Электронная библиотека » Иэн Стюарт » » онлайн чтение - страница 5


  • Текст добавлен: 30 января 2019, 13:00


Автор книги: Иэн Стюарт


Жанр: Математика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 28 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
Арифметика бессмертна

Мы так привыкли к нашей числовой системе, что готовы считать ее единственно возможной, по крайней мере единственной удобной. Но она развивалась тяжело, со множеством тупиковых ветвей, на протяжении тысячелетий. А еще у нее было много альтернатив, даже в таких ранних культурах, как майя. Иные обозначения для цифр 0–9 остаются в ходу в ряде стран. Да и в наших компьютерах внутренняя система счисления двоичная, а не десятичная: специально встроенные в них программы преобразуют числа в десятичную форму, прежде чем выводят их на экран или принтер.

ЦИФРЫ ДРЕВНИХ МАЙЯ

Замечательная система счисления, основанная вместо 10 на 20 символах, была изобретена народом майя, населявшим Южную Америку около 1000 г. н. э. В двадцатеричной системе символы, эквивалентные нашим цифрам 347, будут обозначать следующее:

3 × 400 + 4 × 20 + 7 × 1

(поскольку 20 × 20 = 400), что равно 1287 в нашей системе обозначения. Настоящие символы майя показаны сверху.

Скорее всего, переход ранних цивилизаций к десятичной системе обусловлен тем, что у человека на руках десять пальцев. Тогда логично предположить, что 20 цифр майя соответствуют 20 пальцам на руках и ногах.

Наша жизнь теперь неотделима от компьютеров, так стоит ли по-прежнему учить детей арифметике? Да, и по многим причинам. Кому-то надо уметь конструировать и собирать калькуляторы и компьютеры и обучать их командам. Для этого необходимо понимать арифметику: как и почему она работает, а не только как ею пользоваться. И если ваши арифметические способности сводятся к чтению чисел на экране калькулятора, скорее всего, вы и глазом мигнуть не успеете, как прозеваете чек с ошибкой в супермаркете. Без владения базовыми арифметическими действиями вы останетесь профаном во всем, что касается математики. Нашей цивилизации очень скоро придет бесславный конец, если мы начнем преподавать арифметику выборочно: ведь нельзя определить по ребенку в возрасте пяти лет, станет ли он инженером или ученым или хотя бы банковским служащим либо бухгалтером.



Конечно, раз вы уже владеете всей премудростью арифметики, использование калькулятора сэкономит кучу времени и сил. И всё же, как вы не станете учиться ходить, опираясь на костыль, так вы не сможете постичь законы взаимодействия чисел, полагаясь только на калькулятор.

ЧТО АРИФМЕТИКА ДАЕТ НАМ

Мы постоянно пользуемся арифметикой и в быту, и в торговле, и в науке. До появления электронных калькуляторов и компьютеров мы вдобавок делали подсчеты вручную: при помощи ручки и бумаги, или таких простых приспособлений, как счеты, или арифметических таблиц готовых расчетов (например, таблиц сложения и умножения). Сегодня большинство арифметических действий происходит вне поля зрения, в электронном виде: например, в супермаркете вам выдадут чек с суммой покупки и сдачу, а банк сообщит об изменении суммы на счете – без специального обращения к специалистам. Общее «количество» арифметических действий, происходящих в повседневной жизни каждого из нас, весьма впечатляет.

Арифметические подсчеты в компьютере происходят не в десятичном формате. Используется двоичная система. Это значит, что вместо наших единиц, десятков, сотен, тысяч и т. д. компьютеры используют 1, 2, 4, 8, 16, 32, 64, 128, 256 и т. д. – степени двойки, где каждое число вдвое больше предыдущего (именно поэтому карта памяти для вашей цифровой камеры имеет нелепую на первый взгляд емкость в 256 мегабайт). Для компьютера число 100 будет разбито по степеням двойки как 64 + 32 + 4 и сохранено в виде 1100100.

Глава 4. Соблазнение неизвестным

Коварный икс

Использование символов в математике выходит далеко за пределы обозначения цифр. Это становится ясно даже при поверхностном знакомстве с любым математическим текстом. Первый важнейший шаг к сложным символьным выкладкам, за пределы изображения цифр, был совершен в области решения задач. Многие древние тексты, вплоть до периода Старого Вавилона, рассказывают читателям о некоем неизвестном количестве, а потом предлагают его определить. Стандартная форма задачи (в литературном изложении) на вавилонских табличках такова: «Я нашел камень, но не знаю его веса». Предоставив дополнительную информацию – «когда я добавил второй камень в половину веса первого, их общий вес составил 15 джин», – ученику предлагают вычислить вес исходного камня.

Алгебра

Такие задачи дали толчок к развитию области знаний, которую мы называем алгеброй: где числа представлены буквами. Неизвестная величина по традиции называется x, а сопутствующие условия излагаются в виде математических формул. Ученикам предлагается с помощью стандартных методов вычислить значение x по формулам. Например, упомянутую выше вавилонскую задачу мы запишем в виде уравнения x + 1/2 x = 15, и мы должны узнать, как вычислить x = 10.

На школьном уровне алгебра – ветвь математики, в которой неизвестные числа обозначены буквами, арифметические действия – специальными символами, а главная задача – вывести неизвестные из уравнений. Типовая задача школьной алгебры – поиск x, заданного в уравнении x2 + 2x = 120. Это квадратное уравнение имеет одно положительное решение, x = 10.

Здесь x2 + 2x = 102 + 2 × 10 = 100 + 20 = 120. Также оно имеет одно отрицательное решение, x = –12.

Тогда x2 + 2x = (–12)2 + 2 × (–12) = 144 – 24 = 120. Древние принимали положительные результаты, но не отрицательные. Мы признаем оба варианта: во многих задачах отрицательные числа имеют реальное значение и соответствуют физически возможным ответам. Вдобавок математика становится проще, если принять их существование.

В продвинутой математике использование символов для обозначения чисел сводится к ничтожной части этой области знаний, отражающей ее первые шаги. Алгебра рассказывает о свойствах выражений и уравнений с использованием буквенных символов, и речь уже о структуре и форме, а не только о числе. Этот более широкий взгляд развился в период, когда математики пошли дальше простой алгебры школьного уровня. Вместо того чтобы пытаться решать конкретные уравнения, они предпочли всмотреться в глубинные структуры процесса решения.

Как развивалась алгебра? Сначала это были задачи и методы. Со временем она приобрела символическую систему обозначений, которую мы считаем ее главным достоинством. Было много систем обозначений, но постепенно одна вытеснила конкурентов. Само название «алгебра» тоже возникло в процессе, и оно имеет арабские корни (об этом говорит начальное «аль», арабский эквивалент артикля the, что и указывает на происхождение).


Табличка из Старого Вавилона с клинописной записью алгебро-геометрической задачи


Уравнения

То, что мы сейчас называем решением уравнений (когда неизвестная величина должна быть найдена на основе имеющейся информации), почти так же старо, как и арифметика. Есть косвенные доказательства тому, что вавилоняне умели решать весьма сложные уравнения еще в 2000 г. до н. э., и прямые свидетельства решения несложных задач в виде клинописных табличек, датируемых примерно 1700 г. до н. э.

Сохранившаяся часть таблички YBC 4652, из периода Старого Вавилона, содержит 11 простых задач для решения, а по сопроводительному тексту можно понять, что изначально их было двадцать две. Вот типичный вопрос:

«Я нашел камень, но не знаю его вес. После того как я взял его вес шесть раз, добавил 2 джина и добавил одну треть от одной седьмой [этого нового веса], умноженной на 24, я взвесил его. В результате получилось 1 ма-на. Сколько весил исходный камень?»

Вес 1 ма-на равен 60 джинов.

В современных обозначениях мы примем за x вес исходного камня в джинах. Тогда решение будет выглядеть так:

(6x + 2) + 1/3 × 1/7 × 24(6x + 2) = 60,

и стандартные алгебраические методы дают результат 4 1/3 джина. На табличке есть этот ответ, но нет решения, объясняющего, как он был получен.

Явно его получили не с использованием символических методов, похожих на современные, поскольку ниже в табличке прописаны методы решения с точки зрения типичных учебных примеров: «Поделите пополам это число, добавьте сумму этих двух, извлеките квадратный корень…» и т. д.

Эта задача, заодно с прочими на табличке YBC 4652, представляет то, что сейчас мы зовем линейными уравнениями: неизвестное x входит в него только в первой степени. Любое из линейных уравнений можно представить в виде

ax + b = 0,

с решением x = –b/a. Но в древние времена, когда не было понятий отрицательных чисел и символьных операций, поиск результата был не так прост. Даже сейчас некоторые школьники не сразу решат задачи с таблички YBC 4652.

Интереснее квадратные уравнения, в которых неизвестное возведено во вторую степень – квадрат. В современной формулировке это уравнение вида:

ax2 + bx + c = 0,

и здесь тоже есть стандартная формула для вычисления x. Подход древних вавилонян к этим уравнениям изложен в задаче на табличке BM 13901:

«Я семь раз добавил сторону моего квадрата и 11 раз – его площадь, [получив] 6;15».

Здесь 6;15 – упрощенная форма вавилонской шестидесятиричной системы и означает 6 плюс 15/60, или 6 1/4 в современных обозначениях. Предлагаемое решение начинается так:

«Запиши 7 и 11. Умножь 6;15 на 11, [получи] 1,8;45. Раздели 7 на 2, [получи] 3;30 и 3;30. Перемножь, [и получи] 12;15. Сложи [это] с 1,8;45, [получи] результат 1,21. Это есть квадрат 9. Вычти 3;30, которое ты перемножал, из 9. Результат вычисления 5;30. Величину, обратную к 11, нельзя найти. На что надо умножить 11, чтобы получить 5;30? [Ответ равен] 0;30, сторона квадрата равна 0;30».

Обратите внимание: табличка указывает читателю, что делать, но не почему. Это не более чем алгоритм. Кому-то необходимо было понять, как это работает, прежде всего чтобы записать способ решения. Но, будучи однажды открытым, он становится доступным каждому обученному. Мы так и не знаем, то ли вавилоняне заучивали алгоритм наизусть, то ли должны были сами объяснять, почему он работает.

Приведенный выше алгоритм выглядит размытым, однако интерпретировать его всё же проще, чем мы могли бы подумать. И здесь очень помогает использование рациональных чисел: мы сразу понимаем, какие правила пошли в ход. Чтобы обнаружить их, достаточно просто привести всё к системе. В современной записи имеем:

a = 11, b = 7, c = 6;15 = 61/4.

Тогда уравнение примет вид:

ax2 + bx = c,

соответственно с данными значениями для a, b и c. Нам нужно найти x. Вавилонское решение диктует нам следующее.

1. Умножить с на а, чтобы получить ас.

2. Разделить b на 2, чтобы получить b/2.

3. Возвести в квадрат b/2, чтобы получить b2/4.

4. Сложить это с ас, что даст ас + b2/4.

5. Извлечь из этого квадратный корень, чтобы получить



6. Вычесть из этого b/2, чтобы получить



7. Разделить это на а, и ответ будет



Это эквивалентно формуле



Вавилоняне явно отдавали себе отчет в том, что их решения являются неким обобщением. Приведенный пример слишком сложен, и его можно считать специальным, подобранным только для данной задачи.

Как относились к своему методу сами вавилоняне и что о нем думали? Похоже, должна была быть некая упрощенная идея, лежавшая в основе такого сложного процесса. Возможно, хотя напрямую это и не доказано, что они изобрели некую геометрическую идею, дополняющую квадрат. Алгебраическая версия этого метода также рассматривается в наши дни. Для ответа на этот вопрос мы его для ясности запишем в виде x2 + ax = b и приведем на рисунке его геометрическую интерпретацию.



Здесь квадрат и первый прямоугольник имеют высоту x; их ширина равна соответственно x и a. Меньший прямоугольник имеет площадь b. По вавилонскому рецепту мы легко делим первый прямоугольник на две половины:



Два новых прямоугольника мы можем переместить и совместить с краями квадрата:



Получившаяся слева фигура так и просится быть дополненной до большого квадрата, с добавлением затененного квадрата.



Чтобы уравнение оставалось верным, такой же квадрат должен быть добавлен и к левой фигуре. Но теперь мы определяем площадь последней как квадрат стороны (x + a/2), и геометрическая схема эквивалентна алгебраическому выражению:

x2 + 2(a/2 × x) + (a/2)2 = b + (a/2)2.

Поскольку левая часть – квадрат суммы, мы можем переписать это так:

(x + a/2)2 = b + (a/2)2,

чтобы потом извлечь из него квадратный корень:



и наконец переписать в виде



что в точности повторяет вавилонский вариант решения.

Ни на одной из табличек не найдено подтверждения гипотезе, что вавилоняне воспользовались этой геометрической схемой для получения своего алгоритма. Но такое объяснение не лишено смысла, так как косвенно подтверждается схемами, изображенными на других табличках.

Аль-джабр

Слово «алгебра» происходит от арабского «аль-джабр» – термина, использованного Мухаммадом ибн Мусой аль-Хорезми, ставшим известным в 820 г. В его работе «Краткая книга об исчислении аль-джабры и аль-мукабалы» изложены основные методы решения уравнений с неизвестными.

Аль-Хорезми использует слова, а не символы, но его методы узнаваемы и практически не отличаются от тех, которым нас учат сегодня. «Аль-джабр» означает «восполнение равных количеств к обеим сторонам уравнения». Так, мы начинаем:

x – 3 = 5

и выводим, что

x = 8.

Фактически мы делаем свой вывод, прибавляя по 3 к каждой из сторон. «Аль-мукабала» имеет два смысла. Вот его особый смысл: «вычитание равных количеств из обеих сторон уравнения», чем мы и занимаемся, переходя от

x + 3 = 5

к ответу

x = 2.

Но есть и более общий смысл: «восстановление», т. е. приведение подобных членов в обеих частях уравнения. Аль-Хорезми дает общие правила для шести видов уравнений, с помощью которых можно решить все линейные и квадратные уравнения. В его работах представлены идеи элементарной алгебры, но без использования символов.

Кубические уравнения

Итак, вавилоняне умели решать квадратные уравнения, и их метод был по существу таким же, какому нас учат сегодня. Алгебраически самое сложное в нем – квадратный корень, и присутствует несколько стандартных арифметических действий (сложение, вычитание, умножение и деление). Ожидаемым следующим шагом становятся кубические уравнения, включающие неизвестное в кубе. Их мы пишем так:

аx3 + bx2 + cx + d = 0,

где x – неизвестное, а коэффициенты a, b и c – известные. Но до появления идеи отрицательных чисел математики классифицировали кубические уравнения по нескольким отдельным видам, так что, например, выражения x3 + 3x = 7 и x3 – 3x = 7 расценивались как совершенно разные, и для них существовали свои методы решения.

ЧИСЛА ФИБОНАЧЧИ

Третья часть «Книги абака» содержит задачу, автором которой, скорее всего, был сам Леонардо: «Некто поместил пару кроликов в место, со всех сторон окруженное стеною. Со второго месяца после своего рождения кролики начинают спариваться и каждый месяц производить новую пару кроликов; кролики никогда не умирают. Сколько пар кроликов будет через год?»

Эта каверзная задача приводит к любопытной последовательности чисел, получившей широкую известность:

1, 2, 3, 5, 8, 13, 21, 34, 55, …

и т. д. Каждое число – сумма двух предыдущих. Их стали называть числами Фибоначчи и они часто встречаются как в математике, так и в мире природы. Например, у многих цветов число лепестков совпадает с числами Фибоначчи. Это следствие особенностей роста растений и геометрии примордиев – зачатков в виде мельчайших скоплений клеток в точке роста, развивающихся в отдельные лепестки.

Условия задачи Фибоначчи для воображаемой популяции кроликов нельзя воспроизвести физически, но более общее правило (модель Лесли) используется и по сей день для некоторых задач динамики популяций. Их приходится решать, чтобы предсказать популяционные колебания определенного вида животных с учетом спаривания и смертности.

ЧТО АЛГЕБРА ДАЛА ИМ

Многие главы «Книги абака» содержат алгебраические задачи, отвечающие интересам купечества. Одна, не только практическая, выглядит так: «Некто купил 30 птиц – попугаев, голубей и воробьев. Попугай стоит 3 серебряных монеты, голубь 2, а воробей 1/2. Он заплатил 30 серебряных монет. Сколько птиц каждого вида он купил?»

Если x обозначает число попугаев, y – число голубей, а z – число воробьев, то в современной системе мы составим уравнения:

x + y + z = 30,

3x + 2y + 1/2 z = 30.

В мире рациональных чисел эти уравнения будут иметь много решений, но в самом вопросе подразумевается дополнительное условие: x, y, z – целые числа. Тогда есть только один ответ: 3 попугая, 5 голубей и 22 воробья.

Леонардо также приводит ряд задач, посвященных покупке лошади. Один человек говорит другому: «Если ты дашь мне треть своих денег, я смогу купить лошадь». Тот ему отвечает: «Если ты дашь мне четверть своих денег, я смогу купить лошадь». Сколько стоит лошадь? Сейчас уже найдено много решений; среди целочисленных самая малая цена лошади – 11 серебряных монет.

Греки открыли, как использовать конические сечения для решения некоторых кубических уравнений. Современная алгебра доказала, что если коническое сечение пересекается с другой коникой, точки пересечения находятся с помощью уравнения третьей или четвертой степени (в зависимости от конического сечения). Греки не знали об этом как об общем факте, но использовали следствия из него в некоторых частных случаях, применяя коническое сечение как новый вид геометрического инструмента.

Эта линия атаки была дополнена и приведена в систему персидским ученым Омаром Хайямом, более известным как автор четверостиший рубаи. Примерно в 1075 г. он классифицировал кубические уравнения на 14 видов и показал, как решать каждый из них, используя коники, в своем труде «Трактат о доказательствах задач алгебры и аль-мукабалы». Этот труд стал прорывом в геометрии, в нем практически безукоризненно развит геометрический метод решения кубических уравнений. Кое-кто из современных математиков может это оспорить: некоторые задачи у Хайяма решены не полностью, так как он предполагал, что отдельные точки геометрически определены, хотя иногда их не существует. Причина в том, что иногда он считал, будто его коники пересекаются, хотя на самом деле этого не было. Но всё это лишь незначительные огрехи его трудов.

Итак, геометрические методы решения кубических уравнений были найдены, но существуют ли также и алгебраические решения, где самыми сложными составляющими будут кубические корни? Итальянские математики эпохи Возрождения совершили огромный прорыв в алгебре, найдя положительный ответ на этот вопрос. В то время математики зарабатывали себе репутацию, соревнуясь в публичных состязаниях. Каждый участник предлагал противникам свои задачи, и тот, кто решил больше всех, признавался победителем. Зрители вольны были даже заключать пари на исход соревнования. Ставки порой делали и сами участники: описан случай, когда проигравший был обязан угостить победителя (и его друзей) тридцатью обедами. Кроме того, у хорошо проявивших себя участников состязания появлялась дополнительная возможность обзавестись учениками, особенно среди знатной молодежи. Так или иначе, публичные математические бои стали серьезным мероприятием.

Одна из таких дискуссий состоялась в 1535 г.: предстояло встретиться Антонио Фиоре и Никколо Фонтана по прозвищу Тарталья, «заика». Тарталья разнес Фиоре в пух и прах, и слух о его триумфе дошел до ушей Джероламо Кардано. Тот насторожился. Он как раз трудился над всесторонней книгой об алгебре, как раз над тем разделом, что оказался предметом состязания между Фиоре и Тартальей: кубические уравнения. Тогда было принято делить кубические уравнения на три разных типа – опять-таки из-за нежелания признавать отрицательные числа. Фиоре было известно решение лишь для одного типа. А Тарталья поначалу знал решение только для другого типа. В современной нотации его решение для уравнения типа x3 + ax = b выглядит так:



где i – мнимая единица, а



За неделю до состязания Тарталья был в отчаянии и боялся проиграть, но тут его посетило озарение: он понял, как решить остальные типы уравнений. И, конечно, он послал Фиоре только те уравнения, которые тот заведомо не мог решить.

Кардано прослышал об этом соревновании и понял, что оба соперника успели разработать методы для решения кубических уравнений. Мечтая вставить их в свою книгу, он обратился к Тарталье с просьбой поделиться с ним своими наработками. Тарталья, естественно, с неохотой пошел на это, ведь средства к его существованию зависели от них. Он долго колебался, но в итоге всё же его удалось уговорить. Кардано поклялся не публиковать новый метод. Тайна была нарушена в изданном Кардано труде «Великое искусство» («Ars magna»), и Тарталья имел полное право рассердиться. Он публично обвинил Кардано в плагиате.


Хотя Омар Хайям известен большинству из нас как поэт, он был также и выдающимся математиком.


Впрочем, Кардано никогда не мог похвастаться хорошей репутацией. Он был неисправимым игроком, готовым спустить любую сумму в карты, кости или даже шахматы. Так он умудрился проиграть все семейное состояние. С другой стороны, это был гений, талантливый врач, выдающийся математик и опытнейший самопиарщик, хотя его положительные качества часто бледнели на фоне излишней, подчас на грани оскорбления, откровенности. И гнев Тартальи, обвинявшего Кардано в обмане и воровстве, был вполне справедливым. То, что Кардано честно ссылался в своей книге на Тарталью, только усугубило положение. Тот понимал, что в памяти потомков останется автор книги, а не какое-то имя, мельком упомянутое в паре строк.

Но у Кардано было оправдание, и вполне весомое. Оно стоило того, чтобы нарушить обещание, данное Тарталье. Он включил в свою книгу новые открытия, сделанные им и его учеником Лодовико (Луиджи) Феррари, в том числе общее решение уравнения четвертой степени. Это было великое достижение, настоящий прорыв в науке. Конечно, Кардано не преминул включить его в свою книгу. Это считалось вполне законным, ведь открытие сделал его ученик. Однако метод Феррари сводит решение любого уравнения четвертой степени к соответствующему кубическому; следовательно, он основан на методе Тартальи. И Кардано не мог опубликовать работу Феррари, не включив в нее также и метод Тартальи.

А вскоре пришли новости, подсказавшие ему способ выйти из неловкого положения. У того самого Фиоре, что проиграл Тарталье в публичном соревновании, был ученик, Сципион дель Ферро. И до Кардано дошли слухи о том, что дель Ферро решил все три типа кубических уравнений, а не только то, с которым справился Фиоре, и что неопубликованные бумаги дель Ферро оказались в руках некоего Аннибала дель Наве. И вот Кардано с Феррари в 1543 г. отправляются в Болонью, чтобы повстречаться с дель Наве, посмотреть на его бумаги, и там – ясные как день – им открылись решения для всех трех типов уравнений. Итак, у Кардано появилась возможность спокойно заявить, что он опубликовал не метод Тартальи, а открытие дель Ферро.

Но Тарталья не смирился с поражением, хотя и не мог больше опровергать уверения Кардано о том, что приведенное им решение открыто дель Ферро. Тарталья опубликовал пространную и полную гнева диатрибу об этой несправедливости, и его вызвал на публичные дебаты Феррари, горевший желанием отстоять честь наставника. Он одержал грандиозную победу, а Тарталья так и не оправился от этого удара.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 4.2 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации