Текст книги "Месторождения и история"
Автор книги: Эдвард Эрлих
Жанр: Публицистика: прочее, Публицистика
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 40 страниц)
Рудные тела четких геологических границ не имеют, контуры их определяются по данным опробования. По простиранию промышленные руды постепенно, но на сравнительно небольшом расстоянии сменяются забалансовыми, а затем слабо минерализованными породами. Распределение полезных компонентов внутри крупных рудных тел равномерное, выдержанное на больших площадях, однако почти повсеместно наблюдается чередование участков с более высоким и более низким содержанием меди. Местами в блоках промышленных руд встречаются «окна», сложенные забалансовыми бедными рудами и слабооруденелыми породами.
Руды комплексные. Главным компонентом является медь. Существенное значение имеют свинец и цинк. Из примесей используются серебро и рений. В незначительных количествах присутствуют мышьяк, кадмий, висмут, ртуть, золото, молибден. Медные минералы – халькопирит, борнит, халькозин. Отмечается четкая вертикальная зональность в их распределении. В верхних горизонтах преобладает халькопирит, который глубже сменяется борнитом, а еще ниже преобладает халькозин. Для нижних горизонтов характерно повышенное содержание свинца и цинка. В отдельных рудных телах в центральной части преобладает халькозин, который к периферии сменяется борнитом, а последний халькопиритом. Для краевых частей тел характерно увеличение содержания свинца и цинка. Свинцовая минерализация представлена галенитом, цинковая – сфалеритом (клейофаном). Серебро присутствует в виде самородного серебра или в форме изоморфной примеси в решетках в различных сульфидах. Второстепенные минералы представлены пиритом, арсенопиритом, бетехтинитом, джорментом, арсенидами меди и кобальта, блеклыми рудами (теннантитом). Текстурно преобладают вкрапленные руды. Рудные минералы замещают цемент песчаников и конгломератов, реже зерна полевых шпатов и кварца. Текстуры часто полосчатые, определяемые особенностями текстур осадочных пород.
Рис. 1.3.10. Карьер по добыче медной руды в Джезказгане. Стратиформное месторождение Джезказган (геологическое строение и Джезказганский рудник).
Геология Джезказганского месторождения дает основание отнести его к инфильтрационному типу. Отсутствие проявлений вулканизма в период формирования оруденения, стратитиформная природа месторождение и четкий литологический контроль минерализации сближают его с месторождениями медистых песчаников и сланцев, в число которых входит знаменитое Удоканское месторождение, а также урановые месторождения Шинколобве (Демократическая республика Конго) и Шварцвальдер (зона передового хребта в Скалистых горах Колорадо). Вопрос о генетической природе медной минерализации остается открытым. Некоторые указания на его возможное происхождение дают приводимые ниже данные о природе медной минерализации другого крупнейшего медного месторождения Казахстана – Коунрадского месторождения на берегу озера Балхаш, где медная минерализация ассоциирует с диабазовыми излияниями. Это дает возможность высказать гипотезу об общей зараженностью медью всего этого района и мобилизации меди Джезказганского медного месторождения из нижних, предположительно богатых медью горизонтов.
Месторождения, связанные с карбонатитамиКрупнейшее по запасам медное месторождение 1.5 млн. тонн руды со средним содержанием меди 0.68 % связано с карбонатитоввым массивом Палабора, расположенным близ границы Южноафриканской республики с Мозамбиком. Руды комплексные, помимо меди из них извлекают уран, торий, золото, серебро, железо и фосфор. Основными минералами меди являются борнит и халькопирит. Другие минералы – магнетит, апатит, бадделиит, торианит, оливин, флогопит. Разработка ведется открытым и подземным способом с 1966 года (Палабора). В связи с упоминанием медного месторождения, связанного с карбонатитами Палаборы, я хочу напомнить о проекте работ по изучению рудоносности крупнейшего в мире карбонатитового тела расположенного в ядре массива Томтор. Здесь отмечаются орпределенно связанные с ликвацией железные руды типа Кируны и тем самым создаются благоприятные условия для формирования медной минерализации в ходе сульфуризации расплава.
Скарновые месторождения медиВ настоящее время этот тип месторождений считается неперспективным и я помещаю этот раздел просто чтобы отметить факт его существования и ту роль, которую разработка этих месторождений играла на отдельных этапах. Зона окисления меденосного скарнового месторождения на Урале долгое время служила одним из основных источников малахита, шедшего на отделку царских дворцов и соборов в Петербурге. Относительно небольшие скарновые месторождения располагаются в пределах рудных полей месторождений меднопорфирового типа, таких как Саяк (Казахстан), Бисби и Клифтон в Аризоне, США (Смирнов, 1969).
Стратиформные месторождения свинца и цинкаСтратиформные месторождения двух связанных с медью «основных металлов» свинца и цинка содержат 30–45 % общих мировых запасов этих металлов. Они обычно приурочены к одному или нескольким пластам в карбонатных толщах известняков, локализованных в рифтогенных структурах. Общей особенностью этих месторождений, как и месторождений медистых песчаников и сланцев, является полное отсутствие связи с видимыми проявлениями магматичкой активности. Рудой являются карбонатные породы, содержащие гнезда, вкрапленники и тонкие прожилки сульфидов (галенит и сфалерит). Кроме этих рудных минералов присутствуют сульфиды железа и меди. Оруденение не распространяется на значительную глубину, но характеризуется большими размерами и большой протяженностью по простиранию (Стратиформные месторождения свинца и цинка). По геологическим особенностям среди них выделяется несколько типов:
Месторождения Каратаусского типа приурочены к углисто-кремнисто-известково-доломитовым формациям. Толщи локализованы в пределах линейных рифтогенных структур. Характерна многоярусность в распределении оруденения, обогащенность рудных пластов органическим веществом, определяющим кристаллизацию рудных компонентов. Для них характерна минералогическая и геохимическая бариево-свинцово-цинковая специализация. Типичными примерами месторождений этого типа являются Миргалимсайское, Шалкинское в горах Каратау (Казахстан), Сумсарское, Джергалан (Кыргызстан), Сардана, Барвинское (Россия), цинковые месторождения восточного Теннесси (США).
Месторождения типа Миссисипи-Миссури локализуются в доломитовой рифогенной формации. Рудные залежи локализованы в барьерных рифовых постройках и сопряженных с ними карбонатных фациях. Они располагаются на разных стратиграфических уровнях. Морфология рудных тел контролируется конседиментационными структурами карбонатных осадков, сформировавшихся в условиях мелководья. Руды грубополосчатые, вкрапленные до массивных, Месторождения считаются в основном свинцоворудными, но среди них выделяются существенно цинковые или существенно свинцовые, обычно лишены барита. Содержание свинца в целом по району составляет 5.8 %, цинка – 1 %. Общие запасы оцениваются в 6.7 млн. тонн свинца и 1.5 млн. тонн цинка. К этому же типу относятся месторождения Пайн-Пойнт (Западная Канада), в среднедевонских коралловых рифах и, вероятно, в месторождениях Силезии (Польша), Сардана и Уруйское (Россия, Якутия). Из руд месторождений этого типа также извлекают медь, кадмий, серебро, кобальт, никель.
За время эксплуатации месторождений этого типа с 1720 года из них было добыто более 12 млн. тонн свинца и 11 милионов тонн цинка.
Приведенные в разделе первом этой главы сведения о различных формах медь-содержащих минералов (Габлина, 2008), открывают возможность нового подхода к анализу условий генезиса месторождений медистых песчаников и сланцев. На Удоканском месторождении было установлено широкое развитие нестехиометрических минералов – индикаторов низкотемпературных экзогенных условий образования. Среди них присутствуют реликты высокотемпературных тетрагональных форм. Автор приходит к выводу о том, что формирование месторождения протекало длительно на фоне литогенеза и последующих преобразований вмещающих отложений, а максимальные концентрации меди связаны с процессами метаморфизма и вторичного сульфидного обогащения. На месторождении Любин-Серошовице первичные руды на стадии катагенеза подверглись воздействию поздних окислительных растворов, приведшему к перераспределению с образованием зон гематитизации, выщелачивания и вторичного сульфидного обогащения и привнесению радиоактивных элементов и платиноидов.
