Автор книги: Гордон Шеперд
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 22 страниц)
Как правило, «фруктовый» вкус возникает в первую очередь благодаря сложным эфирам, то есть молекулам, в которых кислород образует двойную связь с углеродом – они получаются в результате ферментативной активности созревающего фрукта, при взаимодействии кислот со спиртами. В обычных условиях, по мере того, как мы пережевываем фрукт, к изначальным распознаваемым ретроназальным обонянием летучим соединениям прибавляются и те, что высвобождаются благодаря ферментам, содержащимся в слюне. С их помощью заполняются пробелы в органолептическом профиле фрукта, позволяя мозгу сопоставить его с сохраненными в памяти вариантами, формирующими вкусовые предпочтения, и точно определить степень спелости употребляемого в данный момент плода.
Как правило, «фруктовый» вкус возникает в результате ферментативной активности.
При описании летучих соединений им присваивается основной (фруктовый, конфетный (сладкий), банановый) и второстепенный признак (сырный, зеленый, яблочный, ананасовый, цветочный, шоколадный, карамельный, грибной). Может ли это означать, что обонятельный «образ» спелого банана отчасти пересекается с «образами» упомянутых продуктов? Этот набор молекул является своего рода «подписью» спелого банана – мозг обезьяны или человека распознает ее, подтверждая, что поедаемый плод соответствует всем качествам, что привлекают нас в натуральных, спелых, вкусных фруктах.
РАСТЕНИЯ-ВИРТУОЗЫ
Гарольд Макги полагает, что «растения являются виртуозами в биохимии», ведь они умеют распространять сразу несколько разных ароматов.
Макги был прилежным учеником с крайне обаятельным характером, его нередко принимали за преподавателя английской литературы. Впрочем, он им и был, пока не заинтересовался пищевой химией. Теперь наряду с такими специалистами, как Ширли Коррихер, он считается одним из первопроходцев научного подхода к приготовлению пищи и того, как это создает вкусовые ощущения. Я познакомился с ним в научной секции, где выступал с докладом об образах запаха и системе восприятия вкуса человеческим мозгом, а он, вечно ищущий возможности узнать что-то новое о пище и мозге, был одним из слушателей.
В своих книгах Макги раскрывает многие особенности молекулярной структуры пищи и возникающих благодаря им вкусовых ощущений – это исключительно прикладная информация, которая в равной мере пригодится как новичкам в кулинарии, так и профессиональным шеф-поварам. Вот кое-какие из наблюдений о растениях и о том, что делает их «виртуозами запаха и вкуса», которые он приводит в книге «О еде и кулинарии: наука и знания кухни».
• Зеленый (он же аромат зелени) – этот аромат почти незаметен до момента разрывания, разрезания ножом или разжевывания растительных волокон. Такие воздействия разрушают клеточные мембраны, состоящие из жировых молекул, и позволяют ферменту под названием липоксигеназа (от слов «липид», то есть жир, и «оксигенация» – расщепление при помощи кислорода) расщепить их до состояния мелких летучих молекул жирных кислот, которые, в свою очередь, ферментируются другими веществами, содержащимися в клетке. Следовательно, зеленый аромат не является основным, характерным признаком, то есть запахом, издаваемым целым растением в сколько-то заметном объеме; это один из вторичных ароматов, высвобождающихся только в процессе приготовления или употребления растения.
• Терпены – класс пятиуглеродных углеводородов, способных принимать самые разные формы. Их часто можно обнаружить в составе растений, фруктов, приправ и специй. За вызываемое ими ощущение «легкости» их также называют «эфирными» соединениями. Характерный аромат хвойных деревьев возникает благодаря содержащимся в их смоле терпенам. Они крайне летучи: начинают высвобождаться, как только сырой овощ разрезают или раскусывают, и быстро улетучиваются при термообработке. Вещества этого класса активно вступают в реакции как между собой, так и с другими молекулами.
