Электронная библиотека » Коллектив Авторов » » онлайн чтение - страница 10


  • Текст добавлен: 19 октября 2015, 02:12


Автор книги: Коллектив Авторов


Жанр: Медицина, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 51 страниц) [доступный отрывок для чтения: 15 страниц]

Шрифт:
- 100% +

Первичные (азурофильные, или неспецифические) гранулы названы так потому, что появляются первыми в ходе развития (на стадии промиелоцита). В зрелых клетках они составляют лишь 10–30 % общего числа гранул, окрашиваются азуром в розово-фиолетовый цвет и не являются специфическими для нейтрофилов, поскольку встречаются и в лейкоцитах других типов. Эти гранулы имеют самые крупные размеры (диаметр 400–800 нм, в среднем около 500 нм) и соответствуют зернистости, выявляемой на светооптическом уровне. Они имеют вид округлых или овальных мембранных пузырьков с электронноплотным содержимым и часто рассматриваются как лизосомы. В них, однако, имеется большой набор антимикробных веществ, что не характерно для обычных лизосом.

В первичных гранулах содержатся вещества: лизоцим, миелопероксидаза, нейтральные протеиназы, кислые гидролазы, дефензины (на которые приходится 30–50 % белка гранул), катионные антимикробные белки, бактерицидный белок, увеличивающий проницаемость (BPI-белок – от англ. Bactericidal Permeability Increasing), которые обладают высокой микробицидной активностью. Ферменты этих гранул активны преимущественно в кислой среде и обеспечивают внутриклеточное уничтожение микробов.

Вторичные (специфические) гранулы появляются позднее первичных в процессе развития (в конце стадии промиелоцита и особенно активно на стадии миелоцита) и становятся все более многочисленными при созревании нейтрофилов; в зрелых клетках они составляют 80–90 % общего числа гранул. Они плохо выявляются под световым микроскопом, так как имеют мелкие размеры (диаметр – 100–300 нм; в среднем – 200 нм на границе разрешения светового микроскопа). При электронной микроскопии они имеют вид мембранных пузырьков округлой, овальной или гантелевидной формы с зернистым содержимым сравнительно низкой плотности.

Вещества, содержащиеся во вторичных гранулах (лизоцим, лактоферрин, щелочная фосфатаза, коллагеназа, активатор плазминогена, частично – катионные белки), участвуют во внутриклеточном разрушении микробов, а также секре тируются в межклеточное вещество, где они играют роль в мобилизации медиаторов воспалительной реакции и активации системы комплемента. В этих гранулах содержатся также адгезивные белки.

Третичные (желатиназные) гранулы нейтрофильных гранулоцитов описаны недавно и изучены не полностью. По размерам и морфологическим характеристикам они сходны со специфическими гранулами, но отличаются от них по химическому составу. Главными компонентами содержимого этих гранул являются желатиназа (обнаружена в небольшом количестве также в специфических гранулах), небольшое число других ферментов, лизоцим и адгезивные белки. Предполагают, что они участвуют в переваривании субстратов в межклеточном пространстве, в процессах адгезии и, возможно, фагоцитоза. В частности, высказывается мнение, что эти гранулы играют важную роль в процессе миграции нейтрофила через стенку сосуда в ткани: их адгезивные молекулы участвуют в прикреплении нейтрофила к эндотелию, а желатиназа способствует прохождению базальной мембраны, вызывая переваривание содержащегося в ней коллагена IV типа.

Секреторные пузырьки – недавно описанные мембранные структуры, которые образуются в нейтрофилах в процессе их развития по завершении формирования гранул. В них не выявлено специфического содержимого, однако установлено, что их мембрана несет большое количество адгезивных белков и рецепторов хемотаксических факторов, которые они транспортируют к плазмолемме. Доказано, что начальные этапы качения нейтрофила по активированному эндотелию приводят к возникновению сигнала, мобилизующего секреторные пузырьки. Они перемещаются к плазмолемме и сливаются с ней, обеспечивая приток адгезивных молекул, необходимых для формирования прочной связи нейтрофила с эндотелием.