Медь в сульфатных растворах может переноситься далеко от первичных месторождений до тех пор, пока они не попадут в восстановительную среду, богатую органикой. Так объясняется появление тонкодисперсной меди в торфяниках реки Левиха (Средний Урал) на значительном расстоянии от Левихинского медноколдчеданного месторождения (тот же источник, что и в работе Base metals). Обсуждая вопрос происхождения медистых песчаников и сланцев Пермского Предуралья, В. В. Болотов говорит, что открытие в них вулканогенного материала позволяет предполагать, что источники меди и полиметаллов связаны прежде всего с железосодержащими твердыми растворами. В период переотложения вулканитов полиметаллы высвобождаются из твердых растворов без нарушения целостности последних и переходят в седиментационные растворы. При наличии сероводорода в осадок выпадают сульфиды меди с образованием сингенетичных месторождений. Красноцветные породы в значительной мере насыщены железистыми минералами, иногда они составляют главную часть тяжелой фракции проб и протолочек. Высвобождение полиметаллов происходит, по-видимому, в ионной форме. В связи с тем, что вулканиты Пермского Предуралья первично обогащены карбонатным материалом, кальцит может замещаться ионами меди с образованием на поверхности карбонатов меди. Выше рассматривался пример cтратиформных медных месторождений Замбии, источником меди для которых могли служить связанные с вулканитами месторождения Катанги.
Общие вопросы металлогении медиПри всем поразительном многообразии генетических типов медных месторождений при просмотре материалов по их геологии сразу бросается в глаза тенденция к расположению их в виде линейных поясов большой (сотни километров) протяженности. Таковы линейные зоны медных месторождений Урала, Южной Америки, современных и древних островных дуг. Это объясняется совпадением поясов медных месторождений с вулканическими и интрузивными поясами. Пояса медных месторождений совпадают с вулканическими и интрузивными поясами. Оно отражает важнейшую черту металлогении меди – связь именно с вулканическими (а не вулкано-плутоническими или интрузивными) поясами. Другими словами, медные месторождения формируются в открытых системах, прямо связанных с дневной поверхностью. Месторождения массивных руд кипрского типа ассоциируются с базальтами, типичными для срединно-океанических хребтов, месторождения типа Куроко с поясами базальт-андезитового вулканизма характерными для островных дуг и связанных с ними раннеорогенных геотектонических систем (типа Камчатки). Во всех случаях, когда медные месторождения пространственно, и, возможно, парагенетически связаны с гранитными интрузиями, они также образуют линейные зоны, сформировавшиеся в ходе орогенических движений. Если «открытость» систем, связанных с вулканическими аппаратами, очевидна, то важно отметить особенности структуры медных месторождений меднопорфирового типа, свидетельствующих о газовых взрывах в период их образования. Порфировые структуры вмещающих пород и штокверковая форма рудных тел прямо свидетельствуют об этом.
Приведенные данные показывают зависимость медной минерализации от разных по составу вулканических комплексов. Тут важно подчеркнуть частую и очевидную связь медных месторождений именно с базальтовым вулканизмом, прекрасно выраженную для месторождений Кипрского типа и для месторождений типа Куроко. Не менее характерна история изучения типа вулканических проявлений с медными месторождениями Армении (Зограбян).
Постоянная порфировая структура гранитоидов, с которыми они связаны (что и определяет название типа месторождений этого типа), и обычная для них штокверковая структура рудных тел определенно свидетельствует о связи магматических систем, с которыми связаны рудогенерирующие гранитоиды с поверхностью. Меняется и состав апикальной части магматического комплекса – вместо базальтов, с которыми ассоциируются месторождения Кипрского типа и типа Куроко, медно-порфировые месторождения обычно ассоциируются с интрузиями гранитоидов, вместо прямого извержения лав на поверхность здесь формируются приповерхностные интрузии. Важно отметить, однако, что параллельно с изменением характера магматизма, с которым ассоциируются месторождения, происходит модификация металлогении. Медные месторождения, непосредственно связанные с вулканами, сменяются медно-молибденовым и кварц-молибденитовым месторождениями.
Другое происхождение имеют пояса стратиформных месторождений Замбии. Линейное их распределение отражает линейную складчатость пород, контролирующих структурную локализацию контролирующих их осадочных толщ.
Логическим продолжением этого тренда является подход, использованный в работе Ф. Пираджно (Piranjo, 2009), который при рассмотрении процессов локализации рудных месторождений во главу угла поставил геодинамику их формирования. Что существенно при этом, он, рассматривая геодинамику, не ограничился парой срединно-океанические хребты – островные дуги, т. е. изначально вышел за рамки теории тектоники плит. В основу его подхода положен анализ деформации кратонизированных блоков. К этому его логически привело рассмотрение рудных месторождений Китая и Австралии, основу структуры которых составляют кратонизированные блоки, разделенные подвижными поясами разного возраста и генезиса. Таким образом он прямо подходит к идеям «вихревых структур» Ли Сы-гуана и других структурных образований, связанных с вращением Земли.
Очень важный следующий шаг в понимании металлогенической специализации был сделан в работе А. А. Маракушева, И. А. Панеяха и С. И. Зотова (Маракушев, Панеях и Зотов, 2011). Они впервые, насколько мне известно, применили к колчеданным месторождениям идею Д. С. Коржинского (Коржинский, 1974) о трансмагматической природе рудообразующих флюидов. На этой основе они устанавливают связь взаимодействия трансмагматических флюидов с сульфуризацией глубинных магматических очагов, и делают попытку увязки тектонических, плутонических и вулканических процессов с рудообразованием. Связь колчеданного и полиметаллического рудообразования с кислым вулканизмом прослеживается в месторождениях архейского пояса Абитибе или миоценового пояса Куроко, а также в Уральской провинции. Описано современное образование цинково-медных руд совместно с подводными вулканическими извержениями в задуговом бассейне Восточное Мануа (Нов. Гвинея) (Pirajno, 2009). Образование колчеданных месторождений цинково-медных руд долгое время не связывалось с проявлением кислого вулканизма, но разбуривание рудоносных площадей Атлантики позволило выявить здесь жильную ассоциацию плагиогранитов с габбро (Sherwood-Lollar., Westgate, Ward, et al., 2002). Отмечается наличие двух трендов: Боуэновский, характеризующийся гомодромным развитием и последовательным понижением железистости пород в ряду базальты – риолиты. По преобладающему типу вулканических пород его можно назвать андезитовым. Магматизм этого типа сопряжен с разрушением континентальных сиалической коры, уменьшением ее мощности.
При эволюции по второму типу, названному феннеровским, андезиты практически отсутствуют, вытесняясь контрастной ассоциацией базальтов с кислыми дифференциатами.
Богатые железом дифференциаты возникают в ходе эволюции магм по этому типу при флюидном на них воздействии.
Признаком глубинного магматизма служит «обращенность рельефа», свойственная континентальным депрессиям. Они выражаются в том, что углубление депрессий всегда сопровождается встречным воздыманием мантии, обусловленным глубинным магматизмом, в том числе гипербазитовым.
При образовании ультражелезистых дифференциатов руд под флюидным воздействием и те и другие могут приобретать сульфидную специализацию, хотя и принципиально-различную: медно-никелевую и медно-цинковую.
По представлениям авторов, колчеданные и полиметаллические (дисульфидные) месторождения образуются в результате развития соответствующего вулканизма, зоны питания которых лежат в верхних частях расслоенных магматических очагов.
Авторы говорят, что широкие вариации отношения железа к марганцу в кремнисто-железистых породах, ассоциирующихся с колчеданными рудами, отражают неравномерность глубинной сульфуризации, с которой связано их окисление, порождающее кварц-магнетитовые или кварц-гематитовые расплавы. Более того, при вовлечении в реакцию CO2 генерируются углеводороды, как и в процессе дисульфидной сульфуризации. Дисульфидная сульфуризация ультражелезистых дифференциатов сопровождается генерацией углеводородов.
Углеводородное сопровождение образования сульфидных месторождений наглядно выражено в современном их развитии в океанах, где они постоянно ассоциируются с гидротермальными выходами и жидкостным просачиванием углеводородов (Cruse, Seewald, 2006).
В архейских колчеданных месторождениях пояса Абитиби в керне глубоких скважин описаны включения разнообразных углеводородов – метана, пропана, бутана, сходных с углеводородами хондрита Murchinson. (Sherwood-Lollar, Westgate, Ward, et al.2002). Все это подтверждает представления, развитые в работе В. И. Белоусова и автора о способности флюидов мигрировать сквозь мантию и генерации тепловой энергии в процессе окисления трансмагматическими растворами базальтовых расплавов (Эрлих, Белоусов, 2012). Рудогенерирующая способность флюидов осуществляется образованием в магматических системах ультражелезистых жидких фаз, проявляющих при сульфуризации химическое сродство к определенному парагенезису рудных минералов и экстрагирующих его из трансмагматических растворов. Экстракция меди выражена универсально, но сопровождающие медь халькофильные металлы представлены разнообразно, в зависимости от специфики подвергающихся сульфуризации базитовых ультражелезистых дифференциатов, отличающихся существенным содержанием в них магния. Они подвергаются моносульфидной дифференциации, что сопровождается концентрацией совместно с медью никеля и металлов платиновой группы. Это ведет к образованию формации медно-никелевых моносульфидных месторождений (типа Седбери).
Предполагается, что важнейшим событием на ранних этапах эволюции магматической системы явилось расслоение родоначальной магмы на два несмешивающихся расплава – рудный, обогащенный железом и силикатный, резко обедненный железом. Именно это расслоение, ликвация, привела к выделению и циркуляции обогащенных медью флюидов (Маракушев А А., И. А. Панеях и С. А. Зотов, 2011). Эта схема развития магматической системы имеет важные практические последствия с точки зрения рудоносности. Она, в частности, объясняет генезис медной минерализации в карбонатитовом теле Палабора (Южная Африка). Аналогичный процесс должен иметь место при формировании сложенных магнетитолитами дугообразных дайковых тел, обрамляющих центральное ядро массива Томтор. Предполагается, что как и руды шведского магнетитового месторождения Кируна, они сформировались в ходе ликвации родоначального магматического расплава. Это позволяет ожидать находку в карбонатитовом ядре значительной по размеру медной минерализации. Учитывая постоянную связь медной редкометалльной и редкоземельной минерализации, можно считать вероятным, что редкометалльная и редкоземельная минерализация массива Томтор связана именно с флюидами, формирующимися именно на этом этапе.
Все (или по крайней мере большинство) металлогеническх построений основано на попытках установлениях связи месторождений с определенным типом интрузий. И через химизм интрузий устанавливается связь с этапами тектонического процесса. В последние десятилетия много писалось о cвязях месторождений минерального сырья с дайковыми сериями или гипабиссальными интрузиями. Насколько я знаю, связь минеральных месторождений непосредственно с вулканическим процессом отмечается впервые.
Вопросы формирования стратиформных месторождений меди и других основных металлов. Гигантские размеры месторождений этого типа обусловлены большим объёмом гидротерм, исключительной проницаемостью вмещающих толщ, обусловленной интенсивным развитием зоны сдвига, и высокими концентрациями в них Fe.
Главной характерной чертой этих месторождений является отсутствие какой-либо видимой связи с магматическими проявлениями. Вопросы формирования стратиформных месторождений меди и других основных металлов связаны с двумя типами проблем: структурным контролем и вопросами источников рудного вещества и его миграции. Общие вопросы структурного контроля месторождений такого типа рассмотрены в главе 9 замечательной работы Ф. Пираджно (Pirajno, 2009), имеющейся в русском переводе В. И. Белоусова Предполагается, что их формирование связано с миграцией метаморфических флюидов. Гигантские размеры месторождений этого типа обусловлены большим объёмом гидротерм, исключительной проницаемостью вмещающих толщ, обусловленной интенсивным развитием зон сдвиговых деформаций, и высокими концентрациями в них металлов.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.