• Фенолы – класс шестиуглеродных углеводородов ароматического ряда со множеством производных подклассов, образующихся отходящими от бензольного кольца боковыми цепями. Различные фенольные соединения отвечают за основные «нотки» ароматов приправ и специй.
• Сера – молекулы, содержащие серу, часто вырабатываются растениями для защиты. Их аромат обладает некой «гранью», придающей запаху «пикантность», чаще всего за счет прямой стимуляции осязательных волокон на мембранах носа.
ПРИПРАВЫ И СПЕЦИИ
Среди растений-виртуозов первое место по ароматности и силе вкусовых ощущений, безусловно, занимают приправы и специи. С начала письменной истории человечества они передавали пище свои насыщенные запахи. Можно даже предположить, что приправы и специи использовались и в доисторические времена, а может, и вовсе сподвигли наших древних предков мигрировать за пределы Африки, ведь в ту пору растения, не потревоженные антропогенным влиянием, процветали.
Приправы и специи играют ведущую роль в создании вкусовых ощущений, типичных для блюд многих народов мира. В то время как другие растения добавляют блюдам как вкус, так и питательность, приправы и специи кладут исключительно вкуса ради. Удивительно, но в ходе дебатов о формировании правильного рациона и здоровом питании почти никогда не поднимается вопрос о специях и травах.
Несмотря на невысокую питательность, специи обладают большим количеством полезных веществ. Уже во времена Римской империи они использовались в качестве антибактериальных средств.
Каждое растение содержит множество летучих молекул, из совокупности которых складывается его характерный запах. Как и у других видов пищи, за узнаваемый аромат растений отвечает всего несколько видов молекул. Их стимулирующий эффект настолько ярко выражен, что их часто используют в исследованиях реакции мозга на запахи.
Специи обладают и другими немаловажными свойствами. Эткинс описывает вещество с формулой 2-трет-бутил-4-метоксифенол («ВНА») (C11H16O2) – несколько лет тому назад было обнаружено, что оно антиоксидант, то есть не позволяет кислороду расщеплять молекулы. Многие специи, такие как шалфей, клевер, розмарин и тмин, являются богатыми источниками соединений, схожих с ВНА. Уже во времена Римской империи специи использовались в качестве пищевых добавок при консервации и даже антибактериальных средств.
ПОЧЕМУ У МЯСА МЯСНОЙ ВКУС
Огромному прорыву как в кулинарии народов мира, так и в сопряженных с ней сферах человеческой культуры и языка способствовало открытие управляемого огня как способа приготовления пищи. Ричард Рэнгем подробно описывает процесс и последствия его усмирения в своей книге «Зажечь огонь: как кулинария сделала нас людьми». Больше всего на развитие человечества повлияло новообретенное умение готовить мясо.
В приготовленном мясе для человека есть что-то неумолимо манящее. Его привлекательность обусловлена запахом – как тем, что мы вдыхаем носом (ортоназальным), так и ретроназальным, который мы ощущаем лишь в процессе еды и который привыкли называть «вкусом» пищи. Наиболее притягательные из содержащихся в мясе летучих соединений высвобождаются в результате так называемой реакции Майяра[29]29
Химическая реакция между аминокислотами и сахарами, которая происходит при нагревании. В процессе возникает типичный запах, цвет и вкус приготовленной пищи.
[Закрыть]. Вкусовые ощущения от приготовленного мяса совсем иные, чем от сырого; говоря словами Макги: «Сырое мясо дает больше вкуса, чем вкусовых ощущений. Мы чувствуем вкус соли, пикантный привкус аминокислот и кислотность крови, но ярко выраженным ароматом оно не обладает». Получается, что прочувствовать ретроназальным обонянием сырое мясо собакам и другим хищникам мешает не только узкий и длинный канал носоглотки, но и то обстоятельство, что вкусовых ощущений от него достаточно мало.
Приготовленное мясо кажется нам приятнее сырого, потому что при нагревании высвобождаются молекулы запаха, которые мы воспринимаем как тот самый мясной вкус.
Когда люди научились готовить мясо, они не только усилили вкусовые ощущения от него, но и смогли в полной мере насладиться им благодаря своей короткой носоглотке. Макги пишет:
«Приготовление делает вкус мяса интенсивнее и высвобождает его аромат. <…> [Вплоть до достижения] точки кипения вкусовые ощущения от него обусловлены преимущественно побочными продуктами распада белков и жиров. При жарке, тушении и запекании у мяса образуется корка с еще более интенсивным вкусом, потому что поверхность куска высыхает и нагревается настолько, что запускается реакция Майяра, также известная как “реакция потемнения”. В результате мы получаем обобщенный “жареный” аромат, который в зависимости от вида приготовленного мяса может также иметь второстепенные травяные, цветочные, луковые, пикантные или землистые нотки. Исследования показали, что в запеченном мясе содержится несколько сотен видов одорированных летучих соединений».
Получается, что в процессе приготовления вкусовые качества мяса кардинально меняются и становятся гораздо разнообразнее. Именно благодаря им вкус мяса является фундаментальным и одним из столь любимых человечеством.
Термообработка расщепляет клетки мышечной ткани и высвобождает молекулы, дающие узнаваемый «мясной» аромат; при нагреве расщепляются и другие белковые и жировые молекулы, они затем преобразовываются в молекулы иных веществ, среди которых много сложных эфиров, кетонов и альдегидов – благодаря им мясо становится еще ароматнее и обзаводится фруктовыми, цветочными, ореховыми и травянистыми элементами запаха. Аромат, присущий конкретному виду мяса, образуется в основном благодаря жирам. Эти запахи высвобождаются при готовке на умеренном огне. Сложно представить восторг наших далеких предков, впервые почувствовавших аромат жареного мяса – похоже, это произвело на них настолько сильное впечатление, что они всерьез взялись за кулинарию, а мясо стало (и остается) желанной частью человеческого рациона.
При приготовлении мясо может обзавестись даже фруктовыми, цветочными, ореховыми и травянистыми элементами запаха, помимо собственно мясного.
При высокой температуре, когда на мясе образуется корочка, химические реакции выходят на новый уровень – наиболее заметна из них реакция молекул сахара, образованных в результате расщепления углеводов, с аминокислотами, получившимися от расщепления белков. Эти новые молекулы формируются в результате реакции Майяра, названной так в честь французского ученого Луи Камиля Майяра, впервые описавшего ее почти сто лет тому назад. В результате этой реакции на поверхности зажаренного мяса образуется темно-коричневая корочка. Реакция высвобождает наиболее летучие одорированные частицы, придающие мясу еще более насыщенный аромат с мясными, цветочными и фруктовыми нотками.
Чем выше температура термообработки, тем меньше ощущается аромат этого вида мяса (или овоща, если на то пошло) и сильнее – молекул, появившихся в результате реакции Майяра. (Макги отмечает, что вторая категория частиц обладает более интенсивным, но и менее характерным ароматом.) Профессиональные повара исследуют этот спектр мясных ароматов с помощью различных способов приготовления – от самых низких температур (отваривание) до наиболее высоких (обжаривание).
Мы можем почувствовать запах готовящегося мяса, вдохнув его носом, но это лишь малая часть запаха, высвободившегося с его поверхности в виде летучих соединений. А вот когда мы кладем это мясо в рот и разжевываем, то благодаря слаженной работе ретроназального обоняния, осязания и вкусовых рецепторов наконец раскрывается весь спектр возникших при готовке вкусовых ощущений и ароматов.
Текстура приготовленного мяса складывается из соотношения белковых клеток в мышечной ткани к коллагену в соединительной, а также воды, содержащейся как в самих тканях, так и вокруг них. При термообработке это соотношение изменяется. Макги выделяет три степени готовности. Слабая, при которой мясо наиболее сочное, а белок мышечной ткани только начинает сворачиваться. Средняя, при которой коллагеновые волокна денатурируют и усыхают, выжимая воду и делая мясо более упругим и сухим; и сильная, на которой мышечные волокна становятся менее плотными, а коллаген размягчается, превращаясь в желатин. Переход между стадиями готовности обусловлен температурой и временем приготовления, но зависит в том числе и от вида мяса.
МОЛОЧНЫЕ ЗАПАХИ
Молочные продукты, такие как масло и сыр, делаются из молока одомашненных коров и коз, а потому принято считать, что они стали частью человеческого рациона лишь около десяти тысяч лет тому назад. Вкусовые ощущения от масла и сыра, в основном благодаря их аромату, сделали эти продукты частью повседневного питания людей многих культур. Давайте же обратимся к трудам Эткинса и рассмотрим некоторые из наиболее привлекательных для нас веществ, содержащихся в молочных продуктах.
Бутандион (C4H6O2) обладает сырным, масляным, едким запахом. Это кетон (их также называют диацетилами), потому что у него есть карбонильная группа C=O; такие вещества могут иметь широкий спектр запахов и вкусовых оттенков. Запах бутандиона напоминает сырный, и именно он создает основной вкус сливочного масла. Это же вещество входит в состав пота и запаха из подмышек. Опыты психологов показали, что эта категория запахов в зависимости от контекста может ассоциироваться как с подмышками, так и с сыром.
Бутандион добавляют в маргарин для придания ему сливочного запаха. В его состав входит и линолевая кислота (C18H32O2) – основная жирная кислота растительных масел, таких как хлопковое, кукурузное, соевое и рапсовое. Эта же кислота используется для осадки теста и содержится в салатных и кулинарных маслах, хотя сама по себе практически не обладает запахом. Перед добавлением в маргарин линолевую кислоту гидрогенизируют (пропускают через нее пузырьки водорода), чтобы маргарин не стал прогорклым. Правда, из-за гидрогенизации он приобретает белый цвет, а потому в него добавляют каротин, возвращая таким образом желтизну; а сливочный запах придает бутандион. Маргарин является отличным примером того, как молекулярный состав позволяет нам преображать питательный мир.
В детстве, во время Второй мировой войны, когда я жил в Айове, фермеры, занимающиеся молочной продукцией, настаивали на том, что маргарин по вкусу не похож на настоящее сливочное масло. Его продавали неокрашенным и прилагали краситель-каротин в отдельном пластиковом пакете; нужно было разорвать пакет и самостоятельно замешать краситель в маргарин. Такой глупый подход продолжался до тех пор, пока на заключительном банкете конференции молочной индустрии вместо сливочного масла тайно не подали маргарин, а потом сообщили об этом. Но во время банкета на вкус никто и не думал жаловаться! Эта история отлично иллюстрирует то, как внешний вид пищи влияет на вкусовое восприятие; подробнее об этом будет рассказано в главе 15.
Помимо рассмотренных базовых одорированных молекул, в сыре есть и молекулы травы, которой питались коровы. Углубленное исследование этого вопроса было проведено в 2004 году в Сицилии исследователями Стефанией Карпино, Гильермо Личитра, Терри Акри и их коллегами. Собирая материал для своего дипломного исследования, Карпино расположилась на пастбище и тщательно документировала все виды трав, которые коровы ели в течение дня и сезона. Она сопоставила эти данные с пиками РПП/МС полученного из их молока сыра и доказала, что его молекулярный состав варьировался в зависимости от видов трав, входящих в рацион коров, степени их зрелости в разные сезоны. Затем она провела экспериментальную дегустацию сыров, в ходе которой было установлено, что подопытные – то есть потенциальные потребители – по вкусу и запаху различали сыры из молока коров, питавшихся разными травами.
Внешний вид пищи и стереотипы о ней влияют на то, как мы ощущаем ее вкус. Например, маргарин считался совершенно непохожим на сливочное масло, пока его не подали под видом последнего – и никто не заметил разницы.
Личитра возглавляет сицилийский молочный кооператив и использует новейшие достижения науки в прагматичных целях – чтобы делать традиционные сыры с более ярко выраженным вкусом. Подобные опыты проводятся во многих странах; к счастью, в последнее время этим все больше интересуются производители молочной продукции и в США – они надеются таким образом противостоять наплыву безвкусной стереотипной продукции в сетевых супермаркетах и в полной мере продемонстрировать разнообразие вкусов качественной продукции местного производства.
* * *
Подводя итоги, можно сказать, что у каждого продукта есть присущая лишь ему молекулярная структура, неоднократно изменяющаяся в процессе приготовления. Сами продукты не обладают вкусом – они только сырье, из которого мозг создает вкусовые ощущения.
Часть II
Создавая образы запахов
Глава 5
Молекулы запаха и их рецепторы
Большинство объяснений того, как системы мозга вовлечены в создание вкусовых ощущений, начинаются с восприятия вкуса. Тем не менее мы уже обосновали, что непосредственно вкусу в формировании вкусовых ощущений отведена второстепенная роль, а главной же составляющей является запах, так что мы сосредоточимся именно на запахе. Это первый шаг к пониманию научного фундамента нейрогастрономии.
Восприятие запаха начинается с попадания одорированных молекул на молекулы обонятельных рецепторов нашего носа. Здесь мы сталкиваемся с еще одним парадоксом. Исследователи уже много лет изучают одорированные молекулы в нашей пище. Компании – производители полуфабрикатов содержат целую армию специалистов по органической химии, которые изучают стимулирующие свойства тысяч химических соединений и пытаются соотнести их с тем, как на них реагируют наши органы чувств. Вот только танго всегда танцуют двое – то есть молекулы запаха и рецепторные молекулы[30]30
Рецептор – объединение нервных окончаний нервной клетки, которое улавливает стимулы и преобразует их в импульсы, при этом стимул меняет структуру чувствительных молекул – клеточных рецепторов.
[Закрыть], которые их воспринимают. До 1991 года мы ничего не знали о рецепторных молекулах; в более ранних исследованиях просто не учитывалась молекулярная основа обонятельных механизмов, а следовательно, не было и понимания того, как запахи воспринимаются.
С открытием обонятельных рецепторных молекул в 1991 году в танго наконец вступил и второй участник. Несмотря на научный прорыв, к исследованию их взаимодействий научное сообщество приступило далеко не сразу: сначала ученым пришлось решить целый ряд вопросов, связанных с непростым процессом изучения рецепторов. Становление молекулярной кухни, начавшееся в конце 90-х годов, тоже пришлось на период, когда наука почти ничего не знала о рецепторных молекулах, – с этим и связано ее медленное развитие, ведь многие проблемы изучения рецепторов до сих пор не решены. В этом и кроется парадокс. Может показаться, что молекулярная кухня называется так потому, что работает как с молекулами запаха, так и с рецепторными. На самом же деле она фокусируется почти исключительно на молекулах запаха.
У производителей полуфабрикатов целые армии специалистов, которые изучают стимулирующие свойства тысяч химических соединений и пытаются соотнести их с тем, как на них реагируют наши органы чувств.
В отличие от молекулярной кухни, в нейрогастрономии рецепторные молекулы имеют критическое значение для понимания системы восприятия вкусовых ощущений человеческого мозга, а следовательно, нас интересует именно взаимодействие между молекулами запаха и рецепторными молекулами, находящимися в носу. Рассматривая обоняние с этой точки зрения, мы углубляемся в один из подразделов нейрогастрономии, а именно – молекулярную. Это совсем молодая сфера науки, а потому у нее, в отличие от кулинарии и молекулярной кухни, еще не накопился достаточный багаж знаний. Но со временем эти знания будут аккумулироваться, все теснее переплетаться, разжигая как научный интерес, так и человеческий аппетит.
Все в восприятии запахов и вкусовых ощущений начинается с этого завораживающего взаимодействия между молекулами, содержащимися в нашей пище, и теми, из которых состоят клетки наших рецепторов. Как же это происходит?
КОНЦЕПЦИЯ ЗАМКА И КЛЮЧА
Представьте себе, что молекула похожа на ключ от входной двери вашего дома. Проведите пальцем по его зазубринам, идеально совпадающим с бороздками внутри замка. Когда вы вставляете ключ в замок, они совмещаются, и вы можете повернуть ключ, убрать язычок замка и отворить дверь. Биологи уже больше столетия используют концепцию «ключ-замок» для описания взаимодействия между двумя молекулами. Когда ключ в замке поворачивается, структура молекулы меняется. Это изменение дает микроскопический толчок соседней молекуле, а та передает его следующей – запускается цепная реакция, и клетка, в которой эти молекулы находятся, выполняет свою задачу.
Молекула запаха состоит из разных видов атомов, придающих ей нерегулярную структуру – эта структурная особенность означает, что в данном случае молекула является ключом. Каков же тогда замок и как он работает? Поиск ответа на этот вопрос был одной из наиболее важных задач современной науки о запахе. Когда ответ был найден, мы наконец-то узнали главное, а именно – как содержащаяся в молекуле запаха информация преобразовывается мозгом в образ запаха.
СЛОЖНЫЕ МОМЕНТЫ
Процесс активации обонятельного рецептора молекулой запаха лишь одна из составляющих процесса преобразования информации из стимула, воздействующего на рецептор, в сигнал нервной системы. Наиболее очевиден этот процесс в случае зрения – отдельные фотоны активируют молекулы родопсина в зрительных рецепторах сетчатки нашего глаза. Хорошо изучен и процесс активации слуха, где звуковые волны сначала преобразовываются в вибрации во внутреннем ухе, а вибрации затем активируют рецепторные волосковые клетки в улитке. В обоих случаях нам прекрасно известен оптимальный способ стимуляции, и мы можем взять его под строгий контроль.
Эксперименты с обонянием требуют очень много времени, потому что рецепторы человека «замыливаются» при повторной стимуляции. Благодаря этому мы можем привыкнуть даже к очень сильным запахам.
В случае сенсорных стимулов обонятельных рецепторов все не так просто. Мы лишены возможности «увидеть» или «услышать» используемый в опытах стимул. Контролировать молекулы запаха мы можем лишь опосредованно, инструментальными методами. Рецепторные клетки и вовсе скрыты внутри носовой полости – их труднодоступность мешает фиксировать результаты исследования. При повторной стимуляции рецепторы быстро устают (именно поэтому мы быстро привыкаем даже к самой пахучей среде), а потому эксперименты с обонянием не терпят торопливости. Как правило, мы не знаем заранее, какой из тысячи возможных запахов активирует конкретную рецепторную молекулу; чтобы определить это, нужно очень много времени. Даже когда нужный запах наконец обнаружен, мы все равно должны идентифицировать иные запахи, попадающие в обонятельный спектр изучаемой рецепторной молекулы. Хотя исследования проводятся преимущественно на ортоназальном обонянии, которое можно контролировать, распыляя перед носом облачка одорированных частиц, ретроназальное обоняние функционирует по тому же принципу.
ХАРАКТЕРИСТИКИ МОЛЕКУЛ ЗАПАХА
В нашей аналогии ключами являются молекулы запаха, многие из которых уже были рассмотрены в прошлой главе. Они бывают как совсем маленькими, так и более крупными, такими как мускус, феромоны и даже фрагменты выделяемого телом белка, переносимого по воздуху. Этот обширный спектр молекул запахов особенно сильно воздействует на наши рецепторы, когда мы принюхиваемся, вдыхая воздух через нос. Стоящая перед исследователями задача слегка упрощается благодаря тому, что ретроназальное обоняние реагирует в основном на более мелкие молекулы, которые становятся летучими (испаряются) из жидкостей и пищи уже в полости рта.
Какая часть этих маленьких молекул стимулирует наши рецепторы? Разгадав эту тайну, мы сможем приблизиться к пониманию формы, которую принимает информация при поступлении в мозг. Специалисты по органической химии знают (и это подтверждено множеством физиологических исследований), что замена даже одного из атомов в составе молекулы может изменить восприятие ее запаха. Получается, что фундаментальная информация, содержащаяся в молекулах запаха и воспринимаемая мозгом, вероятнее всего, связана с индивидуальными характеристиками молекул запаха. Эти характеристики, позволяющие классифицировать одорированные молекулы, подразделяются на несколько категорий.
Рассказывать о них я буду на основе информации, рассмотренной в четвертой главе. Перечисленные далее черты являются одним из элементов, объединяющих нейрогастрономию с молекулярной кухней.
Во-первых, очевидно, что одорированные молекулы могут быть разной длины. К примеру, основой молекул с линейной или разветвленной цепью (они же алифатические[31]31
Соединения, не содержащие в себе специфических циклических (ароматических) связей.
[Закрыть]) является «скелет», который может состоять как из одной, так и из нескольких дюжин атомов углерода.
Вторая отличительная характеристика кроется в терминальной функциональной группе. У многих молекул запаха она определяет их принадлежность к щелочам, кислотам или альдегидам – эти категории веществ обладают характерными запахами. Мы уже знаем, что эти вещества содержатся во многих продуктах питания. Отталкиваясь от первых двух черт, мы можем описать гомологический ряд как ряд веществ с одинаковой терминальной функциональной группой (то есть гомологических[32]32
Или одного структурного типа.
[Закрыть]), но с цепочками, состоящими из разного количества атомов углерода (это и есть ряд).
Третий параметр классификации молекул запаха – наличие или отсутствие в углеводной цепи функциональной группы, например атома кислорода в кетоне. Четвертая характеристика зависит от того, является ли структура углеводной цепи линейной, или же от нее отходит боковая группа, например фенольное кольцо. Пятым параметром служит хиральность молекулы, то есть отклоняется ли она от виртуальной оси симметрии вправо или влево. Шестая характеристика – геометрическая форма молекулы, например, углеводороды терпеновой группы могут иметь форму кольца. Заключительной, седьмой характеристикой является общий размер молекулы.
Обонятельная система человека может различать молекулы запаха, отличающиеся друг от друга даже на один-единственный атом.
То, что обонятельная система может различать молекулы запаха, отличающиеся друг от друга даже на один атом, означает, что она обладает одним из наиболее чувствительных механизмов распознавания молекул в нашем организме. Для сравнения – наша иммунная система заметно отстает от обонятельной в точности распознавания – там антитело взаимодействует с антигеном, у которого может быть сразу несколько дюжин рецепторных молекул.
ГОНКА К ОБОНЯТЕЛЬНЫМ РЕЦЕПТОРАМ
Какой рецептор способен заметить даже малейшее отличие между молекулами и попутно проверить еще тысячи других? Ответ на этот вопрос был одной из величайших загадок науки. Первые предположения о его природе были выдвинуты специалистами химической промышленности, работавшими с органическими веществами. В основу их суждений легла теория о том, что некие характеристики позволяют молекулам взаимодействовать с неустановленным видом рецепторов. Эта теория со временем слилась с более обширной сферой исследований, занимающейся поиском соотношений «структура-свойство» (или «структура-активность») во взаимодействиях между молекулами. Эти исследования затем развились в поиск количественных отношений «структура-свойство» («QSAR») – сейчас это один из стандартных методов прогнозирования взаимодействий на молекулярном уровне, которым пользуются в числе прочих фармацевтические компании при разработке новых лекарственных препаратов.
Благодаря этим исследованиям нам открылась пугающе сложная структура молекул запаха и то, как они воспринимаются. С одной стороны, молекулы со схожими характеристиками – например, спирты, сложные эфиры и альдегиды – могут восприниматься схожим образом. С другой стороны, схожие молекулы могут восприниматься и абсолютно по-разному. Классический QSAR-подход привел в тупик.
Взяв за основу анализ формы молекул, биохимик из Оксфордского университета Джон Эймур предположил, что рецепторы настроены на форму молекул запаха, заложив таким образом основу стереохимической теории обоняния. В то же время белковый состав клеточной мембраны рецепторов по-прежнему оставался загадкой.
Первым прорывом стало биохимическое исследование израильского ученого Дорона Ланцета, когда-то бывшего одним из моих студентов. В 1985 году он произвел фурор в исследовании запахов, продемонстрировав, что молекулы запаха стимулируют фермент под названием аденилатциклаза, который выступает катализатором в образовании широко известной сигнальной молекулы под названием циклическая АМФ[33]33
Вещество, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигнала некоторых гормонов (например, адреналин), не проникающих через клеточную мембрану.
[Закрыть] (цАМФ). Мы уже знали, что цАМФ возникает при передаче сигнала от рецептора, который дает микротолчок так называемому G-белку[34]34
G-белки – семейство белков, функционирующих в качестве вторичных посредников во внутриклеточных сигнальных каскадах.
[Закрыть]; эти рецепторы образовывают обширное семейство рецепторов, сопряженных с G-белками (GPCRs). Ланцет воспользовался своими знаниями, полученными в ходе обучения на иммунолога, и предположил, что для кодирования всех видов молекул запаха потребуется очень много разных рецепторов – от 100 до 10 000. Его предположение оказалось на удивление точным. Отталкиваясь от гипотезы еще одного из моих бывших студентов, Джона Кауера, и предшествовавшего их работам исследования Кьелла Девинга из Норвегии, Ланцет также предположил, что отношения между рецепторами и молекулами запаха будут иметь «комбинаторный» характер – один рецептор сможет взаимодействовать со множеством разных молекул, а одна молекула будет взаимодействовать с разными рецепторами.
Многие микробиологические лаборатории внезапно осознали, что развенчание загадки этих рецепторов превратилось в самую востребованную тему исследований в современной биологии; это и ознаменовало начало гонки. В кратчайшие сроки промежуточные «микротолчковые» молекулы обонятельного сигнала были клонированы, идентифицированы и классифицированы по своим фармакологическим характеристикам: G-белок, аденилатциклаза и белок, который образовывает активирующийся от цАМФ канал, пропускающий заряженные частицы, создающие электрический отклик. Впервые обонятельная реакция была задокументирована Стюартом Файрстайном, тогда еще студентом старших курсов в Беркли. Он зафиксировал электрический отклик самих ресничек обонятельных рецепторов. Это были потрясающие времена. Перед нами постепенно раскрывалась большая часть сигнального каскада.
В этом каскаде не хватало лишь одного элемента – рецепторов. Неоднократные попытки их идентификации неизменно заканчивались провалом. Исследователи почувствовали, что для открытия такого масштаба нужны ресурсы и данные крупной микробиологической лаборатории. Собственно, так и вышло.
ПРЕКРАСНЫЙ ЭКСПЕРИМЕНТ
Постдокторант[35]35
Постдокторантура (постдокторат, постдок) – в странах Западной Европы, Америки, в Австралии научное исследование, выполняемое ученым, недавно получившим степень PhD, кандидата наук.
[Закрыть] Линда Бак работала в лаборатории при Колумбийском университете под руководством Ричарда Акселя, ведущего специалиста по микробиологии. К тому моменту она уже несколько лет вела ряд проектов по изучению эндокринных рецепторов и антител иммунной системы. Заинтересовавшись запахами, она стала читать о них; эта сфера исследований и проблематика изучения обонятельных рецепторов очаровали ее.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.