Электронная библиотека » Коллектив Авторов » » онлайн чтение - страница 8


  • Текст добавлен: 19 октября 2015, 02:12


Автор книги: Коллектив Авторов


Жанр: Медицина, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 51 страниц) [доступный отрывок для чтения: 15 страниц]

Шрифт:
- 100% +
1.2.2.2. Тромбоциты

Структурно-функциональные основы гемостаза и его патология. Строение тромбоцитов. Тромбоцит окружен плазмолеммой и состоит из светлой прозрачной наружной части, называемой гиаломером (от греч. hyalos – стекло и meros – часть), и центральной окрашенной части, содержащей азурофильные гранулы, – грануломера. В некоторых случаях выявляются небольшие псевдоподии, выступающие из периферической части гиаломера.

Плазмолемма тромбоцитов покрыта снаружи толстым (от 50 до 150–200 нм) слоем гликокаликса с высоким содержанием гликозаминогликанов и гликопротеинов. Она содержит многочисленные рецепторы, опосредующие действие веществ, активирующих и ингибирующих функции тромбоцитов, обусловливающие их прикрепление (адгезию) к эндотелию сосудов и агрегацию (склеивание друг с другом). Наиболее важными из них в функциональном отношении являются рецепторные гликопротеины Ib (GP Ib), IIb (GP IIb) и IIIa (GP IIIa), рецепторы к аденозиндифосфорной кислоте (АДФ), адреналину, тромбину, фактору Ха, фактору агрегации тромбоцитов (ФАТ), коллагену.

Гиаломер содержит две системы трубочек (канальцев) и большую часть элементов цитоскелета.

Система канальцев, связанных с поверхностью (открытая система канальцев), представлена гладкими анастомозирующими трубочками, которые открываются в инвагинации, образованные плазмолеммой. Функция этой системы канальцев связана с процессами поглощения и выведения веществ; она облегчает экзоцитоз содержимого гранул тром боцитов.

Система плотных трубочек образуется комплексом Гольджи мегакариоцитов. Она представлена узкими мембранными трубочками, заполненными плотным зернистым содержимым, которые располагаются непосредственно под кольцом микротрубочек или разбросаны по цитоплазме. Их функция выяснена неполностью. Предполагают, что они накапливают и выделяют Са2+, т. е. являются аналогом саркоплазматической сети мышечных клеток. Их связывают также с выработкой простагландинов.

Цитоскелет тромбоцитов представлен микротрубочками, микрофиламентами и промежуточными филаментами.

Микротрубочки в количестве 4–15 шт. располагаются по периферии цитоплазмы и формируют мощный пучок (краевое кольцо), служащий жестким каркасом и способствующий поддержанию формы тромбоцитов.

Микрофиламенты, образованные актином, многочисленны (актин составляет 25 % белка тромбоцитов), располагаются по всей цитоплазме в виде коротких нитей; в гиаломере они концентрируются между пучком микротрубочек и плазмолеммой, образуя подмембранный аппарат. Он участвует в формировании выпячиваний цитоплазмы при движении и агрегации тромбоцитов. Актиновые филаменты связаны в единую систему посредством белков α-актинина, миозина и тропомиозина, а с плазмолеммой – с помощью белка филамина.

Промежуточные филаменты образованы белком виментином и располагаются преимущественно под плазмолеммой.

Грануломер содержит митохондрии, частицы гликогена, отдельные рибосомы, единичные короткие цистерны гранулярной (шероховатой) эндоплазматической сети (грЭПС), элементы комплекса Гольджи и гранулы нескольких типов:

– α-гранулы – самые крупные (диаметр 300–500 нм), с умеренно плотным матриксом, в котором содержатся: фибриноген, фибронектин, тромбоспондин (белок, сходный с актомиозином), тромбоглобулин, тромбоцитарный фактор роста (ТРФР), эпидермальный фактор роста (ЭФР), трансформирующий фактор роста (ТФР), фактор свертывания V и фактор Виллебранда (белок-переносчик фактора VIII свертывания), а также ряд других белков. Составляют большую часть гранул, окрашивающихся азуром;

– δ-гранулы (плотные гранулы, или тельца) – немногочисленные (до 5 шт.) мембранные пузырьки диаметром 250–300 нм с плотным матриксом, который иногда располагается в них эксцентрично. Матрикс содержит АДФ, АТФ, Са2+, Mg2+, пирофосфат, гистамин, серотонин. Последний не синтезируется тромбоцитами, а поглощается ими из крови;

– λ-гранулы – мелкие (диаметр 200–250 нм) пузырьки, содержащие гидролитические ферменты. Рассматриваются как лизосомы.

Функциональная морфология тромбоцитов. Участие тромбоцитов в реак циях гемостаза и гемокоагуляции. В кровотоке тромбоциты представляют собой свободные элементы, не слипающиеся ни друг с другом, ни с поверхностью эндотелия сосудов. Более того, эндотелиоциты в норме в небольших количествах вырабатывают и выделяют вещества, угнетающие адгезию и препятствующие активации тромбоцитов. При повреждении эндотелия сосудов микроциркуляторного русла (диаметром менее 100 мкм), которые наиболее часто травмируются и разрываются, тромбоциты служат ведущими элементами в остановке кровотечений. При этом развивается закономерная последовательность процессов, включающая: адгезию тромбоцитов, агрегацию тромбоцитов (с формированием белого, или тромбоцитарного, тромба), свертывание крови (гемокоагуляцию) с формированием красного тромба, ретракцию тромба, разрушение тромба.

Адгезия тромбоцитов – их прилипание к стенке сосуда в области повреждения благодаря их взаимодействию с коллагеновыми белками (базальной мембраны эндотелия и волокон подэндотелиального слоя), опосредованному гликопротеинами фибронектином, ламинином и, в особенности, фактором Виллебранда, который также содержится в эндотелии. Фактор Виллебранда связывается с белком GP Ib – рецептором этого фактора на плазмолемме тромбоцитов. Адгезия тромбоцитов начинается у краев зоны повреждения сосуда, быстро сужая, а затем закрывая дефект и останавливая кровоизлияние из этой зоны в окружающие ткани. Обычно процесс адгезии длится около 3–10 с. В ходе этого процесса тромбоциты подвергаются активации.

Активация тромбоцитов сопровождается изменением их формы, секреторной реакцией (выделением содержимого гранул) и метаболической реакцией. Эти процессы, в отличие от более ранних изменений, обычно необратимы.

Изменение формы – первая реакция тромбоцитов на стимуляцию, в ходе которой они распластываются по поверхности, теряют свою дисковидную форму, округляются, одновременно выбрасывая тонкие отростки. Активированные тромбоциты – структуры со сферической центральной частью, от которой отходят отростки (псевдоподии, или филоподии, в дальнейшем приобретающие вид шипов). Длина этих отростков в несколько раз превышает размер центральной части, а их основа образована мощными пучками микрофиламентов. Краевое кольцо микротрубочек сжимается, вызывая смещение гранул к центру тромбоцита (централизацию гранул), затем оно перекручивается и распадается с деполимеризацией микротрубочек. Одновременно происходит увеличение содержания микрофиламентов (благодаря полимеризации актина), которые формируют другое кольцо, охватывающее снаружи и отчасти пронизывающее кольцо микротрубочек. Отмечается также и перераспределение промежуточных филаментов с их частичным перемещением в отростки.

Секреторная реакция тромбоцитов осуществляется путем быстрого выделения содержимого α– и плотных гранул, а затем лизосом через систему канальцев, связанных с поверхностью. При этом секретируется ряд веществ, обеспечивающих дальнейшее развертывание процессов адгезии, агрегации тромбоцитов, гемостаза и регенерации сосудистой стенки. В частности, ТРФР усиливает процессы заживления повреждений, так как он является мощным стимулятором пролиферации фибробластов, гладких миоцитов, глиальных клеток и обладает хемотаксической активностью в отношении нейтрофильных гранулоцитов, моноцитов, фибробластов, гладких миоцитов.

Метаболическая реакция тромбоцитов включает активацию ряда ферментов (мембранных фосфолипаз, циклоксигеназы и тромбоксансинтетазы). При этом из фосфолипидов плазмолеммы образуется арахидоновая кислота, которая превращается в эйкозаноиды, главным образом, тромбоксан А2 (TxА2). TxА2 вызывает спазм сосуда (способствует гемостазу) и резко стимулирует агрегацию тромбоцитов. Одновременно эндотелий сосудов синтезирует из арахидоновой кислоты простагландин I2 (ПГI2, или простациклин), который угнетает активность тромбоцитов и расширяет сосуды. Последующее течение процессов гемостаза зависит от баланса между TxА2 и простациклином.

Активация тромбоцитов протекает при повышении концентрации Са2+ в цитоплазме вследствие его выделения системой плотных трубочек и плотных гранул.

Агрегация тромбоцитов – слипание тромбоцитов друг с другом и с тромбоцитами, начально прикрепившимися к компонентам поврежденного сосуда, вызывает быстрое формирование тромбоцитарных конгломератов – тромбоцитарной (первичной) гемостатической пробки (белого, или тромбоцитарного тромба), которая закрывает дефект стенки сосуда и в течение 1–3 мин обычно целиком заполняет его просвет.

Адгезия и агрегация тромбоцитов – сложные биологические процессы, протекающие с участием внешних и собственных тромбоцитарных стимуляторов и требующие энергетических затрат. На мембране тромбоцитов из белков GP IIb и GP IIIа происходит сборка комплекса GP IIb/IIIа, который служит рецептором фибриногена. Фибриноген стимулирует агрегацию, связываясь с этими рецепторами на поверхности различных тромбоцитов и образуя между ними мостики. Стимуляторами (кофакторами) агрегации служат также тромбин, адреналин, фактор агрегации тромбоцитов (ФАТ) (образуется гранулоцитами и моноцитами крови, тромбоцитами, эндотелиальными и тучными клетками). Коллаген индуцирует как адгезию, так и агрегацию. Мощным стимулятором агрегации служит АДФ (выделяется поврежденной сосудистой стенкой и эритроцитами, а затем самими адгезированными и активированными тромбоцитами). Одновременно с АДФ из тромбоцитов освобождаются другие стимуляторы агрегации (адреналин, серотонин). Последние, подобно ТхА2 и ТРФР, вызывают резкий спазм поврежденного сосуда, способствующий гемостазу.

Объем тромбоцитарного тромба уменьшается вследствие активации сократимого белка тромбоцитов тромбостенина. Тромбоциты при этом еще более сближаются, а тромб становится непроницаемым для крови. Первые нити фибрина появляются вокруг тромбоцитарного тромба и между его тромбоцитами уже через 30–60 с после повреждения стенки сосуда в результате взаимодействия тромбопластина сосудистой стенки с белками плазмы крови. В последующие часы происходит разрушение тромбоцитов, а тромбоцитарная пробка замещается массами образовавшегося фибрина.

Свертывание крови (гемокоагуляция) – вторичная гемостатическая реакция. Гемостаз, осуществляемый путем формирования тромбоцитарной (первичной) пробки, эффективен лишь в сосудах микроциркуляторного русла, но недостаточен в более крупных сосудах с высокой скоростью кровотока, так как в них эта пробка может отделяться от сосудистой стенки, вызывая возобновление кровотечения. В таких сосудах происходит свертывание крови и формируется вторичная гемостатическая (фибриновая) пробка (красный тромб). Тромбоциты принимают непосредственное участие в процессах свертывания крови. Факторы свертывания частично содержатся в их гранулах, частично сорбируются ими из плазмы крови. Полагают, что тромбоциты формируют микромембранные фосфолипидные комплексы, на поверхности которых происходит взаимодействие факторов свертывания.

Гемокоагуляция является сложным каскадным ферментным процессом с участием ряда аутокаталитических систем, в результате которого кровь из жидкой превращается в желеобразную. Свертывание обеспечивается рядом факторов, содержащихся в плазме, поврежденных сосудах и тромбоцитах. Часть его этапов требует присутствия Са2+, активность некоторых факторов зависит от витамина К.

Заключительным этапом процесса гемокоагуляции служит превращение (путем полимеризации) растворимого белка плазмы фибриногена в нерастворимый фибрин под влиянием тромбина. Тромбин образуется из протромбина благодаря активности фермента тромбокиназы. Фибрин представлен поперечно исчерченными волокнами (с периодичностью около 25 нм), расположенными в просвете сосуда в виде трехмерной сети, захватывающей из кровотока форменные элементы крови, в частности, численно преобладающие эритроциты (что придает формирующемуся тромбу красный цвет).

Одновременно с локальной активацией свертывающей системы, приводящей к формированию тромба, происходит повышение активности факторов противосвертывающей системы крови (некоторые из них являются продуктами свертывания крови). В результате возникает торможение и самоограничение процесса свертывания, что предотвращает его возможную генерализацию (распространение на неповрежденные участки данного сосуда и другие сосуды).

Ретракция тромба – реакция, развивающаяся вскоре после формирования тромба и состоящая в уменьшении его объема примерно до 10–50 % от исходного благодаря активности цитоскелетного сократительного аппарата тромбоцитов. Он сходен с аналогичным аппаратом гладких миоцитов и представлен актином (образующим основную массу цитоскелета) и связанными с ним белками (при соотношении актина к миозину, превышающем 100: 1). При сокращении актомиозинового комплекса потребляется энергия, запасенная в АТФ тромбоцитов. Усилие, генерируемое цитоскелетом тромбоцитов, через их отростки и адгезивные белки передается на нити фибрина.

Разрушение тромба происходит по завершении регенерации сосудистой стенки, когда отпадает необходимость в нем. Фибринолиз – разрушение фибрина в кровеносном русле. Осуществляется рядом факторов, из которых наибольшее значение имеет плазмин (фибринолизин), образующийся из содержащегося в плазме профермента плазминогена под влиянием активаторов плазминогена, продуцируемых эндотелием и различными тканями, окружающими сосуды. Удаление тромба обеспечивается и ферментами λ-гранул тромбоцитов.

Снижение свертываемости крови и кровоточивость могут служить симптомами различных (в том числе наследственных) заболеваний, связанных с недостаточным содержанием тромбоцитов в крови (тромбоцитопениями) и нарушениями их функций (тромбоцитопатиями), уменьшением активности свертывающей или повышением активности противосвертывающей систем плазмы, усиленным фибринолизом, а также сочетаниями этих нарушений.

Усиленное тромбообразование. Хотя формирование тромбов в ответ на повреждение сосудов является нормальной физиологической реакцией, предотвращающей кровопотерю, его усиление, в особенности при изменении сосудистой стенки атеросклеротическим процессом, может вызвать тромбоз (закупорку тромбом сосудов различных органов – миокарда, конечностей, головного мозга и др.), обусловливающий развитие тяжелых расстройств и смерть. Отрыв тромбов от стенки поврежденных вен конечностей может приводить к закупорке ими (тробмэмболии) сосудов легких.

Морфология тромба. В зависимости от способа возникновения и строения выделяют четыре основных вида тромбов: белый, или серый; красный, или коагуляционный; смешанный; гиалиновый. При наличии определенных условий, способствующих образованию того или иного вида тромбов, и этиологии выделяют еще четыре вида: марантический; опухолевый; сопровождающий заболевания кроветворной системы; септический. По отношению к просвету сосуда каждый из видов тромба может быть пристеночным и закупоривающим.

Белый тромб называют еще серым, агглютинационным, конглютинационным, так как в нем преобладают агрегаты слившихся форменных элементов крови. Макроскопически тромб имеет белую или серую окраску, спаян со стенкой сосуда, поверхность его гофрированная, тусклая, сухая, он легко крошится. На разрезе различается слоистость. При микроскопическом исследовании определяют, что существенную часть белого тромба составляют тромбоциты, которые располагаются в нем многоэтажными балками, напоминая коралловую структуру. Балки из кровяных пластинок имеют направление, перпендикулярное току крови, снаружи окружены слоем фибрина, а между балками расположена сеть волокон фибрина, скрепляющего соседние. В сети фибрина видны скопления нейтрофильных гранулоцитов. Белый тромб образуется медленно при быстром токе крови в артериях, между трабекулами внутренней поверхности сердца, на створках клапанов сердца при эндокардите. Белый тромб бывает обычно пристеночным.

Красный или коагуляционный тромб образуется при быстром свертывании кровяного столба и медленном движении крови. Макроскопически этот тромб красного цвета, рыхлый, поверхность слегка гофрирована, местами гладкая и влажная. Молодые тромбы красного цвета, более старые приобретают буроватую окраску, их поверхность тускнеет. Со стенкой сосуда соединен рыхло, легко отделяется и тогда становится трудно отличимым от красного трупного сгустка. Микроскопически основа красного тромба образована сеткой фибрина, одна часть которого состоит из тонких, плохо выявляющихся волокон фибрина, а другая – из более толстых. В сети фибрина большое число эритроцитов, отдельные нейтрофильные гранулоциты, мелкие скопления тромбоцитов, но без образования балочных структур, как в белом тромбе. Красный тромб имеет закупоривающий характер и обычно встречается в венах.

Смешанный тромб представляет собой образование, состоящее из элементов как белого, так и красного тромба. По макроскопическому виду в смешанном тромбе различают головку (белый или серый тромб), шейку или среднюю часть, представляющую собой смесь белого и красного тромбов, и хвост тромба (красный тромб). Головка тромба имеет коническую или уплощенную форму, спаяна со стенкой сосуда. Головка обращена к вене в сторону сердца, а в артерии – в направлении от сердца. Хвост расположен и растет в вене против тока крови (как и в артерии). Хвост рыхло прикреплен к шейке тромба, может отрываться и быть источником тромбоэмболии; иногда отрывается весь тромб. В агональном периоде или после смерти кровь в венах дистальнее хвоста свертывается, и этот красный сгусток легко отделяется от хвоста. Смешанный тромб встречается в венах, артериях, аневризмах артерий и сердца. В аневризмах тромб на разрезе имеет слоистое строение.

Гиалиновые тромбы обычно множественные и возникают в сосудах микроциркуляторного русла; встречаются при экстремальных условиях: шок, обширная травма тканей, ожоги, электротравма и т. д. Имеются разногласия в отношении механизма образования гиалинового тромба. В основе образования гиалиновых тромбов могут лежать процессы склеивания эритроцитов, тромбоцитов, лейкоцитов и выпавшего фибрина, превращающихся в гомогенную бесструктурную массу, дающую реакции на фибрин. Получается, что гиалиновый тромб состоит из спрессованных в гомогенную массу кровяных пластинок с примесью фибрина или это результат желатинизации фибрина в капиллярах. Гиалиновые тромбы рассматривают как образования, построенные из необычно уплотненного фибрина, только похожего по своим тинкториальным свойствам на истинный фибрин. Гиалиновые тромбы – результат преципитации белков плазмы, агглютинации и гомогенизации эритроцитов и уплотнения фибрина. Некоторые авторы полагают, что такие тромбы состоят из слившихся и гомогенизированных лейкоцитов крови. Высказывается мнение, что гиалиновые тромбы состоят из гомогенизированного фибрина. Фибрин гиалиновых тромбов неоднороден по своему строению, его выявление зависит от способа фиксации и окраски. Приведенные данные противоречат результатам работ, убедительно показывающих, что основу гиалинового тромба составляют дезинтегрированные и некротизированные эритроциты. Гиалиновый тромб – понятие неоднородное, в связи с чем мнения разных авторов о строении и происхождении этого вида тромбов не совпадают.

Образование фибрина из фибриногена – многофазный процесс, сопровождающийся образованием неоднородных по своей структуре продуктов расщепления, что не может не отразиться на строении гиалинового тромба.

Марантический тромб (от греч. marasmos – изнурение, упадок сил) возникает при наличии истощения, когда развивается дегидратация организма и кровь становится более густой. Образуются марантические тромбы обычно в поверхностных венах конечностей и в синусах твердой мозговой оболочки у стариков. Вопрос об изменении химизма крови при истощении и его значении для тромбоза пока еще остается открытым. По внешнему виду марантические тромбы обычно смешанные.

Опухолевый тромб возникает при врастании клеток в просвет вен и разрастании их по току крови, иногда до полости правого желудочка. По поверхности опухолевых разрастаний образуются тромботические массы смешанного типа. Тромбы возникают иногда при опухолевой эмболии сосудов легких. В мелких сосудах, закупоренных опухолевыми эмболами, возникают тромбы, которые затем организуются, сосуды запустевают и становятся основой для легочной гипертонии.

Тромбы, сопровождающие заболевания кроветворной системы, возникают при полицитемии, лейкозах. При полицитемии в венах обычно возникают красные тромбы, являющиеся источником эмболии, а при лейкозах образуются тромбоцитарные тромбы в сосудах микроциркуляторного русла или обычные белые в тех участках вен, где развиваются лейкозные инфильтраты.

Септический тромб – смешанный тромб, возникающий обычно в венах. Характерным признаком является наличие воспалительного процесса в стенке вены и окружающей ткани (перифлебит, флебит, тромбофлебит и наличие бактерий в тромбе). Существуют следующие возможности для возникновения септического тромба: перифлебит, переходящий на стенку вены; первичные повреждения эндотелия бактериями, циркулирующими в крови, развитие тромбоза и септического тромбофлебита; вторичное попадание бактерий из крови в ранее образовавшийся тромб, который И. В. Давыдовский (1969) называл «больным тромбом», так как он может быть источником грозных гнойных тромбоэмболических осложнений. Вторичному инфицированию из внешней среды и из крови могут подвергаться тромбы, возникающие в венах при катетеризации, проводимой при лечебных мероприятиях.

По течению различают тромбы локализованные и прогрессирующие, а по отношению к просвету сосуда – пристеночные и закупоривающие, или обтурационные. Локализованные тромбы встречаются преимущественно в артериях на ограниченном участке, например на атеросклеротической бляшке. Прогрессирующие тромбы – преимущественно в венозной системе. Они ограничиваются какой-либо одной или несколькими областями. Выделяют еще поздние тромбы, возникающие после перенесенных инфекций, после операций, когда возникает активация факторов свертывания крови или депрессия противосвертывающей системы. Чаще поздние тромбы возникают в венах икроножных мышц и малого таза у лежащих больных. Такие тромбы бывают обычно источником тромбоэмболии легочной артерии. Пристеночные тромбы возникают на ограниченном участке поврежденной интимы сосуда, на клапанах сердца, пристеночном эндокарде. Обтурационные тромбы наблюдаются в артериях мелкого и среднего калибра на атеросклеротической бляшке (например, в венечной артерии). В аорте обтурационные тромбы встречаются редко. В венозной системе описаны мигрирующие тромбы у лиц с нарушенной системой гемостаза.

Тромбоз. Тромбоз (от греч. thrombos – сгусток крови) представляет собой патологическое проявление гемостаза, т. е. прижизненного свертывания крови с образованием в просвете сосуда сгустка крови, называемого тромбом. Он может полностью или частично закрывать просвет сосуда и вызывать серьезные нарушения кровообращения. Процесс гемостаза является защитным механизмом, его активация возникает при повреждении, разрыве стенки сосуда и предупреждает или останавливает кровотечение. Образование тромба может также рассматриваться как гемостаз, но причиняющий вред организму с возможными опасными для жизни последствиями. Тромбоз – это проявление гемостаза, но идущее не на пользу организму. Изменения, приводящие к свертыванию крови, в основном совпадают с наблюдающимися в условиях гемостаза. Механизм прижизненного свертывания крови сложен и является с физиологической точки зрения следствием локального или общего нарушения жидкого состояния крови. Свертывание крови может протекать очень медленно или вообще не происходить. Иногда наблюдается, наоборот, повышенная склонность к свертыванию. Во всех странах отмечается учащение болезней, связанных с нарушением гемостаза: особенно часто встречаются тромбозы и их осложнения.

Эмболия. Эмболия – патологический процесс, который характеризуется циркуляцией в сосудах малого и большого круга кровообращения свободных тел, не смешивающихся с кровью. Ими могут быть кусочки оторвавшегося тромба (венозная и артериальная тромбоэмболия), пузырьки воздуха или газа, капельки жира, кусочки тканей, в частности опухолей, скопления бактерий, плодные воды, плацентарные клетки, чужеродные тела, попавшие в кровоток (например, пули, осколки снарядов).

Эмболия может быть прямой и непрямой. В первом случае эмбол прямо из вен попадает в правый желудочек и в легочную артерию. Во втором – эмбол может через сохранившееся овальное отверстие в межпредсердной или в межжелудочковой перегородке попасть в большой круг кровообращения (парадоксальная эмболия). Выделяют еще ретроградную эмболию, которая наблюдается, когда эмбол из полой вены попадает при повышении внутригрудного давления в вены печени.

Венозная тромбоэмболия – опасное и частое явление. 25–50 % всех венозных тромбозов ведут к эмболии, из которых 5–10 % заканчиваются смертью. Частота смертельных эмболий различна у больных разного профиля. Гинекологические больные погибают от легочной эмболии в 8,3–11,5 % случаев, хирургические – в 5,4 % и терапевтические – в 1,2 % случаев. Источником венозных тромбоэмболий чаще являются бедренная вена и вена малого таза, затем голени. Число тромбозов и венозных тромбоэмболии несколько увеличилось, что связывают с факторами питания (жирная пища). Отмечено, что смертельная легочная тромбоэмболия встречается почти в 4 раза чаще у хорошо упитанных людей, чем у людей с пониженным питанием. Тромбоэмболия легочной артерии встречается чаще у женщин и пожилых людей обоего пола, чем у молодых. Благоприятствуют развитию легочной тромбоэмболии мен струации, роды, операции, прием пероральных контрацептивов (у молодых женщин).

Отмечается учащение венозных тромбозов и тромбоэмболии легочной артерии. Среди погибших от тромбоэмболии легочной артерии преобладают люди пожилого и старческого возраста, преимущественно женщины.

Источники артериальной тромбоэмболии – тромбы левого сердца, аорты и редко легочных вен. Особенно характерны множественные тромбоэмболии, возникающие при затяжном септическом эндокардите, патологический процесс при котором обычно локализуется на створках артериального клапана и морфологически проявляется полипозно-язвенным тромбоэндокардитом. Эти рыхлые клапанные и пристеночные тромбы могут быть источником тромбоэмболии с последующим развитием инфарктов в органах и гангреной конечностей. Когда развиваются множественные тромбоэмболии (венозные и артериальные), говорят о тромбоэмболическом синдроме.

Воздушная эмболия возникает при попадании воздуха в венозную систему при ранении вен, расположенных близко к сердцу. В случае повреждения яремной вены воздух при вдохе может попасть в ее просвет, так как в ней в это время создается отрицательное давление. Возможность воздушной эмболии возникает как осложнение криминального аборта при введении воздуха в полость матки. Воздух попадает через вены в ток крови, образует в ней пенистую массу, пузырьки которой закупоривают легочные капилляры. Воздушная эмболия может возникнуть при внутривенных инъекциях, когда из шприца предварительно не удаляется воздух. Сходна с воздушной эмболией газовая эмболия, возникающая в результате выделения в крови пузырьков растворимого в ней газа при быстром переходе от высокого атмосферного давления к обычному. Это может наблюдаться, например, у водолазов, работающих на большой глубине (кессонная болезнь).

Жировая эмболия возникает при травме костей, сопровождающейся размозжением жира и превращением его в эмульсию. При попадании в кровь мелкие капельки жира закупоривают легочные капилляры и могут привести к острой асфиксии.

Тканевая эмболия обычно возникает у плода при разрушении тканей во время родового акта. Матка может служить источником эмболии плодными водами. В этих случаях в капиллярах легких находят содержимое вод: роговые чешуйки, жировые капельки и т. д. При неполном отслоении плаценты в вены матки могут попадать клетки ворсин хориона, погибающие в капиллярах легких и закупоривающие их. При эмболии клетками опухоли и бактериями (например, кусочками септического тромба) эмболы могут попасть в малый круг кровообращения через артерповенозные анастомозы или открытое овальное окно, а также межжелудочковую перегородку и быть источником развития метастазов опухоли и метастатических абсцессов при септикопиемии.

Инородные тела (осколки снарядов, пули) в редких случаях могут закрывать просветы крупных вен и быть источником ретроградных эмболий. В силу тяжести они опускаются в венозных сосудах против тока крови.

Нарушения микроциркуляции. Материальной основой микроциркуляции является микроциркуляторное русло, построенное из повторяющихся единиц – микрорайонов (гистионов, модулей), объединяющих микрососуды с определенными структурно-функциональными признаками, нервные проводники, клетки, волокна соединительной ткани, промежуточное склеивающее вещество. Эти единицы отделены друг от друга и имеют изолированные пути притока и оттока крови и продуктов обмена. В микроциркуляторном русле следует выделять четыре звена: звено притока и распределения крови (артериолы и прекапилляры); промежуточное, обменное (капилляры, с помощью которых осуществляется транскапиллярный обмен); депонирующее (состоит из посткапилляров и венул, обладает в 20 раз большей емкостью, чем артериолы); дренажное (лимфатические капилляры и посткапилляры).

Между микрососудами (артериолами и венулами, между капиллярами, артериолами, венулами и лимфатическими сосудами) имеются анастомозы. В местах их ответвления в отделе микроциркуляции располагаются группы гладких миоцитов, образующие сфинктеры.

Основная и важнейшая функция микроциркуляции – осуществление обмена между кровью и тканью, необходимого для обеспечения клеточного метаболизма в органах. Через микроциркуляцию клетки получают питание, освобождаются от продуктов обмена в соответствии со своими потребностями. Благодаря деятельности гладкомышечных сфинктеров микроциркуляция контролирует степень тканевого крове– и лимфонаполнения и тем самым осуществляет гемодинамический и метаболический гомеостаз, необходимый для нормальной жизнедеятельности организма. Все эти процессы протекают в тканях под влиянием симпатических, адренергических сосудосуживающих нервов, а также гуморальных (гормональных) и гидростатических факторов.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации