Электронная библиотека » Иэн Стюарт » » онлайн чтение - страница 3


  • Текст добавлен: 30 января 2019, 13:00


Автор книги: Иэн Стюарт


Жанр: Математика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 28 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
Золотое сечение

Книга V «Начал» уводит нас в новом и неизведанном направлении от книг с первой по четвертую. Она непохожа на традиционную геометрию и, по сути, кажется бессмысленным набором слов. Как, например, понимать утверждение: «Если одни величины равно кратны по отдельности другим величинам, то и все первые совместно кратны всем вторым» (предложение 1 книги V)?

И дело не в изложении (которое я упростил). Доказательство ясно показывает нам, что имел в виду Евклид. Английский математик XIX в. Август де Морган изложил это понятным языком в своей книге по геометрии: «Десять футов десять дюймов в десять раз больше, чем один фут и один дюйм».

Чего же добивался Евклид? Пытался придать банальности вид теоремы? Или загадочной глупости? Вовсе нет. Для нас это темная материя, но она подводит к самой важной части «Начал» – общей теории отношений, построенной Евдоксом Книдским. Современные математики предпочитают работать с числами. Нам это привычнее, поэтому я часто буду переводить идеи древних греков на этот язык.

Евклид не избежал трудностей при работе с иррациональными числами. Кульминацией «Начал» – и, возможно, их главной темой – стало доказательство существования пяти правильных многогранников: тетраэдра, куба (гексаэдра), октаэдра, додекаэдра и икосаэдра. Евклид доказывает два допущения: больше не существует других правильных многогранников; эти пять действительно существуют: их можно построить геометрически, и их грани совпадают совершенно точно.

Два правильных многогранника, додекаэдр и икосаэдр, включают пятиугольники: у додекаэдра грани имеют форму пятиугольников, а каждые пять граней икосаэдра, собранные вокруг общего угла, образуют пятиугольник. Правильные пятиугольники связаны с тем, что Евклид называет «крайним и средним отношением». На отрезке АВ точка С располагается так, что отношение AB: АС равно отношению AC: BC. Меньшая часть отрезка относится к большей, как большая ко всему отрезку. Если вы нарисуете пятиугольник и впишете в него пятиконечную звезду, стороны последней будут относиться к сторонам пятиугольника точно так же.

В наши дни это отношение известно как золотое сечение. Оно равно (1 + √5) / 2, и это иррациональное число. Оно приблизительно равно 1,618. Древние греки смогли доказать, что оно иррационально, с помощью геометрических свойств пятиугольника. Значит, и Евклид, и его предшественники отдавали себе отчет в том, что для полного понимания свойств додекаэдра и икосаэдра им придется иметь дело с иррациональными числами.


Отношение диагоналей к сторонам образует золотое сечение


Крайнее и среднее отношение (золотое сечение). Длина верхнего отрезка относится к длине среднего так же, как длина среднего – к нижнему


Таков традиционный взгляд, изложенный в «Началах». Дэвид Фоулер в своей книге «Математики Академии Платона» («The Mathematics of Plato’s Academy») утверждает, что это может толковаться иначе. Возможно, главной темой труда Евклида была теория иррациональных чисел, а рассуждения о правильных многогранниках – второстепенное приложение к ней. Действительно, мы можем интерпретировать текст Евклида по-разному, но одна особенность «Начал» говорит в пользу этой альтернативной теории. Основная часть теории чисел не нуждается в классификации правильных многогранников. Зачем же тогда Евклид включил их в свой труд? И только их прямая связь с теорией иррациональных чисел делает понятным такой ход.

Архимед

Величайшим из древних математиков считается Архимед. Он сделал важнейший вклад в геометрию, был первопроходцем в деле приложения математики ко всем явлениям мира и непревзойденным инженером. Но для математиков он будет памятен прежде всего исследованиями формы круга, шара и цилиндра. Для нас они связаны с числом π (пи), приблизительно равным 3,14159. Конечно, греки не работали с π напрямую: они представляли его геометрически, как отношение длины окружности к диаметру.

Ранние культуры уже имели представление о том, что длина окружности всегда одинаково соотносится с ее диаметром и что она длиннее примерно в три раза, может, чуть больше. Вавилоняне считали это число равным 3 1/8. Известное нам по школе знаменитое приближение для числа π – «архимедово число», равное 3 1/7, – ближе к истине, но тоже неточное. Архимед пошел намного дальше, в духе Евдокса подведя твердые доказательства под свои результаты. Насколько смогли установить древние греки, отношение между длиной окружности и диаметром должно быть иррациональным числом. И сейчас мы точно знаем, что так оно и есть, хотя с доказательством пришлось подождать до 1761 г., когда его открыл Иоганн Генрих Ламберт. Но как бы то ни было, Архимед, не сумев доказать, что π – рациональное число, вынужден был принять, что оно иррациональное.

Греческая геометрия лучше всего работает с многоугольниками – фигурами, образованными прямыми линиями. Но окружность – кривая, и Архимед подбирается к ней с помощью аппроксимирующих многоугольников. Чтобы вычислить π, он сравнил длину круга с периметрами многоугольников двух последовательностей: в одной фигуры были вписаны в круг, в другой – описаны вокруг него. Периметр прямоугольника в круге должен был быть меньше длины окружности, а периметр наружного – больше. Для простоты Архимед брал правильные многоугольники, деля их стороны пополам, начиная с шестиугольника и получая соответственно 12 сторон, 24, 48 и т. д. Он остановился на 96. Его вычисления дали результат 3 10/71 < π < 3 1/7, т. е. значение π оказалось между 3,1408 и 3,1429.

Архимедовы исследования шара заслуживают особого внимания: мы не только знакомы с его строгим доказательством, но и знаем, как оно было открыто, – и уж в этой истории никакой строгости нет. Обоснование приводится в его книге «О шаре и цилиндре». Он доказывает, что объем шара равен двум третям от объема описанного около него цилиндра, а площадь поверхности шара равна площади боковой поверхности этого цилиндра. Говоря современным языком, Архимед доказал, что объем шара равен 4/3 πr3, где r – радиус; а площадь его поверхности равна 4πr2. Эти формулы используются и по сей день.

В доказательствах Архимед использовал метод исчерпывания. Он имеет важное ограничение: вам необходимо знать результат заранее, чтобы повысить свои шансы доказать его. Много веков ученые не могли понять, как Архимеду удалось это узнать. Но в 1906 г. голландский ученый Йохан Гейберг наткнулся на пергамент XIII в. с записанными на нем псалмами и обнаружил под ними более ранние стертые записи. Оказалось, это труды Архимеда, причем некоторые из них были неизвестны. Такие документы (записи, затертые на пергаменте ради новых текстов) называются палимпсестами. (Поразительно, но этот же манускрипт содержит еще две утраченные работы древних авторов.) Одна из работ Архимеда, «Послание к Эратосфену о методе» (книга «Метод механических теорем»), объясняет, как угадать объем шара. Идея в том, чтобы нарезать фигуру на сколь угодно тонкие слои и поместить их на одном конце рычага, а на другом – такие же слои цилиндра и конуса, чьи объемы Архимед уже умел вычислять, и взвесить. По закону равновесия рычага мы найдем требуемое значение объема шара. Сам пергамент был приобретен частным лицом за 2 млн долл. в 1998 г.

АРХИМЕД СИРАКУЗСКИЙ 287–212 гг. до н. э.

Архимед родился в греческих Сиракузах в семье астронома Фидия. Он побывал в Египте, где предположительно изобрел архимедов винт, который вплоть до наших дней широко используется для подъема воды из Нила в ирригационные каналы. Предположительно он побывал и в Александрии у Евклида; по крайней мере, он точно вел переписку с александрийскими математиками.

Его математические способности были непревзойденными и обширными. Он использовал их в полном объеме и построил огромные боевые машины, пользуясь своим законом рычага, чтобы забрасывать врагов тяжелыми обломками камней. Его машины оказались незаменимы во время обороны Сиракуз, осажденных римлянами в 212 г. до н. э. Он даже сумел использовать оптическую геометрию отраженного света, чтобы поджечь атаковавшие город с моря римские корабли.

