Электронная библиотека » Джеймс Уотсон » » онлайн чтение - страница 9


  • Текст добавлен: 26 октября 2018, 19:20


Автор книги: Джеймс Уотсон


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 9 (всего у книги 39 страниц) [доступный отрывок для чтения: 13 страниц]

Шрифт:
- 100% +

Больше всего я боялся, что такая махровая публичная паранойя по поводу вредоносных экспериментов в молекулярной биологии приведет к появлению драконовских законов. Если бы вдруг «что дозволено» и «что не дозволено» в рекомбинантных технологиях оказалось бы прописано в каком-нибудь нормативно-правовом акте, это только навредило бы науке. Планы новых экспериментов потребовалось бы подавать на рассмотрение и утверждение в политизированные экспертные советы, где царила беспросветная бюрократия, неистребимая, как моль в старом бабушкином шкафу. Тем временем, как бы мы ни старались оценить реальный потенциальный риск, присущий нашей работе, нам так и не удавалось справиться с недостатком информации и логическими сложностями «доказательств от противного». Никаких биологических катастроф с рекомбинантной ДНК никогда ранее не возникало, но журналисты пытались перещеголять друг друга, предлагая сценарии таких бедствий один другого мрачнее. Биохимик Леон Геппель, описывая свои впечатления от собрания в Вашингтоне (округ Колумбия) в 1977 году, так резюмировал всю абсурдность тех противоречий, с которыми приходилось иметь дело ученым.

Я чувствовал себя так, словно меня избрали в импровизированный комитет, собранный испанским двором для оценки потенциальных рисков, с которыми могла столкнуться экспедиция Христофора Колумба. Комитет должен был выработать регламент по поводу того, как следует действовать, если Земля окажется плоской, как экипажу безопасно заглянуть за край Земли и т. д.

Однако даже ирония ученых практически ничего не позволяла поделать с мракобесами, ополчившимися против мнимой «прометеевой гордыни» в науке. Одним из таких «крестоносцев» был Альфред Велуччи, мэр Кембриджа, штат Массачусетс. Велуччи заработал политические очки, отстаивая права «простого человека» в борьбе против элитных вузов, расположенных в городе, – речь о Массачусетском технологическом институте и Гарварде. Шумиха по поводу рекомбинантной ДНК стала для него настоящим политическим Эльдорадо. Вот характеристика современника, прекрасно описывающая сложившуюся тогда ситуацию:

Выходит он в своих клюквенно-красной двубортной куртке и черных штанах, под курткой – голубая рубашка в желтую полоску, из-под которой выпирает пивной живот. Карманы его набиты всякой всячиной, а зубы кривые. Таков Эл Велуччи, воплощение американского обывательского недовольства всеми этими учеными и технократами, этими хитрыми гарвардскими «ботанами», возомнившими, что весь мир у них на крючке и что они могут швырнуть его в грязную лужу. И кто же в результате оказывается в луже? Нет, не «яйцеголовые», а неизменно Велуччи и простые работяги, которым только и остается потом самим отмываться от грязи.

Отчего же разгорелся весь сыр-бор? Гарвардские ученые проголосовали за то, чтобы возвести прямо в кампусе карантинный объект, где можно было бы работать с рекомбинантной ДНК в строгом соответствии с регламентом Национальных институтов здравоохранения. Однако Велуччи, предвидя такое развитие событий, заручился поддержкой левой партийной группировки, члены которой, ополчившиеся на исследования ДНК, работали в Гарварде и Массачусетском технологическом институте, и всего за несколько месяцев сумел запретить в Кембридже любые исследования, связанные с рекомбинантной ДНК. В результате наступил короткий, но негативно отразившийся на науке период локальной утечки мозгов: ученые из Гарварда и Кембриджа потянулись в менее политизированную среду. Тем временем Велуччи привыкал к новообретенной славе бдительного защитника социума от науки. В 1977 году он написал президенту Национальной академии наук:

В сегодняшнем номере Boston Herald American (издательская корпорация «Хёрст») есть два репортажа, вызывающих у меня серьезное беспокойство. В Дувре, штат Массачусетс, заметили «странное существо с оранжевыми глазами», а в Холлисе, штат Нью-Гемпшир, мужчина и двое его сыновей повстречали «волосатую девятифутовую тварь».

Слушания в Кембридже, штат Массачусетс. В результате этого процесса в городе были полностью запрещены исследования рекомбинантной ДНК


Я с уважением обращаюсь в вашу авторитетную организацию с просьбой расследовать эти факты. Надеюсь, вы сможете проверить, могут ли эти «странные существа» (если, конечно, они существуют) быть каким-то образом связаны с экспериментами в сфере рекомбинантной ДНК, предпринимаемыми в Новой Англии.

К счастью, несмотря на активное обсуждение в обществе, государственные законы по ограничению исследования рекомбинантной ДНК так и не были приняты. Сенатор от штата Массачусетс Тед Кеннеди вступил в эту дискуссию на самом раннем этапе и организовал слушание по этому вопросу в Сенате всего через месяц после Асиломарской конференции. В 1976 году он обратился к президенту Форду, заявив, что федеральное правительство должно взять под контроль как промышленные, так и академические исследования ДНК. В марте 1977 года я давал объяснения в Законодательном собрании штата Калифорния. На заседании присутствовал губернатор Джерри Браун, и мне удалось пояснить ему лично, что было бы ошибочно принимать к рассмотрению законопроекты против таких исследований за исключением того случая, если ученых в Стэнфорде поразит какая-нибудь неизвестная болезнь. Если люди, непосредственно работающие с рекомбинантной ДНК, останутся совершенно здоровы, то специалистам по законотворчеству лучше сосредоточиться на более реальных общественных опасностях, таких, например, как езда по городу на велосипеде.

По мере того как проводились все новые и новые эксперименты (либо по регламенту Национальных институтов здравоохранения, либо в соответствии с правилами, принятыми в других государствах), становилось все очевиднее, что при экспериментах с рекомбинантной ДНК не возникает никаких франкенштейнов (а уж тем более – полно вам, мистер Велуччи! – «странных существ с оранжевыми глазами»). Уже в 1978 году я смог написать следующее: «Если сравнить ДНК со всеми прочими феноменами, названия которых начинаются на букву d, то она в самом деле совершенно безопасна. Гораздо уместнее поостеречься кинжалов, динамита, собак, дильдрина, диоксина или пьяных водителей (daggers, dynamite, dogs, dieldrin, dioxin, drunken drivers), нежели изображать схемы, достойные Руба Голдберга[7]7
  Машина Руба Голдберга – это карикатурное устройство, решающее простую задачу карикатурно сложным способом, https://ru.wikipedia.org/wiki/Машина_Голдберга. – Примеч. пер.


[Закрыть]
, измышляя, как наша лабораторная ДНК может привести к вымиранию человечества».

Позже в том же году в Вашингтоне, округ Колумбия, Надзорный комитет Национальных институтов здравоохранения по работе с рекомбинантной ДНК принял гораздо менее жесткий регламент, разрешавший развивать основной массив исследований, связанных с рекомбинантной ДНК, в частности изучать ДНК вирусных онкогенов. В 1979 году Джозеф Калифано, министр здравоохранения и социальных служб США, одобрил эти изменения, на чем и закончился период бессмысленной стагнации исследований рака у млекопитающих.



На практике Асиломарская конференция обернулась удручающе бессмысленным пятилетием, в течение которого тормозились важные исследования, а карьера многих молодых ученых оказалась загублена.

К концу 1970-х годов те проблемы, что были подняты в исходных экспериментах Коэна и Бойера, постепенно решились сами собой. Нам пришлось совершить досадный крюк, но биологи-молекулярщики как минимум продемонстрировали, что готовы нести социальную ответственность за результаты своих экспериментов.

Нельзя сказать, что во второй половине 1970-х годов молекулярная биология оказалась полностью сокрушена противостоянием с политикой; в эти годы были достигнуты некоторые важные успехи, и большинство полученных результатов базировалось на по-прежнему неоднозначной технологии молекулярного клонирования, изобретенной Коэном и Бойером. Важнейший прорыв в данном направлении был связан с открытием методов секвенирования ДНК. Для секвенирования нужно иметь множество образцов интересующего нас отрезка ДНК. Это было неосуществимо (если не считать образцов небольшой вирусной ДНК) до тех пор, пока небыли разработаны технологии молекулярного клонирования. Как мы уже убедились, клонирование, в сущности, заключается в следующем: вставляем интересующий нас фрагмент ДНК в плазмиду, а потом саму плазмиду внедряем в бактерию. Далее мы позволяем бактерии делиться и размножаться и в результате получаем множество копий искомого фрагмента ДНК. Затем этот фрагмент выделяется из бактерий – все, материал для секвенирования готов.

Две технологии секвенирования были разработаны одновременно. Автором одной из них был Уолли Гилберт из Кембриджа, штат Массачусетс (Гарвардский университет), автором другой – Фред Сенгер из британского Кембриджа. Уолли Гилберт заинтересовался секвенированием ДНК после того, как смог выделить репрессорный белок из регуляторной системы гена β-галактозидазы у бактерии E. coli. Как мы уже знаем, он продемонстрировал, что при встраивании нужного гена в хромосомную ДНК хозяина нужно позаботиться о том, чтобы сайт интеграции не находился внутри гена, кодирующего важную клеточную функцию. Кроме того, для обеспечения эффективной экспрессии его помещают под контроль регулируемого промотора.

Для интеграции в нужный сайт вводимый ген должен содержать нуклеотидную последовательность длиной не менее 50 нуклеотидов, сходную с таковой в хромосомной ДНК, в пределах которых и должен произойти физический обмен (рекомбинация) между двумя молекулами ДНК. Далее он решил выяснить, какова последовательность оснований на этом отрезке ДНК. Найти такой способ ему посчастливилось благодаря встрече с блестящим советским химиком Андреем Дарьевичем Мирзабековым. При помощи мощных химических реактивов Уолли Гилберту удалось разделить цепочки ДНК именно на нужных участках, специфичных к конкретным основаниям.

Уолли Гилберт оканчивал школу в Вашингтоне, округ Колумбия, и даже сбегал с уроков, чтобы почитать книги по физике в библиотеке Конгресса. На тот момент он боролся за приз в конкурсе по поиску молодых талантов под эгидой компании Вестингауз[8]8
  В 1998 году, когда на смену старому экономическому порядку пришел новый, проект Вестингауза был переименован в Intel Science Talent Search. С 2015 года конкурс спонсирует компания Regeneron.


[Закрыть]
 – это был настоящий Святой Грааль для всех одаренных старшеклассников. Как и следовало ожидать, он получил эту премию в 1949 году. (Много лет спустя, в 1980 году, получив приглашение в Стокгольм, в Шведскую академию наук, Гилберт лишний раз улучшил статистику, согласно которой премия Вестингауза – одна из наиболее серьезных заявок на получение Нобелевской премии в будущем.)



Уолли Гилберт (вверху) и Фред Сенгер (внизу) – короли секвенирования


В университете и аспирантуре Гилберт занимался физикой, а в 1956 году, через год после моего прибытия в Гарвард, стал работать на физическом факультете. Когда же я увлек его опытами с РНК, которыми занимался у себя в лаборатории, Гилберт забросил свою дисциплину ради моей. Вдумчивый и непреклонный Гилберт успел немало поработать на переднем крае молекулярной биологии.

Однако из двух методов секвенирования проверку временем выдержал вариант, предложенный Сенгером. Именно этот метод секвенирования был использован в проекте «Геном человека», а затем оказался востребованным и далее, пока не уступил место красивой химической технологии, изобретенной в британском Кембридже (об этом мы поговорим в главе 8). Некоторые химические соединения, расщепляющие ДНК и необходимые при секвенировании по методу Гилберта, сложны в обращении – чего доброго, начнут расщеплять ДНК самого исследователя. В свою очередь, при работе методом Сенгера используется тот же самый фермент, который обеспечивает естественное копирование ДНК в клетках, – ДНК-полимераза. Весь фокус в том, что при копировании пары оснований немного изменяются.

Сенгер использовал не только обычные дезокси-основания (А, Т, Г и Ц), которые встречаются в естественной ДНК, но и так называемые дидезокси-основания. Основания второй категории обладают замечательным свойством: ДНК-полимераза с готовностью внедряет их в цепочку ДНК (то есть копия собирается по образцу матричной цепи). Однако, после того как в цепочку попадет дидезокси-основание, другие основания в нее добавляться больше не могут. Иными словами, скопированная нить не может достраиваться после дидезокси-основания.

Допустим, у нас имеется матричная цепь с последовательностью ГГЦЦТАГТА. В эксперименте используется множество копий такой спирали. Теперь представьте себе, что эта цепь копируется при помощи ДНК-полимеразы, но в растворе, кроме А, Т, Г и Ц, присутствует еще и дидезокси-А. Фермент работает, сначала добавляя к цепи Ц (комплементарный исходному Г), затем еще Ц, затем еще Г и еще Г. Однако, когда фермент добирается до первого Т, открываются два варианта: либо он добавит к растущей цепочке обычный А, либо дидезокси-А. Если фермент подберет дидезокси-А, то цепь далее расти не сможет и получится короткой, с дидезокси A в конце: ЦЦГГддА. Но существует также возможность того, что цепь подхватит обычное A, и в этом случае ДНК-полимераза продолжит добавлять основания: Т, Ц и так далее. Дидезокси-основание в следующий раз сможет «закоротить» цепочку не раньше, чем фермент дойдет до следующего Т. Здесь, опять же, цепочка может подхватить либо нормальное А, либо дидезокси А (ддА). При присоединении ддА цепочка тоже получится обрубленной, но чуть более длинной, чем в первый раз: у этой цепочки будет последовательность ЦЦГГАТЦддА. Подобное происходит всякий раз, когда цепь дорастает до Т и далее к ней может присоединиться А. Если случится так, что цепочка подхватит обычное А, то она продолжит расти, а если подхватит ддА – то на этом завершится.

Что же в итоге? После эксперимента у нас имеется целый набор цепочек разной длины, скопированных с матричной ДНК. Что у них общего? Все они оканчиваются основанием ддА.

Теперь вообразите, что все происходит аналогично и с тремя оставшимися основаниями; в случае Т у нас в растворе будут обычные А, Т, Г, Ц плюс ддТ. В результате будут получаться молекулы ЦЦГГАддТ либо ЦЦГГАТЦАддТ.

Проведя реакцию всеми четырьмя способами – сначала с ддА, затем с ддТ, после этого с ддГ и с ддЦ, – получим четыре набора цепочек ДНК. В первой группе все цепочки заканчиваются на ддА, во второй – на ддТ и так далее. Как можно рассортировать эти слегка различающиеся цепочки в зависимости от слегка различающейся длины так, чтобы можно было логически вывести длину цепочки? Во-первых, можно организовать сортировку, уложив ДНК на пластинку, обработанную специальным гелем, а саму пластинку поместить в электрическое поле. Под действием электрического поля молекулы ДНК рассредоточатся по гелю. Скорость движения каждой цепочки есть функция ее длины – короткие цепочки движутся быстрее длинных. В течение фиксированного промежутка времени самый короткий фрагмент – в нашем случае ддЦ – уйдет дальше всех; чуть более длинный ЦддЦ уйдет не так далеко, а еще чуть более длинный ЦЦддГ пройдет еще меньший отрезок пути. Теперь вы догадываетесь, какой трюк применил Сенгер. Фиксируя относительные позиции всех этих мини-цепочек, движущихся сквозь гель, можно логически вывести, какова последовательность оснований в данном фрагменте ДНК: сначала идет Ц, затем еще Ц, затем Г и так далее.

В 1980 году Фред Сенгер получил Нобелевскую премию по химии совместно с Уолли Гилбертом и Полом Бергом, награжденным за вклад в разработку технологий, связанных с рекомбинантной ДНК (необъяснимо, почему такой чести не были удостоены ни Стэнли Коэн, ни Герб Бойер).

Для Сенгера это была вторая по счету Нобелевская премия[9]9
  Фред Сенгер – один из немногих дважды лауреатов Нобелевской премии, и компания у него самая изысканная. Мария Кюри получила премию сначала по физике (1903), а затем по химии (1911). Джон Бардин был дважды удостоен премии по физике: сначала за открытие транзисторов (1956), а затем за исследования сверхпроводимости (1972). Лайнус Полинг в 1954 году получил премию по химии, а в 1962 году – премию мира.


[Закрыть]
. В 1958 году он получил премию по химии за изобретение метода секвенирования белков – он научился определять последовательность аминокислот в белковой молекуле и таким способом выяснил состав человеческого инсулина. Однако сенгеровские методы секвенирования белков и ДНК совершенно не связаны ни в техническом, ни в идейном отношении. Каждый из методов он разработал с нуля, и, пожалуй, Сенгер заслуживает звания величайшего технического гения в ранней истории молекулярной биологии.

Фред Сенгер, умерший в 2013 году, не походил на «типичного» дважды нобелевского лауреата. Он родился в квакерской семье, стал социалистом, а в годы Второй мировой войны отказался от военной службы по религиозным убеждениям. Еще невероятнее, что он нигде не распространялся о своих достижениях, а нобелевские регалии также не хранил на виду. «Получаете красивую золотую медаль и относите ее на хранение в банк. Есть еще сертификат, я храню его на чердаке». Он даже отказался от рыцарского титула: «Рыцарство выделяет вас среди окружающих. А я не хочу выделяться». После ухода на покой Сенгер с удовольствием садовничал у себя дома близ Кембриджа, хотя иногда и посещал Сенгеровский центр (ныне называется «Институт Сенгера») – геномную лабораторию в Кембридже, открытую в 1993 году.


Метод секвенирования ДНК, предложенный Сенгером


Секвенирование подтвердило одно из наиболее замечательных открытий 1970-х годов. Уже было известно, что гены – это линейные цепочки, состоящие из оснований А, Т, Г и Ц, и что эти основания транслируются тройками, в соответствии с генетическим кодом. Из них собираются линейные цепочки аминокислот – такие молекулы называются «белками». Однако замечательные исследования, проведенные Ричардом Робертсом, Филом Шарпом и другими, показали, что у многих организмов гены образуют прерывистые участки и жизненно важные отрезки ДНК перемежаются с нерелевантными. Только после транскрипции матричной РНК эта путаница рассортировывается в процессе «редактирования», при котором ненужные участки удаляются. Это равноценно тому, как если бы в этой книге случайным образом встречались лишние абзацы, с виду перемешанные как попало, и в них рассказывалось бы то о бейсболе, то об истории Римской империи. Уолли Гилберт назвал такие вставные последовательности «интронами», а те участки, которые отвечают, собственно, за кодирование белков (то есть образующие функциональную часть гена), – «экзонами». Оказывается, что интроны встречаются в ДНК сравнительно сложноорганизованных существ; у бактерий их нет.


Интроны и экзоны. Некодирующие интроны вырезаются из матричной РНК перед синтезом белков


Некоторые гены особенно богаты интронами. Например, у человека есть ген фактора свертываемости крови VIII (он может мутировать у людей, страдающих гемофилией), который содержит двадцать пять интронов. Фактор VIII – большой белок, его длина составляет около двух тысяч аминокислот, но на кодирующие экзоны в нем приходится всего около 4 % общей длины гена. Оставшиеся 96 % – это интроны.

Каков функционал интронов? Ведь очевидно, что их наличие радикально усложняет все клеточные процессы, поскольку при формировании матричной РНК их всегда требуется вырезать, а это сложное дело, особенно с учетом того, что единственной ошибки при вырезании интрона при подготовке матричной РНК достаточно, чтобы, допустим, фактор свертываемости крови VIII приобрел мутацию сдвига рамки, которая «испортит» весь белок. Существует теория, что такие молекулярные вкрапления – попросту эволюционный рудимент, наследие, сохранившееся со времен зарождения жизни на Земле. Однако до сих пор активно обсуждается, как могли возникнуть интроны и есть ли от них какая-либо польза в великом коде жизни.

Когда в общих чертах стала понятна природа генов у эукариот (организмов, в клетках которых есть специальное хранилище для генетического материала – ядро; у прокариот, например у бактерий, ядра нет), в науке началась настоящая «золотая лихорадка». Группы мотивированных на открытия ученых, вооруженные новейшими технологиями, устроили настоящую гонку: кому первому удастся изолировать (клонировать) и охарактеризовать ключевые гены. Среди первых найденных «сокровищ» были гены, мутации которых вызывают рак у млекопитающих. Как только ученые завершили секвенирование ДНК нескольких хорошо изученных вирусных онкогенов, в частности SV40, удалось выявить конкретные гены, вызывающие рак. Эти гены способны превращать обычные клетки в клетки с онкологическими свойствами – например, в такие, которые бесконтрольно растут и делятся и поэтому образуют опухоли. Уже вскоре молекулярные биологи начали выделять гены из раковых клеток человека, и затем было найдено подтверждение тому, что рак у человека возникает из-за изменений на уровне ДНК, а не из-за обычных негенетических проблем роста, как предполагалось ранее. Были найдены гены, ускоряющие или стимулирующие рост опухолей, а также гены, замедляющие или ингибирующие его. По-видимому, для нормальной работы клетке, как и автомобилю, нужна педаль газа и педаль тормоза.

Генетическое кладоискательство захлестнуло всю молекулярную биологию. В 1981 году в лаборатории Колд-Спринг-Харбор стали читать продвинутый летний курс о приемах генетического клонирования. В ходе этого курса было разработано лабораторное пособие «Молекулярное клонирование», и за следующие три года эта книга разошлась тиражом более 80 тысяч экземпляров. Первый этап революции ДНК (1953–1972) – воодушевление, которое увенчалось открытием двойной спирали и привело нас к чтению генетического кода, – осуществился силами примерно трехсот ученых. На втором этапе, когда была получена рекомбинантная ДНК и разработаны технологии секвенирования ДНК, число революционеров менее чем за десятилетие возросло в сотни раз.

Такой взрывной рост отчасти связан с возникновением совершенно новой индустрии – биотехнологии. Теперь ДНК интересовала не только биологов, стремившихся понять молекулярные основы жизни. Молекула ДНК вышла из академических кулуаров, населенных людьми в белых халатах, в большой мир, где обитают в основном носители шелковых галстуков и строгих костюмов. Френсис Крик назвал свой дом в Кембридже «Золотая спираль», и вскоре это выражение приобрело совершенно новый смысл.


На фото: журнал Time сообщает о рождении биотехнологического бизнеса (а также анонсирует королевскую свадьбу)


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации