотехнологические проекты. Крейг Вентер, ключевой деятель в области секвенирования генома человека (подробнее см. главу 7), основал две компании: Synthetic Genomics, занимающуюся разработкой биотоплива, и Human Longevity, которая, по планам Крейга Вентера, к 2020 году должна отсеквенировать один миллион человеческих геномов. Сайд-проект подназванием Health Nucleus предлагает персонализированную лечебную платформу, в рамках которой выполняется секвенирование генома, полный бактериальный и метаболический скрининг, а также полное МРТ-сканирование всего тела. Лерой Худ, гигант геномной индустрии, изобретатель технологий автоматизированного синтеза ДНК и белков, помог запустить Arivale, компанию, позиционирующую себя как фирму «научного оздоровления», которая предлагает годичную программу стоимостью 3500 долларов, сочетающую генетический анализ и персональный коучинг.

Несмотря на то что большинство биотехнологических компаний все-таки сосредоточиваются на разработке небольших молекул или моноклональных антител, существует также ряд других стратегий. Результатом реализации этих стратегий стали подлинно захватывающие успехи в лечении печально известных генетических заболеваний. Бостонская компания Vertex Pharmaceuticals, финансируемая при поддержке Фонда муковисцидоза, разработала лекарства для пациентов, страдающих муковисцидозом и имеющих специфические мутации гена муковисцидоза (CFTR), который локализован в середине длинного плеча 7-й хромосомы. Следствием мутации гена является нарушение структуры и функции белка, получившего название муковисцидозного трансмембранного регулятора проводимости (МВТП). Выпустив первый препарат под названием Kalydeco (нацеленный на лечение небольшой выборки пациентов), компания представила Orkambi, предназначенный для лечения больных с наиболее распространенной мутацией (Delta F508). Аналитики считают, что Orkambi, появившийся в продаже в 2015 году, должен принести Vertex прибыль. Правда, скептики при этом отметили бы, что оптовая цена годового курса лечения, требуемого одному пациенту, составит целых 250 тысяч долларов.

Лечение другого генетического расстройства – мышечной дистрофии – было настоящей мечтой еще до того, как Лу Кункель и Тони Монако (Tony Monaco) в конце 80-х годов идентифицировали ген наиболее распространенной формы такого заболевания – миодистрофии Дюшена. Заболевание вызывается делециями или дупликациями одного или нескольких экзонов либо точечными мутациями в гене дистрофина, кодирующем белок дистрофин (ген DMD). Делеции располагаются по длине гена неравномерно, чаще в его начале (5'-концевая область) и в середине. Дис-трофин в больших количествах находится в клеточной мембране мышечных клеток; нарушение структуры мембраны ведет за собой дегенерацию органелл и гибель миофибрилл (органеллы, отвечающие за сокращение мышц). Разработка лекарства тормозилась из-за того, что белок дистрофина оказался просто огромен, но биотехнологические компании применили инновационные стратегии. Две американские фирмы, Sarepta Therapeutics и PTC Therapeutics, воспользовались технологиями, помогающими «намеренно» просматривать участок кодирующей ДНК (или экзон), в котором находится специфическая мутация, имеющаяся у некоторых пациентов с миодистрофией Дюшена. Результатом может стать наличие укороченной, но при этом рабочей разновидности дистрофина. Тем временем в компании United Kingdom Summit Therapeutics, которую основала Дейм Кей Дэвис, генетик из Оксфордского университета, на этапе клинических испытаний исследуют препарат, который должен включать близкородственный ген. Препарат называется «утрофин», причем есть заметные признаки того, что белок, продуцируемый этим геном, может функционально замещать недостающий дистрофин.

Широкие коммерческие перспективы биотехнологического бизнеса по-прежнему привлекают инноваторов, инвесторов и просто мечтателей. Так, например, тридцатилетний Вивек Рамасвами, бывший специалист по хедж-фондам, выложил скромные пять миллионов долларов за отбракованный препарат-кандидат компании GlaxoSmithKline, предназначенный для лечения болезни Альцгеймера. Однако после выхода на рынок его компания Axovant Sciences оценивается уже почти в три миллиарда долларов – это крупнейшая биотехнологическая котировка в истории. Если соединение под названием RVT-101 будет одобрено, оно станет новым лекарством от болезни Альцгеймера за более чем десятилетний период[12]12
  В 2016 году компания Pfizer решила прекратить разработку препарата PF-05212377, обладавшего схожим механизмом действия.


[Закрыть]
.

Элизабет Холмс бросила Стэнфорд, чтобы основать Theanos – потенциально революционную диагностическую компанию, предлагающую плановое исследование, для которого требуется всего несколько капель крови пациента. Theanos заключила крупную сделку с Walgreens, и рыночная стоимость компании составила около девяти миллиардов долларов, хотя подробности этой технологии хранятся в строгом секрете. Настроения общества и бизнес-сообщества переменились после выхода журналистского расследования, опубликованного в Wall Street Journal обладателем Пулитцеровской премии Джоном Каррейру. В нем сообщалась сенсационная новость: оказывается, большинство анализов в Theanos проводилось при помощи традиционных технологий, а не в рамках проприетарной платформы, которую запатентовала компания. Последовала тщательная проверка со стороны организации «Центры государственной медицинской помощи по программам Medicare и Medicaid», а затем на Theanos были наложены суровые санкции. В результате Элизабет Холмс решила закрыть все лаборатории своей компании и сосредоточиться на производстве коммерческого оборудования для анализов крови. Такая головокружительная и авантюрная история просто просилась на экран. Вышел фильм, сценарий которого был основан на книге Джона Каррейру Bad Blood («Дурная кровь»). Роль Элизабет Холмс в этой ленте сыграла Дженнифер Лоуренс.

В 2015 году еще один менеджер по хедж-фондам, переквалифицировавшийся в гендиректора биотехнологической фирмы (по имени Мартин Шкрели), оказался под огнем критики за наглое искусственное взвинчивание цен. Компания Шкрели Turing Pharmaceuticals приобрела фактическую монополию на генетический препарат Daraprim, применявшийся для лечения токсоплазмоза (паразитическая инфекция, часто встречающаяся у больных СПИДом). Когда Шкрели объявил, что планирует повысить цены на препарат на немыслимые 5000 % – с 13,5 до 750 долларов за таблетку (один прием), – его просто демонизировали в бизнес-СМИ, порицали участники президентской гонки, а также коллеги-управленцы из фармакологической индустрии, среди которых, надо сказать, были и такие, кто сам занимался ценообразованием на грани фола. В США, в отличие от других развитых стран, правительство никак не регулирует цены на лекарственные препараты. Компания Gilead, добившись в рекордные сроки одобрения своего препарата Sovaldi от гепатита C, установила в США цену по 1000 долларов за одну таблетку (курс лечения рассчитан на двенадцать недель по одной таблетке в день). В то же время за границей этот препарат продается со скидкой до 99 %. Пациенты, налогоплательщики и организации здравоохранения просто бы взвыли от чека на 84 тысяч долларов за курс лечения, отметив, что себестоимость производства одной таблетки – около одного доллара. Главный директор по медицине в компании Express Scripts назвал такое ценообразование «антиробингудовским».

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации