Автор книги: Джордж Массер
Жанр: Физика, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 26 страниц) [доступный отрывок для чтения: 9 страниц]
Сомнения в сэре Исааке
Возрождение локальности началось в 1786 г. с мертвых лягушек, свисающих с железных перил. Итальянский врач Луиджи Гальвани проводил эксперименты на мышцах животных, чтобы выяснить, как разряды статического электричества заставляют их сокращаться. Однажды он увидел, что лапки лягушек дергались самостоятельно, даже когда он ничего с ними не делал, и его осенило, что животные ткани не просто реагировали на электричество, но также могли генерировать его. Металл и амфибия образовали то, что мы теперь называем батарейкой, а в 1800 г. другой итальянец, Алессандро Вольта, создал ее работоспособный вариант, заменив лягушку влажным куском картона. Батареи не только дали экспериментаторам новую замечательную игрушку – само их существование потрясло тех, кто придерживался ньютоновского представлений о том, что химические реакции и электричество вызывались различными типами нелокальных флюидов и не должны были превращаться друг в друга.
Это произошло очень вовремя. Размышления Канта о том, что могли постичь наши рациональные умы, привели к восстанию против механистических взглядов в философии, а именно к возникновению движения, известного под названием немецкого романтизма, а под крышей этой общей категории появилась философская школа, известная как натурфилософия. Натурфилософия представляла собой одно из периодических возрождений магического мышления. Ее сторонники были очарованы оккультными личностями эпохи Возрождения и восточной мистикой. Они считали разнообразные силы природы, включая электричество и магнетизм, различными проявлениями органического единства. Приверженцы натурфилософии рассчитывали с помощью экспериментов распознать это единство и использовать его для нужд человека. В их число входили некоторые выдающиеся ученые-экспериментаторы начала XIX в.
Одним из них был датский экспериментатор Ханс Кристиан Эрстед. Он не был врачом подобно многим революционерам от науки, но все же стоял очень близко к этой профессии: он был фармацевтом. Эрстед создал свою первую батарейку практически сразу после того, как услышал об изобретении Вольты, и вскоре успешно создавал их по собственным схемам. В то время экспериментальные данные подтверждали представление Ньютона о том, что электричество и магнетизм никак не связаны. Статическое электричество не создает магнитных эффектов. Но Эрстед предположил, что электрический ток мог бы вызывать таковые. И он был прав. В 1820 г. Эрстед обнаружил, что провод, соединенный с батареей, может заставить находящуюся рядом стрелку компаса поворачиваться. И опять удобный консенсус был нарушен идеями, которые большинство ученых отвергло как ненаучные.
Эрстед показал не только то, что электричество и магнетизм связаны, но и что природа этой связи очень неньютоновская. Электрический ток не отталкивал и не притягивал стрелку компаса, а вращал ее. Это оказалось серьезным испытанием для нелокальных сил. Такие силы должны быть похожи на частные «линии прямой связи» между двумя взаимодействующими объектами, которые действуют так, как если бы остальная часть Вселенной просто не существовала. Логично предположить, что сила должна действовать вдоль прямой линии, соединяющей два объекта, потому что она слепа к другим объектам или местам, которые могли бы определить какое-то другое направление. Дергающаяся стрелка компаса Эрстеда противоречила этому интуитивному представлению. Чтобы вращать стрелку, ток должен оказывать воздействие, направленное не в сторону провода или от него, а по касательной. Следующим признаком наличия локальных, а не нелокальных процессов было то, что вращающаяся стрелка напомнила вихревые движения, которыми Демокрит и Декарт объясняли механизмы магнетизма и тяготения.
Тем временем на подъеме оказалось другое направление физики – оптика. Почти все в то время соглашались с атомистическим ньютоновским объяснением света как потока частиц. Однако очередной доктор, Томас Юнг из Англии, почерпнул вдохновение в течении воды и других жидкостей. Как и Аристотель, он думал, что свет был импульсом, проходящим через среду, заполняющую пространство. Такое объяснение было популярно среди схоластов Средневековья. В 1803 г. Юнг придумал эксперимент, который вернул ему популярность.
Представьте себе солнечный день, окно с темными занавесками и белую стену напротив окна. Если сделать разрез в занавеске, на стене появится небольшое пятно. Если сделать еще один разрез, на стене появляется не просто второе пятно, как можно было бы ожидать и как предсказывала корпускулярная теория Ньютона. Вместо этого на стене виден узор, похожий на зебру, – чередование светлых и темных полос. К тому же, даже если второй разрез позволяет проходить большему количеству света, исходное пятно обычно становится темнее. Все это становится понятным, если свет – это волна в невидимой среде. Волны, проходящие через два разреза, накладываются и могут либо ослаблять друг друга, либо усиливать. В тех местах, где максимум одной волны совпадает с максимумом другой, волна становится очень сильной, что дает яркую полосу; там, где максимум совпадает с минимумом, волна сводится на нет, тогда получается темная полоса. Это явление называют интерференцией волн. Эксперимент Юнга является классикой физики. Вы можете провести его сами (фокус в том, чтобы сделать разрезы как можно меньше и использовать лазерную указку, а не солнце в качестве источника света). На самом деле эксперименты с нелокальностью вроде тех, которые я упоминал в первой главе, – это усовершенствованная версия эксперимента Юнга.
Какой бы убедительной она ни была, идея Юнга пребывала в забвении в течение полутора десятилетий. Прорыв случился не после какого-то открытия, а после падения Наполеона. При императоре французские ученые-ньютонианцы подавили все конкурирующие теории. Даже в Англии люди были склонны неправильно истолковывать работу Юнга. Только когда политическая и интеллектуальная власть ньютонианцев ослабла, скрытый интерес к волновой природе света начал проявляться в открытую. Общественное мнение повернулось в его сторону к 1820 гг., когда Эрстед вершил революцию в исследованиях электричества и магнетизма.
•
Эти две проблемы теории Ньютона были решены одним человеком – Майклом Фарадеем. Фарадей – одна из самых поразительных личностей в истории науки, пример того, как исследования выигрывают от разнообразия. Родившись в бедной лондонской семье, Фарадей почти не ходил в школу. Он стал учеником переплетчика книг и заинтересовался наукой, читая том «Британской энциклопедии», который оставил в магазине один из клиентов. Он взял взаймы у своего брата один шиллинг, чтобы посетить научную лекцию, и создал собственную батарейку на каминной полке в задней комнате магазина. Вскоре после этого Фарадею удалось получить работу у самого известного химика Великобритании, Гемфри Дэви, который провел некоторое время в Германии с немецкими романтиками и разделял их видение единства природы.
Фарадей стал ведущей фигурой в физике как раз тогда, когда физика становилась физикой, а не разделом философии. В 1840 г. было придумано слово «физик». Если спросить ученых сегодня, то они проводят различие между физикой и философией на основании важности экспериментов. Но исторически это разделение было стратегией ребрендинга, частью общей стандартизации и профессионализации академических дисциплин в XIX в.
Фарадей никогда не изучал математику, и для всех нас это хорошо. Математическая элегантность теории Ньютона для него ничего не значила, поэтому ничего не мешало ему рассматривать радикальные концепции. С его точки зрения, самой простой интерпретацией открытия Эрстеда было то, что природа в конечном счете локальна. Однако при этом Фарадей признавал, что ученые не могли вернуться к теориям атомистов, в которых объекты влияют друг на друга только через столкновения. Должен существовать какой-то другой способ локального взаимодействия тел.
Он думал, что теоретики, изучавшие свет, были в чем-то правы с их идеей о влияниях, распространяющихся через вездесущую среду. Хотя электромагнетизм казался совершенно отличным от света явлением, он тоже предполагал существование какой-то среды. Если насыпать железные опилки вокруг магнита, они выстраиваются в грациозные арки, называемые силовыми линиями, которые имеют странное сходство с тем типом деформации, которая образуется в любом эластичном материале, когда вы его растягиваете. Фарадей считал, что эти опилки похожи на темную сажу, собирающуюся на теле невидимого человека: они выдавали присутствие среды.
Но что это могла быть за среда? Фарадей первоначально представлял ее себе как обычное вещество, состоящее из маленьких частиц, каждая из которых в отдельности подчиняется законам движения Ньютона. Но постепенно он осознал, что электромагнитная среда не могла состоять из обычного вещества. Во-первых, если только один обычный объект мог занимать данный участок пространства в одно и то же время, то эта среда сосуществовала с другими объектами. Дуги, сформированные железными опилками, не заканчиваются на полюсах магнита, но продолжаются в самом магните и замыкаются, образуя замкнутый контур; силовые линии пронизывают материю и существуют независимо от нее. Поэтому Фарадей и другие ученые представляли себе эту среду как новый тип вещества, как нематериального посредника или континуум силы, похожий на тот, о котором когда-то размышляли Ньютон, Лейбниц, Кант и др. В 1845 г. Фарадей ввел термин, под которым мы знаем эту среду сегодня, – «поле».
Поле окружает нас и проникает в нас, мы плаваем в нем, и оно всегда действует на нас. Мы никогда не видим его непосредственно, но оно дает нам почувствовать свое присутствие, передавая воздействия от одного места к другому. Поле локально в двух смыслах. Во-первых, электромагнит не преодолевает пространство волшебным образом, чтобы притянуть металлическую скрепку для бумаг. На скрепку влияет только состояние поля в том месте, где она находится, подобно тому как водяной клоп может спокойно плавать на поверхности водоема, не обращая внимания на детей, плещущихся в воде у другого берега. Во-вторых, электромагниту требуется время, чтобы проявить свое воздействие. Когда вы в первый раз включаете его, скрепка чувствует силу не мгновенно. Воздействие должно распространиться через поле, пока оно не достигнет скрепки и не заставит ее дернуться к магниту, подобно тому как плескание в воде приводит к распространению по поверхности водоема волн, которые в конце концов захлестывают бедную букашку. Та же самая логика применима к электрическим силам. Если вы потрете воздушный шарик из латекса о рукав и поднесете его к голове, он взъерошит ваши волосы не мгновенно. Скорее он вызывает возмущения в электрическом поле, и эти эффекты распространяются через промежуток между шариком и волосами, в конечном счете изменяя состояние поля на коже головы.
•
Фарадеевское понятие поля поначалу не смогло завоевать популярность. Скептики требовали формул, а Фарадей, будучи математически неграмотным, не мог им ничего предложить. Но его идеи зацепили молодое поколение знатоков математики, а сильнее всего – шотландского физика Джеймса Клерка Максвелла, который превратил интуитивные соображения Фарадея в уравнения. Чтобы получить математическое описание поля, Максвелл использовал систему, знакомую любому, кто видел когда-нибудь схему прогноза погоды. На погодной карте показано множество чисел и маленьких стрелок, которые говорят о температуре, скорости ветра, направлении ветра и т. д. в разных местах. По аналогии Максвелл представил электрические и магнитные поля небольшими стрелками, которые указывают силу и направление поля в точках пространства. Сетки чисел говорят, как поле действует на электрически заряженные объекты или магнитную стрелку компаса. Знаменитые уравнения Максвелла предсказывают, как эти величины изменяются с течением времени.
Сегодня можно купить футболки с напечатанными на них уравнениями Максвелла. Они – олицетворение понятия изящной теории, которая является целью всех физиков. В дополнение к магнитным и электрическим полям Вселенная пронизана десятками других взаимопроникающих полей, соответствующих различным силам природы. Вместе с тем, несмотря на успех Максвелла, значение его уравнений было туманным. Действительно ли они соблюдали принцип локальности? Казалось, что да, но внешность может быть обманчива. Хотя Максвелл создал свои уравнения для описания сил, действующих локально, он признавал, что они могли так же хорошо описывать силы, действующие нелокально. При такой интерпретации пространство не заполнялось бы материальной средой; оно было бы в основном пустым, а объекты, рассеянные тут и там, притягивали бы и отталкивали друг друга издалека. Числа, присваиваемые точкам в пространстве, отвечали бы на гипотетические вопросы вроде: если поместить объект в таком-то месте, как все остальные объекты во Вселенной будут действовать на него? Поэтому теория Максвелла вызвала те же самые споры об интерпретации, что и закон тяготения Ньютона за два столетия до того.
Три свойства полей подтверждали, что они действительно существуют. Во-первых, поля живут собственной жизнью. Они не просто посредники, передающие импульсы от одного объекта к другому. Они могут действовать сами, независимо от материи; пространство, абсолютно лишенное частиц, может быть насыщено волновой активностью. Это явление чуждо нелокальному описанию. Во-вторых, электрические и магнитные возмущения требуют времени, чтобы проявить свои воздействия. Задержка кажется странной, если силы перепрыгивают непосредственно от одного объекта к другому, но совершенно естественна, если импульс должен пройти через среду. На самом деле скорость, с которой распространяются эти воздействия, равна скорости света. Очевидно, что свет – это электромагнитная волна. Наконец, поля имеют энергию, а это сама сущность реальных объектов (и довольно новое понятие в физике в то время). Их возможность запасать энергию гарантирует, что никакая энергия не пропадает за то время, которое требуется возмущению, чтобы распространиться в пространстве.
Эти три критерия – волны, задержка, энергия – убедили большинство современников Максвелла в том, что поля дают локальное объяснение электрических и магнитных сил. Общепринятое мнение опять изменилось на противоположное: нелокальность из общепринятой концепции превратилась в «очень старую, но очень пагубную ересь» и во что-то «немыслимое». В историческом масштабе эти высказывания кажутся знакомыми. В данном случае также было поколение физиков, которые делали уверенные заявления, противоречившие уверенным заявлениям физиков предыдущих поколений. На самом деле бравада скрывала некоторую неловкость.
Новые трудности локальности
Физиков конца века беспокоило то, что у них было две отдельные теории: электромагнетизм и механика. Огромная трещина проходила через их картину мира, она не только разрушала мечту о простоте, но и делала невозможным решение различных практических проблем. Чтобы определять траекторию бейсбольных мячей и планет, они применяли законы Ньютона. Чтобы создавать генераторы и электромагниты, они применяли уравнения Максвелла. Но что делать в тех случаях, когда есть и движение, и электромагнетизм? Как движущийся объект влияет на электрические и магнитные поля и наоборот?
Эти две теории казались совершенно несовместимыми. Для одного из центральных аспектов законов Ньютона, тяготения, не было места в теории Максвелла. Если электрические и магнитные силы могут притягивать или отталкивать, то сила тяжести всегда притягивает. Кроме того, поле тяготения не удовлетворяло ни одному из критериев, свидетельствовавших о реальном существовании электрических и магнитных полей. Например, наблюдатели не видели никаких признаков того, что гравитации требовалось время на распространение. Согласно влиятельной (хотя в ретроспективе неправильной) оценке, сила тяготения проносится через пространство мгновенно. В начале века сила тяготения была моделью для других сил; к его концу она стала приводящим в замешательство исключением.
Еще более фундаментальная проблема состояла в том, что уравнения Максвелла выделяли одну скорость как особенную, а именно скорость света, хотя законы Ньютона не предполагают такого понятия, как абсолютная скорость чего-либо. В его законах скорость всегда относительна. Относительно человека, бросающего бейсбольный мяч, этот мяч может лететь со скоростью 30 км/ч; относительно того, кто смотрит на это из движущегося поезда, – 160 км/ч; относительно астронавта на космической станции – 27 000 км/ч. Если вместо того, чтобы бросить мяч, человек включает фонарь, насколько быстро световые волны перемещаются относительно этих же наблюдателей? Годы спустя один физик вспоминал, как читал об электромагнетизме в 16 лет и размышлял: «Если двигаться со скоростью света, будет ли казаться, что волны остановились?» Одни теоретики думали, что да, другие, что нет. Эксперименты были так же противоречивы.
Одним из теоретиков, ломавших голову над несовместимостью механики и электромагнетизма, был голландец Хендрик Лоренц. Его дочь Гертруда, которая впоследствии сама стала уважаемым физиком, вспоминала, как они с братом и сестрой в шутку называли отца белым медведем из-за того, что он ритмично ходил взад и вперед в своем подвальном кабинете, как медведь в клетке. Во время этих медвежьих прогулок он придумал, как согласовать механику с электромагнетизмом. По его мнению, электромагнетизм был более глубокой теорией из двух. Она могла объяснить законы движения Ньютона и, возможно, даже тяготение. В подходе Лоренца появилось такое понятие, как абсолютная скорость тел, обусловленная электромагнитной средой. Если двигаться со скоростью, равной собственной скорости волн, то они будут казаться неподвижными.
У Лоренца был готовый ответ на результаты эксперимента, которые предполагали, что все иначе: физиков вводила в заблуждение схема эксперимента. Чтобы измерить скорость, им требовалась линейка, и приходилось надеяться на то, что эта линейка окажется надежным стандартом длины. Эта надежда была неуместна. По рассуждениям Лоренца, когда линейка находится в движении, электромагнитное поле сопротивляется этому движению, сжимая линейку в продольном направлении, так же как аэродинамическое сопротивление заставляет падающую дождевую каплю сплющиваться. Этот эффект сбивает все измерения и заставляет экспериментаторов ошибочно считать, что скорость света относительно измерительного прибора никогда не меняется. В общем, хотя и истинная, абсолютная скорость существует, электромагнетизм мешает нашим попыткам ее измерить.
Чисто практически теория Лоренца была огромным успехом, и в 1902 г. благодаря ей он получил незадолго до того учрежденную награду – Нобелевскую премию. Но такие шутки природы с экспериментаторами казались слишком уж коварными. К тому же эта теория сама создавала новые проблемы. Физики и философы тысячелетиями метались между дискретными частицами и непрерывной средой, а Лоренц объединил в своей теории и то и другое, что имело неприятные последствия. Например, электрическое поле должно было передавать воздействия не только каждой заряженной частицы на все остальные, но также и воздействия каждой частицы на самое себя. Этот цикл взаимодействия частиц самих с собой приводил к парадоксам. Частица должна была начать ускоряться прежде, чем к ней прикладывали силу, словно ясновидящая. Способность частицы немного заглядывать в собственное будущее можно было бы использовать для бесконечно быстрой отправки сообщений из одного места в другое.
Мало того, теория предсказывала, что частицы должны взрываться под давлением их собственного накопленного электрического поля. Чтобы объяснить, почему частицы во Вселенной не взрываются как петарды, физики решили, что они должны быть геометрическими точками нулевого размера. Что-то настолько несущественное не могло бы взорваться. Но, как заметил Зенон за две тысячи лет до этого, точка – парадоксальная вещь. Всегда, когда в физике появляется ноль, бесконечность не заставляет себя ждать. Если электрическое поле фокусируется в бесконечно малой точке, оно становится бесконечно сильным. По аналогичным причинам если бы длина волны света могла быть любым числом вплоть до нуля, то у ящика, заполненного световыми волнами, была бы бесконечная емкость для хранения энергии. Такой ящик засасывал бы энергию, как черная дыра, не из-за гравитационной силы, а из-за неограниченной емкости: как люди в телесериале «В плену ненужных вещей» (Hoarders), которые стали такими барахольщиками, что вещи исчезают в их доме бесследно.
В общем, всякий раз, когда физики пытались описать частицы, взаимодействующие локально, либо сталкиваясь, либо посылая волны через поля, они натыкались на слово «бесконечность». Некоторые начали сомневаться не только в теории Лоренца, но и в понятии полей вкупе с принципом локальности. Проблема физиков XIX в., связанная с отсутствием единства в их предмете, очень похожа на сегодняшнюю ситуацию, в которой теоретики пытаются согласовать гравитацию с другими силами природы. Скоро тот молодой человек, который задавался вопросом о световых волнах в 16 лет, подрастет и устранит эту путаницу.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?