Цитофизиология нейтрофильных гранулоцитов. Нейтрофильные гранулоциты после выхода из сосудистого русла активно перемещаются и первыми появляются в участках повреждения тканей, где они накапливаются в значительных количествах (до 108/мл), быстро поглощают и уничтожают большую часть микроорганизмов. После выполнения своей функции они погибают и фагоцитируются макрофагами. Усиленному притоку нейтрофилов в очаги воспаления и ишемии (ограниченного участка тела со сниженным притоком крови) способствует усиление экспрессии адгезивных молекул на плазмолемме как самих лейкоцитов, так и взаимодействующих с ними клеток эндотелия при стимуляции цитокинами.

Перемещение нейтрофильных гранулоцитов после их выхода из сосудов осуществляется в основном веществе соединительной ткани. Оно происходит благодаря деятельности актиновых микрофиламентов, обеспечивающих быстрые (со скоростью 10–30 мкм/мин) амебоидные движения нейтрофилов в направлении очага поражения. Хемотаксические факторы не ускоряют это движение, но упорядочивают его. Они воздействуют на специфические рецепторы на плазмолемме нейтрофила, связанные с G-белком, стимуляция которых передается на элементы его цитоскелета и изменяет экспрессию поверхностных адгезивных молекул. Вследствие этого формируются и исчезают псевдоподии, которые обратимо прикрепляются к элементам соединительной ткани, что обеспечивает направленную миграцию клеток. После перемещения в очаг воспаления нейтрофилы активно фагоцитируют микроорганизмы.

Фагоцитоз микроорганизма нейтрофилом включает: прикрепление (адгезию) нейтрофила к микробной клетке, ее захват с формированием фагосомы, слияние гранул нейтрофила с фагосомой с образованием фаголизосомы, повреждение и переваривание микроорганизма.

Прикрепление (адгезия) нейтрофила к объекту фагоцитоза (например, бактерии) происходит при взаимодействии его рецепторного аппарата, расположенного на плазмолемме и в гликокаликсе, с молекулами на поверхности микробной клетки. Для многих случаев установлен специфический характер взаимодействия молекул микроба и рецепторов нейтрофила. Адгезия, как правило, протекает в две стадии: в начальной она непрочна и обратима, в поздней характеризуется прочным прикреплением, которое обычно необратимо.

Захват микроорганизма нейтрофилом с формированием фагосомы осуществляется после его прочного прикрепления к объекту фагоцитоза путем формирования псевдоподий, в которых концентрируются актиновые микрофиламенты. Псевдоподии охватывают бактерию и сливаются друг с другом, заключая ее в мембранный пузырек (фагосому). Активность поглощения резко возрастает, если объект фагоцитоза опсонизирован – покрыт иммуноглобулинами класса G(IgG) и (или) С3b-компонентом комплемента. В таком случае нейтрофил, плазмолемма которого содержит рецепторы к этим молекулам, взаимодействует не с собственно объектом фагоцитоза, а с иммуноглобулинами и компонентом комплемента на его поверхности (этот процесс носит название иммунного фагоцитоза).

Способность к иммунному фагоцитозу, благодаря наличию мембранных рецепторов к иммуноглобулинам и С3-компоненту комплемента, послужила основанием для объединения нейтрофильных гранулоцитов и макрофагов в группу «профессиональных фагоцитов», в отличие от многочисленных клеток, поглощающих различные частицы, но не располагающих этими рецепторами и поэтому не способных к иммунному фагоцитозу («непрофессиональных фагоцитов»).

«Респираторный взрыв» – быстро развивающаяся (начиная с первой минуты) метаболическая реакция, сопровождающая фагоцитоз. Она характеризуется резким усилением окислительных процессов в нейтрофильных гранулоцитах (с увеличением потребления ими кислорода в 10–15 раз). Эта реакция обусловлена активацией преимущественно немитохондриальных ферментов, расположенных в плазмолемме и мембранах фагосом, и сопровождается образованием токсических реактивных биоокислителей (метаболитов кислорода).

Слияние гранул нейтрофила с фагосомой с образованием фаголизосомы обеспечивает последующее уничтожение захваченной микробной клетки. С мембраной фагосомы, как правило, сливаются сначала мембраны специфических, а в дальнейшем – азурофильных гранул, а их содержимое выделяется в просвет образованной фаголизосомы. При этом благодаря активности мембранных протонных насосов рН в просвете фаголизосомы быстро снижается до 4,0.

Повреждение и внутриклеточное переваривание микроорганизма. Гибель микроорганизма в фаголизосоме наступает вследствие воздействия на него антимикробных веществ; далее он подвергается перевариванию лизосомальными ферментами. Бактерицидный эффект усиливается токсичными реактивными биоокислителями (перекисью водорода, синглетным кислородом, супероксидным и гидроксильным радикалами), которые образуются в гиалоплазме при респираторном взрыве и транспортируются в фаголизосому. В последней миелопероксидаза катализирует реакцию перекиси водорода с ионами хлора, образуя мощное бактерицидное вещество гипохлорит.

Нефагоцитарные механизмы разрушения микробов нейтрофилами характерны для ситуаций, когда микроорганизмы имеют столь крупные размеры, что не могут поглощаться этими клетками. В таких случаях нейтрофилы накапливаются вокруг микробов, прилегая к их поверхности, и выбрасывают содержимое своих гранул в разделяющее их межклеточное пространство, уничтожая микробные клетки посредством высоких концентраций микробицидных веществ. При этом сами нейтрофилы обычно также гибнут; возможны значительные повреждения и окружающих тканей.

Метаболизм нейтрофилов. Энергия, необходимая нейтрофильным гранулоцитам для осуществления их функций, получается преимущественно путем анаэробного гликолиза, поэтому они способны активно функционировать в тканях, бедных кислородом: воспаленных, отечных или плохо кровоснабжаемых. Они сохраняют активность в очагах воспаления и при низких значениях рН. Источником энергии нейтрофилов служат поглощаемая извне глюкоза и внутриклеточные запасы гликогена, которые быстро истощаются при стимуляции – в ходе фагоцитоза и переваривания микробов. Ферменты обмена арахидоновой кислоты при стимуляции нейтрофилов образуют простагландины и лейкотриены, которые обладают широким спектром биологической активности, в частности хемотаксической активностью для лейкоцитов и макро фагов.

Гибель и разрушение нейтрофилов происходит в значительных количествах в ходе фагоцитоза, после него и в результате разрушения микробов нефагоцитарными механизмами. При этом продукты их распада (как и разрушенных тканей) хемотаксически привлекают другие нейтрофилы, которые также гибнут по прошествии некоторого времени. В очагах поражения скапливается гной – смесь разрушенных тканей, погибших и живых нейтрофилов.

Нарушения функций нейтрофилов могут быть обусловлены снижением их подвижности, нарушениями хемотаксиса, подавлением способности к фагоцитозу микроорганизмов, сопровождающему его «респираторному взрыву» или к внутриклеточному перевариванию микробов (вследствие недостаточности отдельных микробицидных систем). В ряде случаев (например, при ВИЧ-инфекции) срок жизни нейтрофилов укорачивается вследствие их быстрой спонтанной гибели в тканях механизмом апоптоза. Эти функциональные нарушения нейтрофилов (многие из которых наследственно обусловлены) даже при нормальном содержании этих клеток в крови обычно являются причиной рецидивирующих инфекционных поражений организма различной степени тяжести. Одним из таких состояний является дефицит адгезии лейкоцитов (ДАЛ) – наследственное заболевание, обусловленное мутацией гена, кодирующего выработку интегрина нейтрофилов. При этом заболевании нейтрофилы не способны к осуществлению адгезивных взаимодействий, необходимых для выполнения ими различных функций, в частности, для перемещения к очагу повреждения и накопления в нем. По указанной причине клинически это заболевание проявляется рецидивирующими бактериальными и микотическими инфекциями при нарушении образования гноя, несмотря на повышенные (вероятно, компенсаторно) концентрации нейтрофилов в крови (до 100 000 клеток/мкл).

Базофильные гранулоциты. Базофильные гранулоциты (базофилы) – самая малочисленная группа лейкоцитов и гранулоцитов. Они попадают в кровь из красного костного мозга, циркулируют в ней от 6 ч до 1 сут, после чего покидают кровеносное русло и мигрируют в ткани, где находятся от нескольких часов до нескольких суток. Базофилы обладают значительно меньшей подвижностью и более слабой фагоцитарной активностью по сравнению с нейтрофилами. По морфологическим и функциональным свойствам они близки, но не идентичны тучным клеткам (тканевым базофилам), постоянно находящимся в соединительной ткани.

Функции базофильных гранулоцитов в физиологических условиях выяснены не полностью. К ним относятся:

– регуляторная, гомеостатическая. Осуществляется благодаря выделению небольших количеств различных биологически активных веществ, накапливающихся в гранулах или синтезируемых при активации клетки. Эти вещества обладают широким спектром биологических эффектов: влияют на сократимость гладких миоцитов (в сосудах, бронхах, органах пищеварительного тракта и других систем), проницаемость сосудов, свертываемость крови, секрецию желез, обладают хемотаксическим влиянием;

– защитная – путем локальной массивной секреции медиаторов воспаления, хемотаксических факторов эозинофилов и нейтрофилов, а также других веществ, обладающих хемотаксической активностью, обеспечивается вовлечение ряда клеток (в первую очередь, эозинофилов) в защитные реакции организма, направленные против некоторых паразитов.

Содержание базофильных гранулоцитов в крови составляет в норме: относительное 0,5–1,0 % (от общего числа лейкоцитов), абсолютное – 20–80 клеток/мкл. Изменения концентрации базофилов описаны в различных функциональных и патологических состояниях, однако их диагностическое значение неясно.

Базофилия – повышенное содержание базофилов в крови. Отмечена при иммунных реакциях гиперчувствительности, после облучения, при гипотиреозе, а также при некоторых заболеваниях системы крови.

Базопения – сниженное содержание базофилов в крови. Обычно сочетается с эозинопенией; отмечается при инфекциях, воспалительных заболеваниях, опухолях, тиреотоксикозе.

Размеры базофильных гранулоцитов на мазках составляют 9–12 мкм, т. е. примерно соответствуют размерам нейтрофилов или несколько меньше их. Ядра базофильных гранулоцитов – дольчатые (содержат 2–3 сегмента) или S-образные, относительно плотные, но более светлые (с меньшим содержанием гетерохроматина), чем у нейтрофилов и эозинофилов. Они нередко трудно различимы, так как маскируются ярко окрашенными цитоплазматическими гранулами. Цитоплазма базофильных гранулоцитов, как и нейтрофильных, слабооксифильна. Под электронным микроскопом в ней выявляются митохондрии, элементы цитоскелета, сравнительно слабо развитый синтетический аппарат, скопления гликогена, липидные капли диаметром до 1–2 мкм, разнообразные пузырьки, а также гранулы двух типов – специфические и азурофильные. Гранулы, органеллы и часть элементов цитоскелета располагаются во внутренних участках цитоплазмы, наружные содержат преимущественно элементы цитоскелета и образуют немногочисленные короткие выпячивания.

Специфические (базофильные) гранулы – крупные (диаметром 0,5–2,0 мкм), разнообразной, чаще сферической, формы, хорошо видны в световой микроскоп, окрашиваются метахроматически – с изменением оттенка основного красителя вследствие высокого содержания сульфатированных гликозаминогликанов. На электронно-микроскопическом уровне обнаруживается, что эти гранулы окружены мембраной и заполнены мелкозернистым веществом (матриксом). Матрикс отдельных гранул различается своей плотностью, которая варьирует от умеренной до высокой. Это, как предполагают, отражает различия в их зрелости (более зрелые гранулы обладают большей плотностью матрикса). Содержимое некоторых гранул неоднородно (включает плотные частицы, погруженные в более светлый матрикс).

Содержимое базофильных гранул: сульфатированные гликозаминогликаны, связанные с белками (протеогликаны), – гепарин (антикоагулянт) и хондроитин сульфат, гистамин (расширяет сосуды, увеличивает их проницаемость, вызывает хемотаксис эозинофилов), ферменты (протеазы, пероксидаза), хемотаксические факторы эозинофилов и нейтрофилов.

Азурофильные гранулы – сравнительно немногочисленны, представляют собой лизосомы.

Цитофизиология базофильных гранулоцитов. Деятельность базофилов связана с накоплением и выделением (секрецией) биологически активных веществ, которые запасаются в их гранулах. Выделение содержимого гранул базофилов может происходить в виде медленной секреции с постепенным выделением небольших количеств веществ или резкой массивной дегрануляции, приводящей к выраженным изменениям в окружающих тканях. Первый механизм обусловливает участие базофилов в физиологических регуляторных процессах, второй – в аллергических реакциях.

Участие базофилов в физиологических регуляторных процессах изучено недостаточно и его морфологические основы установлены лишь в самые последние годы. Описан ранее неизвестный механизм медленной (продолжающейся сутками) везикулярной секреции посредством мелких перигранулярных пузырьков (везикул), которые осуществляют транспорт веществ из специфических гранул к плазмолемме и, сливаясь с ней, выделяют свое содержимое в межклеточное пространство.

Участие базофилов в аллергических иммунных реакциях. Базофильные гранулоциты (как и сходные с ними тучные клетки) участвуют в иммунных реакциях, связанных с повреждением тканей: реакциях I типа – гиперчувствительности немедленного типа (ГНТ) и, возможно, также в реакциях IV типа – гиперчувствительности замедленного типа (ГЗТ). Роль базофилов наиболее изучена в аллергических реакциях ГНТ – особом типе локальных или генерализованных реакций, развивающихся в течение нескольких минут после повторного взаимодействия антигена с ранее сенсибилизированным организмом. Первичное воздействие антигена (аллергена) стимулирует выработку иммуноглобулинов класса Е (IgE) у генетически предрасположенных людей. Иммуноглобулины класса IgE связываются с многочисленными (30–100 тыс. на клетку) высокоаффинными рецепторами к Fc-участку IgE на плазмолемме базофилов и тучных клеток. Повторное воздействие поливалентного аллергена (одновременно связывающегося с двумя или тремя молекулами IgE в области Fab-участков) вызывает активацию базофилов и тучных клеток с развитием их быстрой (в течение нескольких минут) секреторной реакции – анафилактической дегрануляции. Установлено, что базофилы значительно более чувствительны к воздействию аллергенов, чем тучные клетки.

Дегрануляция активированных базофилов требует присутствия Са2+ и протекает с выделением веществ:

– ранее накопленных в их гранулах (гепарин, гистамин, хемотаксические факторы эозинофилов и нейтрофилов, ферменты);

– вновь синтезируемых при стимуляции (ФАТ, лейкотриены и простагландины). Субстратом для синтеза эйкозаноидов при этом служит арахидоновая кислота, содержащаяся в составе липидных капель.

В ходе дегрануляции базофилов человека основная масса их гранул выделяет свое содержимое путем слияния мембраны каждой гранулы с плазмолеммой; часть гранул выстраивается в цепочки, в которых они сливаются друг с другом, в дальнейшем содержимое такой цепочки выделяется за пределы клетки.

Действие веществ, выделяющихся при дегрануляции базофилов (и тучных клеток), приводит к сокращению гладких мышц, расширению сосудов и повышению их проницаемости, повреждению тканей (например, эпителия бронхов, кишки). При быстром выделении медиаторов большим числом указанных клеток возможно развитие бронхоспазма, кожного зуда, отеков, поноса, падение кровяного давления.

Клинические проявления реакций ГНТ: бронхиальная астма, аллергический ринит, пищевая аллергия, аллергический дерматит (крапивница). Выраженные в различной мере аллергические реакции выявляются у 20 % населения развитых стран. Более генерализованные реакции выброса медиаторов могут привести к анафилактическому шоку (от греч. аnaphylaxia – беззащитность: ana – обратное действие и phylaxis – охранение) и смерти.

Базофилы выделяют медиаторы не только в ответ на стимуляцию, опосредованную IgE, но при воздействии компонентов комплемента, бактериальных продуктов и цитокинов (интерлейкин-1 (ИЛ-1), интерлейкин-3 (ИЛ-3), интерлейкин-8 (ИЛ-8), гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ), ФАТ и др.)

Эозинофильные гранулоциты. Эозинофильные гранулоциты (эозинофилы) содержатся в крови в небольшом количестве, однако легко узнаются на мазках благодаря многочисленным эозинофильным гранулам, заполняющим их цитоплазму. Они образуются в красном костном мозге, откуда попадают в кровь, циркулируя в ней 3–8 ч (по другим данным, 7–12 ч). После этого они покидают кровеносное русло и выселяются в ткани (преимущественно в кожу, слизистые оболочки дыхательного, пищеварительного и полового трактов), где функционируют, по-видимому, в течение нескольких суток (точная продолжительность жизни в тканях не установлена, но она, очевидно, больше, чем у нейтрофилов).

Основная часть эозинофилов находится не в крови, а в периферических тканях: на один эозинофил в крови приходятся 100–300 в тканях. Они усиленно привлекаются в ткани лимфокинами, иммунными комплексами, компонентами комплемента, а также продуктами, выделяемыми паразитами, опухолевыми клетками, тучными клетками и базофилами (в частности, хемотаксическим фактором эозинофилов и гистамином). Эозинофилы могут проникать в секреты и выявляются в носовой и бронхиальной слизи (при аллергических состояниях – в очень больших количествах). Они обнаруживаются также в лимфатических узлах и лимфе грудного протока (что может указывать на их способность к рециркуляции). Эозинофилы отличаются от нейтрофилов несколько меньшей подвижностью и более слабой фагоцитарной активностью, вместе с тем они являются ведущими клеточными элементами в борьбе с паразитами (гельминтами и простейшими). В тканях эозинофилы подвергаются апоптозу, а их фрагменты фагоцитируются макрофагами.

Функции эозинофильных гранулоцитов:

– защитная – поглощение и уничтожение бактерий фагоцитарным механизмом, а также уничтожение микробов и, в особенности, паразитов (гельминтов и простейших) нефагоцитарным механизмом. Осуществляется во взаимодействии с базофилами, тучными клетками, макрофагами, лимфоцитами, IgE и системой комплемента;

– иммунорегуляторная – ограничение области иммунной (в частности, аллергической) реакции, создание препятствий в распространении из нее антигенов и медиаторов воспаления, нейтрализация метаболитов, участвующих в уничтожении антигенов; выработка ряда медиаторов воспаления и цитокинов.

Содержание эозинофильных гранулоцитов в крови в норме равно: относительное 2,0–5,0 % (от общего числа лейкоцитов), абсолютное – 100–450 клеток/мкл. В физиологических условиях отмечен суточный ритм концентрации эозинофилов в крови с максимумом в ночные и ранние утренние часы и минимумом – в вечерние (что связывают с колебаниями секреции гормонов коры надпочечников – глюкокортикоидов).

Эозинофилия – повышенное содержание эозинофилов в крови. Наиболее выражена при аллергических состояниях (бронхиальной астме, аллергическом рините, аллергическом дерматите, пищевой аллергии), когда содержание эозинофилов увеличивается в несколько раз. Она характерна также для паразитарных заболеваний (при которых ее добавочному усилению способствует свойственный им аллергический компонент), достигая у отдельных больных 90 % от общего числа лейкоцитов, физиологическая эозинофилия свойственна первым трем месяцам жизни.

Эозинопения – сниженное содержание эозинофилов в крови. Отмечается при острых инфекциях, введении глюкокортикоидов, АКТГ.

Размеры эозинофильных гранулоцитов на мазках больше, чем нейтрофильных и составляют 12–17 мкм. Форма эозинофилов на мазках и в тканях округлая, иногда с небольшими выпячиваниями (псевдоподиями). В мокроте и носовой слизи встречаются эозинофилы в виде отростчатых «клеток-медуз». Плазмолемма содержит низкоаффинные рецепторы к IgG, компонентам комплемента, высокоаффинные рецепторы к IgE (последние отсутствуют у нейтрофилов), цитокинам, гормонам, а также адгезивные молекулы. Ядра эозинофильных гранулоцитов обычно сегментированные (состоят из двух, реже трех сегментов), светлее (содержат меньше гетерохроматина), чем ядра нейтрофилов. Изредка могут встречаться палочкоядерные и юные формы, отдельный подсчет которых обычно не производится. Цитоплазма эозинофильных гранулоцитов содержит умеренно развитые органеллы, многочисленные пузырьки, элементы цитоскелета, включения гликогена, липидные капли и гранулы двух основных типов. Предполагается также наличие особого третьего типа мелких гранул (микрогранул).

Специфические (эозинофильные) гранулы – наиболее характерный признак эозинофильных гранулоцитов; содержатся в количестве около 200 гранул на клетку (составляя более 95 % всех гранул). Они окружены мембраной, имеют овальную или полигональную форму, крупные размеры (0,5–1,5 × 0,2–1,0 мкм), различную (чаще всего – среднюю) электронную плотность. Зрелые гранулы в большинстве содержат плотные кристаллоидные структуры, расположенные по их длине и погруженные в менее электронно-плотный мелкозернистый матрикс. Эти кристаллоиды имеют белковую природу и характеризуются кубической решеткой с периодом около 4 нм. Так как в эозинофильных гранулах находится ряд гидролитических ферментов, их рассматривают как видоизмененные лизосомы.

Содержимое специфических гранул:

– главный основной белок МВР (от англ. Major Basic Protein; название отражает высокое содержание этого белка, составляющего 50 % общего белка специфических гранул, и его основную реакцию) образует их кристаллоид и обусловливает их эозинофилию. Содержит высокие концентрации аргинина, обладает мощным антшельминтным, антипротозойным и антибактериальным эффектами. Токсичен для клеток других тканей (в частности, для эпителия слизистых оболочек воздухоносных путей и пищеварительного тракта). Вызывает гиперреактивность гладких мышц в бронхах. Индуцирует дегрануляцию базофилов, тучных клеток и тромбоцитов, активирует нейтрофилы. Инактивирует гепарин, гистамин, простагландины;

– другие белки специфических гранул располагаются в их матриксе: эозинофильный катионный белок токсичен для бактерий, гельминтов, простейших и клеток организма хозяина; эозинофильная пероксидаза отличается от миелопероксидазы нейтрофильных гранулоцитов, обладает широким спектром антимикробной и антипаразитарной активности в присутствии перикиси водорода; эозинофильный нейротоксин обладает противопаразитарным действием, токсичен для клеток нервной системы; гистаминаза разрушает гистамин; продукты расщепления гистамина оказывают на эозинофилы хемотаксическое действие.

Азурофильные (неспецифические, первичные) гранулы – немногочисленные (менее 5 % всех гранул), крупные и средних размеров (0,1–0,5 мкм), округлой формы, с плотным содержимым. Представляют собой лизосомы и содержат кислую фосфатазу, арилсульфатазу (инактивирует лейкотриены и присутствует в очень большом количестве) и другие ферменты. Содержание этих гранул снижается по мере созревания клетки.

Цитофизиология эозинофильных гранулоцитов. Участие эозинофилов в защите от бактерий, грибов, простейших и гельминтов. Эозинофилы, как и нейтрофилы, способны поглощать и подвергать внутриклеточному уничтожению бактериальные клетки и споры патогенных грибов. Активность фагоцитарного уничтожения микробов у эозинофилов при этом обычно ниже, чем у нейтрофилов. Вместе с тем эозинофильные гранулоциты являются главными клеточными элементами, обеспечивающими высокоэффективную защиту организма от простейших и гельминтов. Они способны уничтожать паразитов непосредственно в кровеносном русле. Выселяясь из кровеносных сосудов, они направляются в слизистые оболочки, где обеспечивают уничтожение паразитов, внедрившихся в ткани и находящихся в просвете органа (обычно кишки). Они окружают паразитов, вступают с ними в контакт, и, активируясь, осуществляют дегрануляцию – выбрасывают токсическое содержимое своих гранул, обладающее высокой противопаразитарной активностью и одновременно вызывающее приток других эффекторных клеток. Цитотоксический эффект в противопаразитарном иммунитете является антителозависимым: активации и прикреплению эозинофила к поверхности паразита способствует наличие на его плазмолемме рецепторов к IgE, IgG и компонентам комплемента.

Иммунорегуляторная функция эозинофильных гранулоцитов обеспечивается в результате их поступления в зону иммунных реакций и ограничения ее распространенности. Они привлекаются в эту зону продуктами, выделяющимися в ходе иммунных реакций, которые они подвергают инактивации, одновременно угнетая деятельность продуцирующих их клеток. Эта функция осуществляется благодаря способности эозинофилов нейтрализовывать лейкотриены, захватывать иммунные комплексы, связывать и разрушать гистамин и угнетать дегрануляцию тучных клеток и базофилов. Фосфолипаза эозинофилов расщепляет ФАТ.

Вместе с тем активированные эозинофилы сами вырабатывают ФАТ (являясь его главным источником в организме) и лейкотриены, которые вызывают увеличение проницаемости сосудов и сокращение гладких мышц. При дегрануляпии эозинофилов выделяются продукты, токсические для тканей человека. Поэтому, наряду с защитой тканей от действия продуктов иммунных реакций, эозинофилы способствуют и их повреждению. Так, установлено, что они являются важным звеном в патогенезе бронхиальной астмы, в частности, играют существенную роль в повреждении бронхиального дерева и респираторного отдела легких, а также в поддержании бронхоспастического синдрома. Помимо участия в регуляции реакций острого и хронического воспаления, эозинофилы, вырабатывая ряд цитокинов (ГМ-КСФ, ИЛ-1, ИЛ-5, ФНО-α), могут также играть определенную роль в регуляции различных процессов, в частности, роста опухолей и заживления ран.

Моноциты. Моноциты – самые крупные из лейкоцитов; относятся к агранулоцитам. Они образуются в красном костном мозге, откуда попадают в кровь, в которой находятся от 8 ч до 3–4 сут и, по-видимому, дозревают. Общее число моноцитов в крови у взрослого составляет 1,7–2,0 × 109 клеток, из которых 3/4 находятся в пристеночном пуле. Из кровеносного русла моноциты перемещаются в ткани со скоростью 4–10 × 108 клеток/сут. Внесосудистый пул моноцитов почти в 20 раз превышает их количество в циркуляции. В тканях под влиянием микроокружения и стимулирующих факторов они превращаются в различные виды макрофагов. Моноциты в совокупности с макрофагами образуют единую моноцитарно-макрофагальную систему или систему мононуклеарных фагоцитов (последнее название произошло от традиционного подразделения всех фагоцитов на полиморфноядерные (сегментоядерные), т. е. нейтрофилы, и мононуклеарные (с несегментированным ядром), т. е. моноциты.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации