Текст книги "Эйнштейн учился без карточек. 45 эффективных игровых упражнений для детей от 0 до 6 лет"
Автор книги: Кэти Хирш-Пасек
Жанр: Зарубежная прикладная и научно-популярная литература, Зарубежная литература
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 29 страниц) [доступный отрывок для чтения: 10 страниц]
Глава 3
Играем в числа: как дети усваивают понятие количества
Эми, мама двухлетней Джесс, пришла в отчаяние, открыв газету и обнаружив в ней заголовок: «Младенцы умеют складывать и вычитать числа». Джесс могла считать до 10, и Эми считала это настоящим достижением. Но если крошечный пятимесячный младенчик уже может складывать и вычитать, значит, Джесс отстает в развитии!
В тот же день Эми ринулась в магазин и купила развивающие карточки с узорами из точек, чтобы помочь Джесс научиться складывать и вычитать. Медлить нельзя ни минуты! Что, если Джесс пойдет в детский садик и окажется единственной, кто не в состоянии выполнять математические действия?!
В заголовке, который прочитала Эми, есть зерно истины. Он появился «по следам» ставшего ныне широко известным эксперимента, интерпретация которого стремительно вышла из-под контроля и стала основанием для медийного очковтирательства и оружием маркетологов детских товаров. Вам, несомненно, случалось видеть в магазинах игрушки, которые якобы ускоряют развитие математических способностей маленьких детей. Да, родителей заставили уверовать в то, что их крошки могут и должны знать арифметику. Однако, как вы увидите из содержания этой главы, существует значительная разница между настоящими математическими действиями и простым пониманием количественных различий или способностью зазубрить числа от 1 до 10.
Реальность такова, что хотя у детей от рождения есть склонность интересоваться базовыми математическими концепциями, понимание этих концепций развивается в соответствии с четко установленной последовательностью вех развития, и попытка прыгнуть вперед – не просто пустая потеря времени, но и встряска, которая может расстроить ребенка. Прежде чем дети научатся складывать и вычитать, они должны овладеть базовыми принципами счета и понять концепцию числовой оси, или прямой. И наилучший способ усвоить эти концепции – позволить им формироваться постепенно, пока ваши дети играют с предметами в своем мире и исследуют их.
Два исследования – два разных результата
Исследование, которое привело к неверному представлению о том, что младенцы могут складывать и вычитать, было проведено в 1990-х годах Карен Винн, профессором психологии из Йельского университета. Ее интересовал вопрос о том, чту самые маленькие дети знают об основах вычитания и сложения.
В ходе эксперимента профессор Винн сперва показывала 5-месячному малышу Микки Мауса, сидящего на небольшом подиуме. Когда интерес ребенка к кукле начинал угасать, перед подиумом поднимался экран, который полностью скрывал куклу. Дальше ребенок видел, как протянутая рука экспериментатора кладет второго Микки Мауса позади экрана, так что с точки зрения логики там теперь должно было быть 2 куклы. Вот какой вопрос занимал профессора Винн: сознает это ребенок или нет? Понимают ли младенцы, что 1 + 1 = 2?
Когда экран опускался, за ним оказывалась… только одна кукла. В науке это известно под названием «невозможное условие». Профессор Винн предварительно изучала реакции младенца, когда он видел сразу 2 куклы, или «ожидаемое условие». Судя по более продолжительному взгляду ребенка на «невозможное условие» и выражение удивления на его личике, когда кукла оказывалась только одна, исследователи сделали вывод, что младенцы умеют «складывать» числа.
Чтобы выяснить, как обстоят у младенцев дела с «вычитанием», исследование проводилось в обратном порядке: вначале показывали две куклы, затем одну убирали. Опять-таки явное удивление при виде «невозможного условия», выражаемое малышом, указывало на рудиментарное понимание вычитания.
Теперь понятно, откуда у исследователей и в новостных заголовках взялась идея о том, что младенцы могут складывать и вычитать. Малыши явно смыслили кое-что в числах – или, по крайней мере, как-то оценивали количество предметов, которые им показывали. Они даже понимали, каким образом это количество можно изменить. Однако прежде чем приходить в неистовый восторг, подумайте о том, что макаки-резус демонстрировали точно такие же способности, когда им показывали аналогичные невозможные условия на примере баклажанов (разумеется, макак больше интересуют баклажаны, чем куклы, изображающие Микки Мауса).
А теперь мы должны задаться вопросом, действительно ли такая реакция является результатом мысленных операций сложения и вычитания, как мы их понимаем. Оказывается, ответить на этот вопрос не так-то просто.
И тут на сцене появляется Джанеллен Гуттенлохер, профессор отделения психологии из Чикагского университета. Она и ее коллеги изучали малышей от 2 до 4 лет, чтобы определить, насколько хорошо они умеют складывать и вычитать. Исследователи, разумеется, не показывают детям развивающие карточки с написанными на них примерами. Они используют то, что дети способны ухватить буквально: трехмерные предметы, которые можно держать в руках и манипулировать ими. Один из исследователей наблюдает, сумеет ли Аманда, возраст которой 2,5 года, сложить 3 и 1. Аманда сидит напротив экспериментатора, который показывает ей 3 красных кубика. Аманда внимательно наблюдает за его действиями, а он в это время накрывает кубики большой коробкой. Чтобы убедиться в том, что Аманда понимает суть игры, ее просят показать экспериментатору с помощью второго набора кубиков, сколько кубиков спрятано под коробкой. Аманда с удовольствием исполняет просьбу. Она кладет в ряд 3 кубика на своей стороне стола. Не убирая коробку, экспериментатор добавляет к трем еще один кубик – он прячет его под коробку, одновременно спрашивая Аманду: «Можешь теперь сделать так, чтобы у тебя было столько же кубиков, сколько и у меня?» Все, что нужно сделать Аманде, – это взять еще один кубик и положить его в общий ряд, чтобы их стало 4. Удается ли ей это? Не с первого раза. Она берет два кубика вместо одного. В свои 2,5 года она еще не умеет решать подобные задачи так, чтобы всякий раз получать правильный результат. В течение следующего года жизни она научится решать примеры с небольшими числами, например 1+1=2 или 3–1=2. А к концу четвертого года даже сможет управляться с числами побольше, например 2+2+4.
Вы в некотором недоумении? Еще бы! Почему 5-месячный ребенок успешно проходит тест с Микки Маусом в лаборатории профессора Винн, а потом «проваливает» точно такой же тест в лаборатории профессора Гуттенлохер, когда ему уже стукнуло 2,5 года? Дело в том, что малыши обладают лишь рудиментарным навыком обращения с числами – чувствительностью к количеству. Их сознанию еще недоступен тот вид математики, который мы имеем в виду, когда говорим о сложении и вычитании. Реакции малыша Деррика в 5 месяцев действительно впечатляют. Но некоторые ученые считают, что на самом деле Деррик всего лишь распознает количество, «больше или меньше», а не конкретные числа, типа «2 предмета» или «4 предмета». Эта способность придет к нему только с возрастом.
Чувствительность к количеству – еще не математика
Современные стандарты предполагают, что 3–4-летние дети должны быть способны считать до 10 и знать названия чисел. Хотя это, безусловно, важные навыки, они представляют собой только вершину математического айсберга и не могут считаться отражением естественно развивающихся вычислительных способностей детей. Действительно ли ребенок, который умеет считать до десяти, знает математику?
Ставшая известной на рубеже столетий история о математическом «гении» Умном Гансе помогает понять эту проблему. Умный Ганс – это конь, тренер которого утверждал, что его подопечный умеет складывать, вычитать, умножать и делить. Когда коню задавали математическую задачку, например спрашивали: «Ганс, сколько будет два плюс два?», конь отстукивал верный ответ передним копытом. Правда открылась только тогда, когда психолог Оскар Пфунгст надел Гансу на глаза повязку. Перестав видеть своего тренера, Ганс не смог получить правильный ответ. Пфунгст определил, что Ганс не производил математические вычисления, а читал невербальные сигналы, подаваемые его владельцем. Владелец подавался вперед, задавая вопрос, и постепенно отклонялся назад, пока конь отстукивал ответ. Когда Ганс добирался до нужного числа, его владелец выпрямлялся, как бы говоря: «Верно». Умный Ганс действительно был умником – только в социальном смысле. Но он совершенно ничего не знал о математике.
Есть мнение, что сама природа запрограммировала детей на изучение математики.
Какие выводы история Умного Ганса позволяет нам сделать в отношении способностей детей? Она говорит о том, что дети могут подходить к задаче не так, как мы, вне зависимости от того, дают ли они правильный ответ. Дети находят еще более остроумные способы для решения задач, которые мы перед ними ставим, чем Умный Ганс. Часто у них блестяще получается запоминать различные смысловые цепочки – названия машин, частей тела, букв алфавита («икалэмэнэ» часто произносятся слитно, как название одной буквы) и – да, даже чисел!
По этой самой причине умение отбарабанить числовой ряд не обязательно означает, что ребенок хоть что-то смыслит в математике. В действительности, даже если ребенок знает, что под коробкой спрятано 3 предмета, это еще не говорит о том, что он представляет себе, что 3 больше 2, но меньше 4. Вполне вероятно, что ребенок запомнил, что «три» – это «название» для трех вещей, точно так же как «синий» – это название определенного цвета. Именно так и работают развивающие карточки. Дети учатся выдавать правильный ответ, видя 2 кружка на карточке, но это совершенно не означает, что они понимают, что такое «два».
Из сказанного вы можете сделать вывод, что математические способности детей поверхностны и неглубоки. Хотя это действительно так, если детей искусственно подталкивают к определенной реакции на определенные команды, дело не только в этом. Ученые очень мало знают о ранних математических навыках детей – вплоть до того момента, пока те не пойдут в школу. Одним из наиболее важных открытий является то, что фундамент для всего математического обучения закладывается в младенчестве и раннем детстве, и развивается одинаково он у всех детей во всем мире, вне зависимости от того, кто их родители. Честно говоря, мы полагаем, что сама природа запрограммировала детей на изучение математики.
В конце концов, трудно даже представить себе, каким образом мы могли бы наткнуться на существование чисел в нашем мире, если бы к этому нас не подготовила матушка-природа. Числа присутствуют повсюду – и одновременно нигде. Они абстрактны и воплощены в физических предметах, но физически нигде не присутствуют. Учитывая, как важно понимать и оценивать количество пищи, количество потенциальных врагов и сторонников, это просто здорово, что эволюция дала нам возможность интуитивно различать количество и число в нашем повседневном мире.
Число и количество
Хотя младенцы (и обезьяны) могут, как минимум, проводить различие между небольшими количествами, их способность действительно понимать числа является предметом бурных споров. Есть исследователи, которые уверяют, что число для младенцев вообще не имеет значения, зато они обращают внимание на количество того, что видят. Следующий эксперимент стал попыткой разобраться в этих противоречащих друг другу историях о математических способностях младенцев.
В опытах, проводившихся профессором Мелиссой Клиэфилд из колледжа Уитмана в Уолла-Уолла, штат Вашингтон, и Келли Микс из Индианского университета в Блумингтоне, 7-месячным младенцам предлагали пройти тест, применяя метод «привыкания». Девочке – будем называть ее малышкой Карлой – снова и снова показывают какой-нибудь предмет, пока ей не становится скучно. Невидимый для Карлы экспериментатор, наблюдающий за ней, нажимает кнопку, подключенную к компьютеру, регистрируя продолжительность ее взгляда. Когда эта продолжительность падает ниже определенного уровня, Карле показывают новый предмет. Если она может отличить новый предмет от старого, она снова начинает смотреть пристальнее. Если не может – то просто продолжает скучать.
Что же показывают исследователи Карле, чтобы понять, реагирует ли она на число – или на количество предметов? Два квадрата среднего размера. Квадраты размещены на доске и через равные промежутки времени меняют свое расположение. Поначалу Карла заинтересована и смотрит на них дольше. Постепенно продолжительность изучения двух одинаковых квадратов падает, как будто Карла говорит: «Ну, все, хватит – я уже все поняла». Вопрос в том, что именно поняла Карла? Один способ выяснить это – показать Карле две разные картины: 2 бóльших по размеру квадрата (то же число, но количественно иная площадь) или 3 маленьких квадрата (другое число, но количественно та же общая площадь). Если Карла считает, что важнее число предметов, она будет дольше смотреть на изображение 3 квадратов. Если думает, что главное – количество, она отреагирует, глядя дольше на изображение 2 квадратов, поскольку общее количество их площади увеличилось.
И что же победило? Победило количество. Карла дольше смотрела на доску, на которой возникли 2 больших квадрата, а вот 3 маленьких ее, похоже, не заинтересовали. Видимо, Карла решала эту задачку, основываясь на количестве, а не на числе.
Какие выводы мы должны сделать из этого открытия? Один вывод состоит в том, что младенцы способны замечать количество, и совершенно не понимают, что такое число. Однако умение различать количество – это важный навык. На самом деле это – критически важная способность, несмотря на тот факт, что она еще не дает основания утверждать, что младенцы умеют складывать и вычитать в более привычном для нас числовом понимании. Возможно, все младенцы обладают базовым восприятием понятий «больше» и «меньше». Некоторые исследователи считают, что этот базовый уровень количественного понимания жестко зафиксирован в мозгу и может быть именно тем навыком, который роднит нас с животными, ищущими себе пропитание. Для окончательных выводов нам придется подождать дальнейших научных данных из этой области. Так или иначе, совершенно ясно, что младенцы не занимаются сложением и вычитанием в том смысле, как это делам мы, взрослые, или даже как это делают дошкольники.
Осознание числа: переход к счету
По мере того как дети становятся старше, продолжается история развития навыков обращения с числами. К 2,5 годам большинство детей умеют назвать небольшую последовательность чисел, например «1, 2, 3, 4». Если им показывают набор из 3 шариков, они могут в ответ составить такой же набор из 3 шариков. К 3 годам дети могут начать считать наборы предметов среднего размера – иногда даже выходя за пределы набора из 3–4 предметов. Однако дети этого возраста не могут определить, правильно или неправильно считает другой человек. Еще при счете предметов они порой называют одно и то же число не один раз. Например, так: «Один, два, два, три, два…»
К 4 годам дети начинают по-настоящему сводить воедино свои математические навыки. Они способны пересчитать предметы в наборе, заметить, когда человек или говорящая кукла ошибается в счете, и с удовольствием присоединяются к мультяшному герою, когда он пересчитывает предметы на экране. В этом возрасте дети умеют даже сравнивать наборы предметов. Они в состоянии понять, что один набор предметов больше, чем другой, и меньше, чем третий. Например, они понимают, что 4 печенья – это больше, чем 3, но меньше, чем 5.
Наконец, к 5 годам у детей развивается способность считать и сравнивать количества на таком уровне, который становится показателем математических достижений дошкольника. Как считают некоторые исследователи, именно в этом возрасте дети могут поставить число на его место в числовом ряду, сравнивая его с остальными числами. В этом же возрасте дети начинают настоящие «расчеты», когда им приходится складывать два набора предметов вместе. Эта стратегия развивается довольно поздно, но наблюдать за этим забавно. Дайте ребенку 3 куклы и попросите пересчитать. Он скажет: «Одна, две, три». А теперь дайте ему еще 2 куклы и спросите: «А теперь сколько у нас кукол?» Мы с вами посчитали бы так: «Четыре, пять» – и быстро выдали бы конечный результат. А теперь посмотрите, как это делают дети в возрасте 3–4 лет. Они начинают пересчитывать всех кукол вместе с первыми тремя: «Одна, две, три, четыре, пять» – и так приходят к тому же ответу. А к пяти годам дети осознают, что у них уже есть 3 куклы, и просто «досчитывают», начиная с числа «три», как и мы.
Обнаружение скрытых навыков
Продолжение счета
Возраст: 4–6 лет
Проверьте, пользуется ли ваш ребенок «продолжением счета». Возьмите пять игрушек, и пусть ваш ребенок с ними играет. Затем разделите их так, чтобы получилось два отчетливо различимых набора из трех и двух предметов. Попросите ребенка в начале пересчитать набор из трех предметов и сказать вам, сколько в нем игрушек. Затем отдайте ребенку набор из двух предметов и спросите: «А сколько теперь игрушек?» Что делает ваш ребенок? Производит ли он «продолжение счета»? Если нет, попробуйте этот эксперимент еще раз через месяц и проверьте, развилась ли у вашего ребенка эта способность. Обычно она проявляется в возрасте примерно 5 лет.
Что дети на самом деле знают о счете?
Когда дети выполняют такую простую операцию как пересчитывание небольшого набора предметов, действительно ли они понимают, что делают? Жан Пиаже, всемирно известный швейцарский психолог, специалист по развитию ребенка, выражал сомнения в том, что дети вообще хорошо разбираются в числах. Пиаже любил проводить мини-эксперименты со своими собственными и другими детьми, чтобы понять, каким образом они осмысливают мир.
Например, чтобы проверить детей на так называемые «задачи на числовое соответствие», Пиаже выкладывал ряд из 5 голубых кружков перед своей 5-летней дочкой Франсуазой. Затем он выкладывал точно такой же ряд кружков перед собой. Два ряда располагались друг от друга всего в нескольких сантиметрах, и кружки были разложены параллельно друг другу. Потом он говорил: «Франсуаза, вот это – твои кружки, а это – мои. У кого больше кружков, у тебя или у меня? Или у нас обоих одинаковое количество?» Франсуаза с несколько неуверенным видом тщательно изучает оба ряда кружков, склоняясь к ним головой, словно пытается получше их рассмотреть. Что интересно, хотя Франсуаза умеет считать, она отвечает на вопрос с некоторой заминкой: «У нас обоих одинаковое количество», – наконец говорит она.
Далее на глазах у Франсуазы Пиаже раздвигает пошире кружки в своем ряду, так что кружки в двух рядах больше не параллельны друг другу, и его ряд занимает большее пространство. После этого он задает Франсуазе тот же самый вопрос: «Франсуаза, у кого теперь больше кружков, у тебя или у меня – или у нас обоих одинаковое количество?» На сей раз Франсуаза уверена в своем ответе и радостно говорит: «Теперь у тебя больше. Смотри, какой у тебя длинный ряд!»
Даже маленькие дети могут пройти тест Пиаже на числовое соответствие.
Взрослых такой ответ может шокировать. Как мог ребенок так ответить? На самом деле даже другим психологам трудно было поверить в то, что все дети так отвечают. Однако тот же самый результат наблюдался в разных странах мира. Может быть, если мы поставим вопрос по-другому или позволим ребенку манипулировать предметами самостоятельно, думали психологи, мы сможем подвести ребенка к решению этой задачи, которая кажется нам невероятно простой.
После многочисленных опытов профессор Рутгерского университета Рохель Гельман выяснила, что дети знают о числах больше, чем предполагали Пиаже и его последователи. Это не значит, что ваши собственные дети не провалят такую же задачу или не съедят ее «условие», если вы воспользуетесь шоколадками M amp;M’s! Но профессор Гельман выяснила, что дети просто не понимали, на какое измерение обращать внимание в этой задаче. Ребенок как бы задает себе вопросы: «Что здесь важно? Мне нужно полагаться на число предметов в каждом ряду? Или на то, сколько места они занимают? Или смотреть на то, насколько близко они друг к другу находятся?»
Оказывается, можно подготовить ребенка к тому, чтобы обращать внимание на значимое измерение – число, – и тогда он отвечает правильно. Профессор Гельман добилась этого, воспользовавшись «волшебными» мышками. Каждому ребенку по очереди предлагался ряд задач, в каждой из которых изменялось число мышек и размер пространства между ними. Иногда профессор показывала ребенку двух мышек, расположенных далеко друг от друга, напротив трех мышек, посаженных очень близко. Иногда она показывала мышек, расставленных рядами одинаковой длины. Она просила ребенка выбрать дощечку, на которой было больше мышек – дощечку-победительницу. Победительницей всегда оказывалась дощечка с тремя мышками – не важно, как именно расставленными, а проигравшей всегда была пластинка с двумя мышками. Когда ребенок выполнял задачу правильно, он получал награду.
В сущности, профессор научила детей понимать, что число – это то измерение, которое в этой задаче важно. Затем она старалась запутать детей (это один из любимых приемов психологов!), чтобы они продемонстрировали ей, что успели узнать о числах. Она незаметно («с помощью волшебства») убирала одну мышку из конца ряда или из его центра, оставляя ряды равными по длине или плотности, но теперь на дощечках было одинаковое число мышек. Дети реагировали удивлением и своими словесными ответами ясно демонстрировали, что поняли: важным в этой задаче является число. Некоторые спрашивали, куда подевалась одна мышка, или принимались ее искать. Другие предлагали свои объяснения исчезновения одной мышки – например, «ее забрал Иисус».
Работа профессора Гельман имеет двоякое значение. Во-первых, она показывает, что маленькие дети могут научиться обращать внимание на число как значимое измерение и пройти тест Пиаже на числовое соответствие. Во-вторых, эта работа показывает, что маленькие дети подходят к простым задачам, подобным этой, совершенно иначе, нежели взрослые. Им необходимо время и определенный опыт, чтобы понять, что в задаче на числовое соответствие имеют значение именно числа. Кстати, другие похожие исследования показали, что дети, которые не могут решить стандартную задачу на сравнение, ведут себя так, как будто их ответ непременно должен быть верен. Франсуаза отвечала на вопрос с полной уверенностью в ответе, основываясь на убеждении: то, как вещи выглядят, важнее, чем их количество. Но, как показала диссертация профессора Гельман, существуют способы привести ребенка к пониманию того, что на самом деле имеет значение число. Ирония состоит в том, что именно этому знанию нам и не нужно обучать своих детей! Они постепенно приходят к нему сами, в результате своего обычного опыта жизни в мире.
Однако могут существовать способы, благодаря которым разговоры с родителями о числах помогают детям постигать это понятие быстрее. Например, один из навыков, который вносит свой вклад в понимание числа, оказывается задействован тогда, когда дети выстраивают 2 параллельных ряда каких-либо предметов. В науке это называется однозначным соответствием, и оно помогает детям сравнивать наборы предметов. К тому же дети приходят к нему естественным путем. Когда одному из наших детей (Джошу) было 3 года, больше всего на свете он любил выстраивать в ряды свои многочисленные игрушечные машинки. Методично выставив их в длинный ряд, он доставал маленькие пластиковые фигурки и ставил по одной куколке рядом с каждой машинкой. Дети могут играть в эту игру с чем угодно – с башмаками, носками, книжками или фигурками животных. Вы удивитесь, если обратите внимание, как часто ваш ребенок сортирует предметы, а потом создает однозначные соответствия с их помощью.
Обнаружение скрытых навыков
Задачи на числовое соответствие
Возраст: 3–6 лет
Поставьте эксперимент на числовое соответствие со своим ребенком, повторяя то, что Пиаже делал с Франсуазой. Каждая задача на соответствие состоит из трех компонентов. Во-первых, ребенок должен ответить положительно, если ему задать вопрос, одинаковое ли число предметов содержится в двух наборах, лежащих перед ним (предметы могут быть любыми). Во-вторых, на глазах у ребенка взрослый манипулирует наборами, либо сдвигая предметы внутри ряда теснее, либо отодвигая их подальше друг от друга. И наконец, взрослый снова задает вопрос, одинаковые эти наборы или разные.
Вас может шокировать то, что ребенка так легко обмануть внешним видом наборов. В конце концов, вы же ничего не прибавили и ничего не убрали. Но дети очень часто попадаются в эту ловушку. Более того, если вы потом снова выровняете предметы, они опять согласятся, что у вас одинаковые наборы! Неудивительно, что дети в одной семье часто ссорятся из-за того, что у кого-то чего-то оказалось больше: если это «что-то» выглядит по-другому – независимо от того, сколько предметов в наборе, – дети будут настаивать на том, что кого-то из них обманули. Дети в возрасте 3–5 лет, скорее всего, провалят этот эксперимент, в то время как шестилетки уже начинают решать такие задачи правильно.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?