До наших дней сохранились его работы «Квадратура параболы», «О шаре и цилиндре», «О спиралях», «О коноидах и сфероидах», «О равновесии плоских фигур», «О плавающих телах», «Измерение круга», «Псаммит» («Исчисление песчинок»), а также «Стомахион» и «Послание к Эратосфену о методе», обнаруженные в 1906 г. Йоханом Гейбергом.

Архимедов винт


π С БОЛЬШОЙ ТОЧНОСТЬЮ

С помощью более изощренных методов значение π несколько раз определялось с точностью до миллиардных долей. Эти вычисления интересны использованными методами, в качестве теста для компьютеров, а также из научного любопытства, хотя их результат не имеет особого значения. На практике обычно достаточно пяти-шести цифр после запятой. Последним рекордом было число с 1,24 трлн цифр, вычисленное Ясумаса Канадой и командой из девяти сотрудников в декабре 2002 г.[1]1
  А 19 октября 2011 г. Александр Йи и Сигэру Кондо рассчитали число с точностью в 10 трлн цифр после запятой. Прим. науч. ред.


[Закрыть]
Работа длилась 600 часов и проводилась на суперкомпьютере фирмы Hitachi.

Проблемы древних греков

Греческая геометрия имела ограничения; некоторые из них удалось преодолеть благодаря применению новых методов и концепций. Евклид фактически ограничил геометрические чертежи теми, что можно было выполнить с помощью линейки без делений и пары ножек циркуля (здесь акцент на слове «циркуль»: слово «пара» используется так же, как в выражении «резать бумагу парой ножниц», так что не будем излишне педантичны). Иногда говорят, что он сделал это обязательным требованием, но оно касалось его чертежей, а не общих правил. С помощью дополнительных инструментов можно было построить и иные фигуры – идеальные в той же степени, в какой может быть идеальным круг, начерченный циркулем.


Шар и описанный вокруг него цилиндр


Например, Архимед знал, что вы можете сделать трисекцию угла при помощи линейки с двумя зафиксированными метками. Греки называли этот метод построения «невсис». Теперь нам известно (судя по всему, это уже предполагали греки), что точная трисекция угла при помощи линейки и циркуля невозможна, а значит, вклад Архимеда расширил границы возможного. Еще две знаменитые проблемы того времени – удвоение куба (построение тела, чей объем вдвое больше объема исходного) и квадратура круга – построение квадрата, равновеликого площади заданного круга. Их также невозможно решить только при помощи циркуля и линейки.

Дальнейшее расширение разрешенных операций в геометрии – введение нового вида кривых, конических сечений, – отразилось в арабских работах о кубических уравнениях, созданных около 800 г. н. э., и широко применялось в механике и астрономии. Эти кривые, что крайне важно для истории математики, получаются при пересечении плоскости с двойным конусом.


Палимпсест с трудами Архимеда


Конические сечения


Сегодня мы знаем три главных типа таких конических сечений.

• Эллипс – замкнутая овальная кривая – возникает, когда плоскость пересекает только одну половину конуса. Окружность – разновидность эллипса.

• Гипербола – кривая с двумя бесконечно длинными ветвями – получается, когда плоскость пересекает обе половины конуса.

• Парабола – переходная кривая между эллипсом и гиперболой, параллельная воображаемой линии, проходящей через вершину конуса и лежащей на его поверхности. Имеет только одну ветвь, уходящую в бесконечность.

Конические сечения подробно изучал Аполлоний Пергский, перебравшийся из Перги в Малой Азии в Александрию, чтобы учиться у последователей Евклида. Его главный труд, «Конические сечения», написан около 230 г. до н. э. и содержит 487 теорем. Евклид и Архимед лишь косвенно изучили некоторые свойства конусов, но пришлось написать целую книгу, чтобы собрать все теоремы Аполлония. Одна из важнейших его идей заслуживает особого внимания. Это упоминание о фокусах эллипса (либо гиперболы). Фокусы – две особые точки, характерные для этих двух фигур. Они имеют много свойств, но для нас важно одно: сумма расстояний от любой точки эллипса до обоих его фокусов есть величина постоянная (равная удвоенному большому диаметру эллипса). Фокусы гиперболы имеют то же свойство, но здесь этой же постоянной величине соответствует разница между аналогичными расстояниями.

ЧТО ГЕОМЕТРИЯ ДАЛА ИМ

Примерно в 250 г. до н. э. Эратосфен Киренский использовал геометрию для определения размеров Земли. Он заметил, что в полдень летнего солнцестояния светило находится практически прямо над Сиеной (нынешним Асуаном), поскольку его лучи падают прямо в вертикальную штольню колодца. В тот же день года тень от высокой колонны в Александрии показывает, что солнце отклонилось на 1/50 от полной окружности (около 7,2º) от вертикали. Греки знали, что Земля круглая, а Александрия расположена практически на одном меридиане с Сиеной, и, согласно геометрии, дуга окружности сферы совпадет с расстоянием от Александрии до Сиены и равна 0,02 окружности Земли.

Эратосфен знал, что верблюду нужно 50 дней на переход от Александрии до Сиены, если он будет проходить каждый день по 100 стадий. Значит, расстояние от Александрии равно 5000 стадий, а длина окружности Земли равна 250 тыс. стадий. К несчастью, мы не можем точно сказать, какова была длина стадии у древних греков. Наиболее вероятной величиной считается 157 м, т. е. окружность Земли по данным Эрастофена равна 39 250 км. Современные данные – 39 840 км.

Как Эратосфен измерил окружность Земли


С помощью конусов греки производили трисекцию угла и удвоение куба. При помощи других специальных кривых, особенно квадратрисы, они также могли найти квадратуру круга.

Древние греки внесли две основные идеи в развитие нашей цивилизации. Первая – систематизированный подход к геометрии. Используя ее как инструмент исследований, греки открыли форму и размеры нашей планеты, ее взаимодействие с Солнцем и Луной и даже сложнейшие связи с остальной Солнечной системой. Они использовали геометрию, прокладывая два туннеля с обоих концов так, чтобы они точно встречались посередине, тем самым вдвое сокращая время строительства. Они умели строить гигантские и мощные механизмы, исходя из таких простейших принципов, как закон рычага, и в мирных, и в военных целях. Они использовали геометрию для строительства кораблей и в архитектуре. Такие их постройки, как Парфенон, до сих пор показывают, что математика и красота неразрывны. Поразительная элегантность Парфенона – результат искусных подсчетов, использованных архитекторами для преодоления ограничений визуального восприятия и избавления от ошибок в самом основании, на котором построен храм.

Второй важный вклад древних греков – систематическое использование логических заключений для подтверждения формулы: то, что утверждается, может быть доказано. Эта философия породила логическую аргументацию, но свою самую убедительную форму она приобрела в геометрии Евклида и его последователей. Дальнейшее развитие математики было бы невозможным без этого прочного логического фундамента.


Новый стадион Уэмбли. В постройке использованы принципы, открытые в Древней Греции и успешно развитые за много веков


ГИПАТИЯ АЛЕКСАНДРИЙСКАЯ Около 370–415 гг. н. э.

Гипатия – первая женщина-математик, о которой упоминается в письменных источниках. Она была дочерью Теона Александрийского, тоже математика, и, скорее всего, училась у него. К 400 г. н. э. она возглавила александрийскую школу неоплатонистов и преподавала там философию и математику. Многие исторические источники подтверждают ее учительский талант.

Мы не знаем, насколько талантлива была Гипатия как математик, но она помогла Теону написать комментарии к «Альмагесту» Птолемея, а также участвовала в подготовке новой редакции «Начал», на которой основаны все последующие издания этой книги. Ее перу принадлежат комментарии к «Арифметике» Диофанта и «Коникам» Аполлония Пергского.

Среди слушателей Гипатии оказалось много последователей новой тогда религии – христианства; в их числе был и Синезий Киренский. Сохранились некоторые его письма к Гипатии с искренними похвалами ее способностям. К несчастью, многие ранние христиане воспринимали философию и науку, преподаваемые Гипатией, как язычество и были недовольны ее влиянием на учеников. В 412 г. у недавно избранного патриарха Александрии Кирилла возникли разногласия с римским префектом Орестом. Гипатию с Орестом связывала тесная дружба, а ее преподавательский и ораторский дар расценили как прямую угрозу христианству. Ученую, обвиненную в разжигании охватившей Александрию смуты, растерзала толпа религиозных фанатиков. Но некоторые источники утверждают, что Гипатия слишком увлеклась политикой и сама навлекла на себя гнев толпы.

Ее гибель была ужасной: женщину буквально расчленили самым варварским способом, используя осколки черепицы (по некоторым источникам – раковины устриц). Затем ее останки сожгли. Возможно, Гипатию обвинили в колдовстве, и тогда это первая публичная казнь ведьмы толпой фанатичных христиан, ведь по закону Константина II ведьму полагалось казнить, «разрывая кости железными крюками».

Оба эти вклада не утратили значения и по сей день. Современное инженерное искусство – компьютеризированное проектирование и производство, например, – невозможно без солидной базы геометрических принципов, открытых в Древней Греции. Любое здание строится так, чтобы не развалиться под своим весом, а многие даже способны выстоять при землетрясениях. Кирпичная башня, подвесной мост, футбольное поле – очередная дань геометрии древних греков.

И рациональное мышление, и логические аргументы по-прежнему существуют. Наш мир стал слишком сложным и потенциально слишком опасным, чтобы принимать решения скорее исходя из своих убеждений, чем из реального положения дел. И научный метод был выстроен так тщательно именно для того, чтобы преодолеть глубоко сидящее в нас желание верить, будто то, что мы якобы знаем и что нас устраивает, истинно. В науке особое внимание как раз направлено на то, чтобы доказать ошибочность таких глубинных убеждений. И только те идеи, что устояли перед самыми жестокими попытками их развенчать, могут быть признаны близкими к правде.

ЧТО ГЕОМЕТРИЯ ДАЕТ НАМ

Формула Архимеда для вычисления объема шара действует и сейчас. Одно из приложений, требующих особенно точного значения π, – стандарты мер и весов, используемые всеми учеными. Например, многие годы метр определялся как длина стержня из определенного вида металла при определенной температуре.

Все больше современных единиц измерения сейчас описывают в таких величинах, как, например, время, необходимое атому определенного элемента для совершения какого-то числа колебаний. Но многие единицы измерений по-прежнему основаны на физических объектах, и масса тела – одна из них. Сегодня один килограмм можно определить как массу одного особого шара из чистого кремния, хранящегося в Париже. Шар был обработан с необычайно высокой точностью. Плотность кремния также была измерена очень точно. А формула Архимеда необходима для вычисления объема шара, который связывает плотность с массой.

Принцип трассировки луча и получение отражения


Еще один пример современного применения геометрии – компьютерная графика. Кинематограф всё шире использует возможности сгенерированного компьютером изображения (computer-generated images, CGI), и часто это необходимо, чтобы включить в картинку отражения – в зеркале, бокале вина, любой поверхности, отражающей свет. Без них теряется реалистичность. Самый эффективный способ этого добиться – трассировать луч. Когда мы смотрим на сцену под каким-то определенным углом, наш глаз реагирует на луч света, отраженный от объекта на сцене и попавший в глаз с этого направления. Мы можем отследить путь этого луча в обратном направлении. От любой отражающей поверхности луч отскакивает, так что исходный и отраженный угол одинаковы (см. рис. выше). Перевод этого геометрического факта в численные выражения позволяет компьютеру трассировать луч по обратному пути, сколько бы точек отражения ни потребовалось ему, прежде чем он встретит на своем пути что-то непрозрачное (здесь может быть несколько точек – если, например, поставить перед зеркалом бокал вина).

Глава 3. Народы и числа

Откуда взялись привычные нам цифры

Мы так привыкли к нашей системе счисления с использованием десяти цифр 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, что для некоторых настоящим потрясением становится существование иных способов изображения числа. Но даже в наши дни во многих культурах – арабской, китайской, корейской – для десяти цифр применяют другие символы, хотя все комбинируют их для обозначения больших чисел при помощи метода позиционирования (сотни, десятки, единицы). Но разница в обозначениях может быть еще больше. Десять – вовсе не такое уж незаменимое число. Да, оно отражает число пальцев на обеих руках, удобно для счета, но если бы у нас было по семь пальцев или по двенадцать, то очень схожие системы работали бы ничуть не хуже, а то и лучше.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 4.2 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации