Текст книги "Руководство по спортивной медицине"
Автор книги: Коллектив Авторов
Жанр: Медицина, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 35 страниц) [доступный отрывок для чтения: 7 страниц]
Ожидание предстоящей деятельности меняет состояние организма. Изменения различных физиологических функций обнаруживаются перед работой в условиях лабораторного опыта, перед началом трудового дня и перед физическими упражнениями. Это время называют периодом предстартового или предрабочего состояния.
В предстартовом состоянии учащается и углубляется дыхание, повышается газообмен, учащаются и усиливаются сокращения сердца, повышается артериальное давление (АД). Происходит ряд изменений в процессах обмена веществ. Изменяется состав крови, повышается количество в ней сахара.
Предстартовые изменения подобны тем, что наблюдаются при мышечной работе. Можно сказать, что организм переходит на рабочий уровень еще до начала деятельности, и это обычно способствует успешному выполнению работы.
Интенсивность предстартовых изменений бывает различна в зависимости от характера и условий предстоящей деятельности, а также от ее значения для исполнителя. Например, у некоторых спортсменов непосредственно перед началом соревнования ЧСС доходит в покое до 130 – 140 уд/мин. Легочная вентиляция увеличивается до 15 – 30 л/мин, потребление кислорода – до 400 – 600 мл/мин, т. е. в 2 – 2,5 раза больше по сравнению с уровнем основного обмена. Эти изменения частично можно объяснить сильными эмоциональными переживаниями. Следует отметить, что предстартовое состояние наблюдается в выраженной форме и перед такими видами работ, где мышечная деятельность очень незначительна, например при соревнованиях по шахматам, пулевой стрельбе. Предстартовые изменения выражены в этих случаях меньше, чем перед бегом, но обнаруживаются совершенно четко. Аналогичные изменения наблюдались у студентов перед экзаменом, у актеров перед спектаклем. Таким образом, перед всякой деятельностью в организме возникают предстартовые или предрабочие изменения, подобные физиологическим сдвигам, наблюдаемым при мышечной работе.
Механизмы предстартовых состояний. С физиологической точки зрения, наблюдаемые перед работой изменения являются ответом организма на сигналы о предстоящей деятельности и полнее могут быть объяснены закономерностями рефлекторной регуляции функций. Считают, что «опережающее отражение действительности» является весьма важной особенностью рефлекторной деятельности. Существенное значение придается активному характеру программирования человеком предстоящей деятельности. Так, например, учащение и углубление дыхания только при команде «приготовиться» объясняют иррадиацией возбуждения с двигательной зоны коры на другие нервные центры. Увеличение сахара в крови обусловлено выделением адреналина. С физиологической точки зрения, основные механизмы, определяющие функциональные изменения перед любой деятельностью, – это возбуждение нервной системы и поступление в кровь гормонов, прежде всего гормонов надпочечников.
Значительную роль в механизмах предрабочих изменений играют условнорефлекторные реакции. В условиях труда и физических упражнений различные компоненты окружающей обстановки (время и место предстоящей работы и пр.) являются условнорефлекторными раздражителями, сигнализирующими о предстоящей деятельности. Чем более значимой представляется предстоящая деятельность человеку, тем сильнее, при прочих равных условиях, обнаруживается у него предстартовое возбуждение. Значение предстоящей деятельности обусловлено подкрепляющими ее факторами, т. е. последствиями подобной деятельности, возникавшими в прошлом опыте данного лица и оставившими после себя следовые процессы в нервной системе. В связи с действием команд предстартовые реакции могут возникать и в ранее незнакомой обстановке, перед первым выполнением какой-либо новой работы. Человек реагирует в таких случаях, опираясь на свой прежний опыт, распространяя его на новые условия. В процессе тренировки предстартовые реакции претерпевают изменения. Это выражается в усилении и упрочении предстартовых рефлексов. Изменения, возникающие в организме тренированных спортсменов, оказываются более четко приуроченными к началу работы, чем у новичков.
Особый интерес представляют те эмоциональные реакции человека, при которых не выполняется никакой внешней деятельности. Биологически эмоции всегда связаны с осуществлением достаточно интенсивной мышечной деятельности, но по условиям жизни человека она может быть задержана теми или иными причинами. В таких случаях не наступает разрядки эмоционального напряжения, которую составляют мышечные движения. Если мышечный компонент невелик, а возникшее эмоциональное возбуждение длительно не прекращается, то вегетативные проявления могут быть очень значительными. Именно в отсутствии необходимой разрядки заключается одно из важных отрицательных последствий недостатка двигательной активности для человека. В трудных и стрессовых ситуациях наступает существенное снижение уровня выполняемой работы, что сказывается, прежде всего, на ее результатах.
Общая мобилизация организма является необходимой реакцией для преодоления трудностей. Однако часто такая мобилизация является неестественной по сравнению с нормальным протеканием рабочего процесса. В таких случаях она приводит к отрицательным результатам. Человек при этом кажется мечущимся, «загнанным», работающим через силу, не видящим ничего происходящего. Общим явлением, наблюдаемым у человека, находящегося в трудной ситуации, является понижение точности движений и потеря ориентации. Нарушается процесс восприятия информации, ее отбор и преобразование начинают происходить на другой основе.
Процесс врабатывания. Сдвиги работоспособности, происходящие под влиянием самой работы в начальном ее периоде, связаны с процессом врабатывания. При выполнении каждой работы у человека наблюдается постепенное нарастание работоспособности, последовательное улучшение продуктивности деятельности. Этот начальный период работы и называют периодом врабатывания. Он является общебиологической закономерностью. Период врабатывания двигательной системы может исчисляться секундами, при циклических физических упражнениях (гребля, бег) он достигает 3 – 5 мин. Этот период у вегетативных систем протекает медленнее, чем у двигательного аппарата.
Отставание вегетативных функций в начальном периоде мышечной работы обусловлено их большей инертностью и, наряду с этим, динамикой нервных процессов в период врабатывания. В начальный момент врабатывания удлиняется латентный период и уменьшается сила условных и безусловных рефлексов. Подобное замедление и ослабевание рефлексов в начальном периоде мышечной работы является, вероятно, результатом сильного возбуждения двигательных центров коры головного мозга, которые по принципу доминанты тормозят другие реакции организма. Такая динамика межцентральных отношений в нервной системе отражает состояние начального усилия в начале мышечной работы. Начальным усилием можно назвать состояние сильного возбуждения корковых двигательных центров, которое обеспечивает преодоление инерции покоя, а также способствует формированию стереотипа рабочих движений. Сопряженное торможение ряда нервных центров проявляется также в ослаблении и даже полной задержке дыхания в начале трудной или непривычной работы. Состояние начального усилия четко проявляется только в самый краткий период работы (в первые 30 – 90 с). Степень выраженности и длительности начального усилия больше при трудной и непривычной работе, и наоборот, проявление начального усилия значительно уменьшается по мере привыкания к данной конкретной деятельности. В это время работоспособность еще не достигает обычного уровня и относительно велико число замедленных, нескоординированных и даже ошибочных действий, которые не только снижают эффективность деятельности, но иногда приводят и к травмам. Если организм спортсмена не сумеет достигнуть слаженного функционирования двигательной и вегетативной систем в процессе врабатывания, то нарушение нервных процессов при малой обеспеченности кислородом может затруднить или даже прервать выполнение физических упражнений. Это состояние нежелательного функционирования или наступившей дискоординации функций при выполнении интенсивной и длительной мышечной работы получило название мертвой точки.
Таким образом, процесс врабатывания имеет очень большое значение для спортивной деятельности человека. Учет закономерностей врабатывания находит двоякое применение на практике. Во-первых, необходимо постепенное вхождение в работу. Во-вторых, можно ускорять ход врабатывания. Ускорения можно достичь путем применения предварительных кратковременных упражнений, характер которых аналогичен предстоящей мышечной деятельности. Это способствует переходу организма на рабочий уровень деятельности. При этом меняется функциональное состояние нервной системы: повышается возбудимость мышц, сенсорных областей коры, укорачивается время двигательной реакции, становится менее выраженным начальное усилие, улучшается усвоение ритма раздражителей. Под влиянием разминки лучше протекают процессы обмена веществ, повышается КПД организма и, следовательно, работоспособность. Но эффект разминки как фактор, мобилизующий активность ЦНС, может быть оптимальным лишь в том случае, если он включает движения, которые по структуре, темпу и ритму подобны предстоящей деятельности.
Поэтому в настоящее время в спортивной практике разминка, как правило, состоит из двух частей: общей и специальной. Первая решает задачи общего повышения функций организма. Вторая часть предварительных упражнений, использующая идентичные предстоящей деятельности движения, специально направлена на создание оптимальной возбудимости именно тех центральных и периферических звеньев двигательного аппарата, которые определяют эффективность работы.
Состояние устойчивой работоспособности. После окончания периода врабатывания работоспособность в течение некоторого времени остается на постоянном уровне. Это состояние устойчивой работоспособности. В этот период уже завершены процессы формирования стереотипов рабочих движений и подготовки вегетативных функций, обеспечивающих потребности организма в период его активной деятельности. Вся эта достигнутая согласованность на более высоком уровне создает состояние устойчивой работоспособности. Внешне оно проявляется в эффективности двигательной активности, например в оптимальной скорости, силе и точности движений, а также в более или менее устойчивом уровне вегетативных функций – величине минутного объема крови, выбрасываемой сердцем, дыхании и потреблении кислорода, уровне терморегуляции и т. д. Большое значение в приспособлении вегетативных систем к мышечной работе и поддержании их функций в период устойчивой работоспособности имеет поступление в кровь метаболитов и гормонов, обеспечивающих интенсификацию ряда вегетативных функций через механизм гуморальной регуляции. Однако пусковыми, более ранними механизмами будут нервные.
В состоянии устойчивой работоспособности при продолжающейся мышечной работе наблюдается усиление рефлекторных реакций. Это отражается в повышении возбудимости ЦНС, которое может быть обозначено как состояние рабочего возбуждения в период мышечной деятельности и обусловлено тем, что сильное изолированное возбуждение корковых двигательных центров, наблюдавшееся в период начального усилия, после окончания периода врабатывания ослабевает и происходит дальнейшее распространение процесса возбуждения. Следует отметить, что рабочее возбуждение ЦНС в период устойчивой работоспособности обусловлено не только распространением возбуждения со стороны двигательных центров, но и рефлекторной стимуляцией со стороны работающих мышц. Оказывает влияние также усиление обменных процессов, что определяет увеличение в крови метаболитов и гормонов.
Анализируя физиологические механизмы возникновения и удержания состояния устойчивой работоспособности, необходимо подчеркнуть ведущую роль высших корковых центров в формировании не только двигательных, но и вегетативных функций организма при мышечной работе.
Изменения химизма внутренней среды благодаря хорошо налаженным и устойчивым механизмам гуморальной регуляции мобилизуют их в целях поддержания постоянства внутренней среды организма, нарушаемого в период мышечной работы (даже в тех случаях, когда организм достигает истинного устойчивого состояния).
Снижение работоспособности после продолжительной или интенсивной работы связано с физиологическими процессами утомления. Эти процессы будут подробно рассмотрены в главе 9.
ГЛАВА 2.
СТРУКТУРНАЯ АДАПТАЦИЯ К ФИЗИЧЕСКИМ НАГРУЗКАМ
2.1. Системный структурный след как основа адаптации. Взаимосвязь функции и генетического аппаратаФизическая нагрузка – самый естественный и древний фактор, воздействующий на человека. Этот фактор, обусловленный природой земной гравитации, во все времена сопровождал человека, и двигательная мышечная активность всегда была важным звеном приспособления человека к окружающему миру.
Проблема адаптации к нагрузкам сводится к вопросу о механизмах, обеспечивающих преимущества тренированному организму. Сама адаптация характеризуется двумя основными чертами.
1. Тренированный организм может выполнять мышечную работу такой продолжительности или интенсивности, которая не под силу нетренированному. Так, нетренированный человек не в состоянии пробежать марафонскую дистанцию или поднять штангу весом, значительно превышающим его собственный. При выполнении стандартной работы, доступной нетренированному человеку, тренированный может совершать ее более длительное время без утомления или выполнить с такой скоростью, на которую не способен нетренированный человек.
2. Тренированный организм характеризуется более экономным функционированием физиологических систем в покое и при умеренных нагрузках, а также способностью достигать при максимальных нагрузках такого уровня функционирования этих систем, который недостижим для нетренированного человека. Так, в условии покоя у тренированных людей частота сердцебиений может составлять 30 – 50 уд/мин («брадикардия атлетов»), у них уменьшена частота дыхания до 8 – 15 дых/мин, снижены легочная вентиляция и минутный объем дыхания на 10 – 12 %, также в покое уменьшено потребление кислорода миокардом.
Выполнение стандартной мышечной работы сопровождается у тренированного организма существенно меньшим повышением уровня лактата в крови, что способствует предупреждению утомления и повышению работоспособности. Реакция же симпатоадреналовой системы и повышение уровня катехоламинов в крови в ответ на нагрузки значительно меньше. Таким образом, при выполнении одинаковой по интенсивности работы тренированный организм работает более экономно, с меньшей мобилизацией физиологических функций.
При предельно напряженной работе наблюдается обратное: в тренированном организме происходит бüльшая мобилизация сердечно-сосудистой, дыхательной систем по сравнению с нетренированным. Так, при максимальной работе потребление кислорода у тренированного человека может возрастать до 5 – 6 л/мин, а у нетренированного не превышает 3 л/мин; минутный объем сердца повышается до 45 – 47 л/мин, ударный объем – до 200 мл, тогда как у нетренированного максимальное значение этих показателей 20 – 25 л/мин и 140 – 145 мл соответственно; легочная вентиляция может достигать 150 л/мин, а частота дыхания – 60 дых/мин. В ответ на предельные нагрузки у тренированных людей наблюдается более мощная реакция симпатоадреналовой системы, чем у нетренированных.
Рассмотренные различия наглядно демонстрируют, что при малых нагрузках, когда выполняется работа, одинаково легкая для тренированного и нетренированного человека, различий в физиологических сдвигах почти нет. При более интенсивной работе у нетренированного происходят бьльшие физиологические сдвиги, чем у тренированного, с ростом нагрузки различия увеличиваются. Тренированный может совершать работу, по интенсивности значительно превышающую ту, которая для нетренированного является предельной. При этом соответственно физиологические сдвиги у него продолжают расти. Наконец, достигается предельная интенсивность работы и для тренированного, в этот момент регистрируются его максимальные функциональные сдвиги, которые лежат значительно выше предельных сдвигов у нетренированного.
Для понимания механизма адаптации к физическим нагрузкам с позиций молекулярной физиологии существенно, что в процессе развития адаптации к любому фактору среды, и, в частности, к физическим нагрузкам, определяются два основных этапа: срочная, но несовершенная адаптация и долговременная устойчивая адаптация.
Во всех случаях срочная адаптация реализуется мгновенно, но реакция организма протекает на пределе, с утратой резервов, низким результатом и сопровождается выраженной стресс-реакцией. Устойчивая долговременная адаптация характеризуется более совершенной реакцией организма, отсутствием выраженной стресс-реакции и возможностью нормальной жизнедеятельности.
На этапе срочной адаптации основная двигательная реакция организма сопровождается ярко выраженной стресс-реакцией с избыточным высвобождением в кровь катехоламинов, кортикостероидов и т. д., максимальным увеличением легочной вентиляции, минутного объема сердца, уровня лактата и аммиака в крови, выраженными повреждениями клеточных мембран, проявляющимися ферментемией. В результате скорость реакции организма снижается, и он оказывается неспособным осуществлять длительную мышечную работу. Развивающаяся в дальнейшем долговременная адаптация характеризуется тем, что в ответ на ту же самую нагрузку не возникает резкой стресс-реакции, и мышечная работа сопровождается умеренными значениями тех же показателей. В результате становится возможным длительное стабильное выполнение работы.
Какой процесс, протекающий в организме, «расширяет» при развитии тренированности звенья, лимитирующие на этапе срочной адаптации интенсивность и длительность работы? Что лежит в основе перехода срочной несовершенной адаптации в долговременную и устойчивую?
В ответ на нагрузку, создаваемую факторами среды, в клетках органов и тканей, на которые непосредственно падает нагрузка, закономерно активируется синтез нуклеиновых кислот и белков, который приводит к избирательному росту клеточных структур, лимитирующих физиологическую мощность системы, ответственной за реализацию адаптации к данному фактору среды. В результате функциональные возможности системы возрастают, срочная адаптация переходит в долговременную.
Такое развитие процессов реализуетсяивходеадаптации к физическим нагрузкам. При первоначальном действии любого сигнала, вызывающего интенсивную и длительную двигательную реакцию, в организме формируется обеспечивающая ее функциональная система. При этом в ответ на действие сигнала возникают возбуждение соответствующих центров и активация функции эндокринных желез, приводящие к мобилизации скелетной мускулатуры, а также органов дыхательной и сердечно-сосудистой систем, обеспечивающих энергетический метаболизм работающих мышц. Таким образом, функциональная система, ответственная за адаптацию к физическим нагрузкам, включает в себя афферентное звено – рецепторы, центральное регуляторное звено – центры нейрогормональной регуляции на разных уровнях ЦНС и эффекторное звено – скелетные мышцы, органы дыхания, кровообращения.
Основа адаптации. Увеличение функциональных возможностей систем органов закономерно влечет за собой активацию синтеза нуклеиновых кислот и белков в их клетках. Это приводит к формированию структурных изменений, увеличивающих потенциал систем, ответственных за адаптацию, и составляет основу перехода от срочной адаптации к долговременной. В качестве первого сдвига увеличивается скорость транскрипции рибонуклеиновой кислоты (РНК) на структурных генах дезоксирибонуклеиновой кислоты (ДНК) в ядрах клеток. Увеличение количества информационной РНК приводит к росту программированных этой РНК рибосом и полисом, в которых интенсивно протекает синтез клеточных белков. В результате масса структур возрастает, увеличиваются функциональные возможности клетки – сдвиг, составляющий основу долговременной адаптации.
Активирующее влияние увеличенной функции, опосредованное через механизм внутриклеточной регуляции, адресовано генетическому аппарату. Механизм, через который функция регулирует количественный параметр активности генетического аппарата – скорость транскрипции, обозначается как взаимосвязь между функцией и генетическим аппаратом клетки. Эта взаимосвязь двусторонняя. Прямая связь состоит в том, что генетический аппарат (гены, расположенные в хромосомах ядра) посредством системы РНК обеспечивает синтез белка, т. е. помогает создавать структуры, которые, в свою очередь, влияют на функцию. Обратная связь заключается в том, что интенсивность функционирования структур (количество функции, приходящееся на единицу массы органа) управляет активностью генетического аппарата.
Важная черта гиперфункции органа (гипертрофии сердца при сужении аорты, почки или легкого после удаления парного органа, доли печени после резекции другой доли) состоит в том, что активация синтеза нуклеиновых кислот и белка, возникающая в ближайшие часы и сутки после начала гиперфункции, постепенно прекращается после развития гипертрофии и увеличения массы органа. В начале процесса гиперфункция осуществляется не гипертрофированным органом и увеличение количества функции на единицу массы клеточных структур вызывает активацию генетического аппарата дифференцированных клеток. После полного развития гипертрофии органа его функция распределяется в увеличенной массе клеточных структур, и в результате объем функции, осуществляемой единицей массы структур, возвращается к нормальному уровню. Вслед за этим активация генетического аппарата прекращается, синтез нуклеиновых кислот и белков возвращается к исходному уровню.
Если устранить гиперфункцию органа, который уже подвергся гипертрофии, то количество функции, выполняемое 1 г ткани, станет ненормально низким. В результате синтез белка в дифференцированных клетках упадет и масса органа начнет уменьшаться. Из-за уменьшения органа количество функции на единицу массы постепенно возрастет, и после того как оно станет нормальным, торможение синтеза белка в клетках органа прекратится – масса его больше не уменьшится.
Эти данные дали основание для представления, что в дифференцированных клетках и образованных ими органах млекопитающих количество функции, выполняемой единицей массы органа (интенсивность функционирования структур – ИФС), играет важную роль в регуляции активности генетического аппарата клетки. Увеличение ИФС соответствует положению, когда функции «тесно» в структуре. Это вызывает активацию синтеза белка и увеличение массы клеточных структур. Снижение данного параметра соответствует ситуации, когда функции слишком «просторно» в структуре, в результате чего снижается интенсивность синтеза с последующим устранением избытка структуры. В обоих случаях ИФС возвращается к некоторой оптимальной величине, свойственной здоровому организму.
Таким образом, внутриклеточный механизм, осуществляющий двустороннюю взаимосвязь между физиологической функцией и генетическим аппаратом дифференцированной клетки, обеспечивает положение, при котором ИФС является одновременно детерминантом активности генетического аппарата и физиологической константой, поддерживаемой на постоянном уровне благодаря своевременным изменениям активности этого аппарата.
Применительно к условиям здорового организма эта закономерность находит свое подтверждение. Исследования показали, что сердечная мышца, непрерывно сокращающаяся в высоком ритме, обладает наибольшей интенсивностью синтеза и наибольшим содержанием РНК, дыхательные мышцы, сокращающиеся в более редком ритме, имеют меньшую концентрацию РНК и меньшую интенсивность синтеза белка. Наконец, скелетные мышцы, сокращающиеся периодически или эпизодически, обладают наименьшей интенсивностью синтеза белка и наименьшим содержанием РНК, несмотря на то что развиваемое ими напряжение значительно больше, чем в миокарде.
Концентрация РНК, соотношение белка и РНК, интенсивность синтеза белка в различных мышцах находятся в прямой зависимости от функции этих мышц; например, в жевательной мышце кролика и диафрагме крысы все эти показатели примерно вдвое выше, чем в икроножной мышце тех же животных. Это зависит от того, что длительность среднесуточного периода активности у жевательной и диафрагмальной мышц значительно больше, чем у икроножной мышцы.
Важным обстоятельством является то, что ИФС как фактор, определяющий активность генетического аппарата, должна измеряться не максимально достижимым уровнем функции (например, не максимальным напряжением мышцы), а средним количеством функции, осуществляемой единицей массы клетки за сутки. При равной длительности среднесуточной активности органов среднесуточная ИФС будет выше у органа, который функционирует на более высоком уровне.
В здоровом организме напряжение, развиваемое миокардом правого желудочка, меньше напряжения левого, а длительность функционирования желудочков в течение суток одинакова. Соответственно, содержание нуклеиновых кислот и интенсивность синтеза белка в миокарде правого желудочка также меньше. Различная интенсивность функционирования структур в разных тканях в процессе онтогенеза влияет на интенсивность синтеза РНК в структурных генах ДНК, и через РНК – на интенсивность синтеза белка. Вместе с тем, она действует более глубоко – определяет количество матриц ДНК в единице массы ткани, т. е. суммарную мощность генетического аппарата клеток, образующих ткань, или количество генов на единицу массы ткани. Это влияние проявляется в том, что количество генов на единицу массы изменяется в различных типах мышечной ткани пропорционально ИФС. Количество генов является одним из факторов, определяющих интенсивность синтеза РНК.
ИФС, складывающаяся в процессе онтогенеза у молодых животных, клетки которых сохранили способность к синтезу ДНК и делению, может определять количество генов на единицу массы ткани и опосредованно – интенсивность синтеза РНК и белка, т. е. совершенство структурного обеспечения функции клеток. Таким образом, взаимосвязь между генетическим аппаратом клетки и функцией (которую мы будем обозначать как взаимосвязь Г ↔ Ф) является постоянно действующим механизмом внутриклеточной регуляции, реализующимся в клетках органов. На этапе срочной адаптации – при гиперфункции системы, специфически ответственной за адаптацию – реализация Г ↔ Ф закономерно обеспечивает активацию синтеза нуклеиновых кислот и белков во всех клетках и органах данной функциональной системы. В результате происходит накопление определенных структур – реализуется системный структурный след.
При адаптации к физическим нагрузкам в нейронах моторных центров, надпочечниках, скелетных миоцитах, кардиомиоцитах закономерно возникает активация синтеза нуклеиновых кислот и белков, развиваются выраженные структурные изменения. Эти изменения обеспечивают избирательное увеличение массы и мощности структур, ответственных за управление, ионный транспорт и энергообеспечение.
Умеренная гипертрофия сердца сочетается при адаптации к физическим нагрузкам с повышением активности аденилциклазной системы и увеличением количества адренергических волокон на единицу массы миокарда. В результате адренореактивность сердца и возможность его срочной мобилизации увеличиваются. Одновременно в головках миозина наблюдается увеличение количества Н-цепей, являющихся носителями АТФазной активности.Онавозрастает, иврезультатеувеличиваютсяскорость и амплитуда сокращения сердечной мышцы. Далее нарастает мощность кальциевого насоса СПР и как следствие – скорость и глубина диастолического расслабления сердца. Параллельно в миокарде отмечается увеличение количества коронарных капилляров, повышение концентрации миоглобина и активности ферментов, ответственных за транспорт субстратов к митохондриям, возрастание массы последних. Увеличение мощности системы энергообеспечения закономерно влечет за собой повышение резистентности сердца к утомлению и гипоксемии.
Избирательное увеличение мощности структур, ответственных за управление, ионный транспорт и энергообеспечение, не является оригинальной принадлежностью сердца, оно закономерно реализуется во всех органах, ответственных за адаптацию. В процессе адаптационной реакции органы образуют единую функциональную систему, а развивающиеся в них структурные изменения представляют собой системный структурный след, который составляет основу адаптации.
Системный структурный след в нервной регуляции проявляется в гипертрофии нейронов моторных центров, повышении в них активности дыхательных ферментов; на уровне эндокринной регуляции – в гипертрофии коркового и мозгового вещества надпочечников; на уровне регуляции рабочих органов – в гипертрофии скелетных мышц и увеличении в них количества митохондрий. Последний сдвиг имеет исключительное значение, так как в сочетании с увеличением мощности систем кровообращения и внешнего дыхания он обеспечивает увеличение аэробного потенциала организма, необходимого для интенсивного функционирования аппарата движения. В результате увеличения количества митохондрий рост аэробной мощности организма сочетается с возрастанием способности мышц утилизировать пируват, в повышенных количествах образующийся при нагрузках вследствие активации гликолиза. Это предупреждает повышение концентрации лактата в крови адаптированного организма и тормозит использование жиров. При развитой адаптации увеличение использования пирувата в митохондриях предотвращает увеличение концентрации лактата в крови, обеспечивает мобилизацию и использование в митохондриях жирных кислот и в итоге повышает максимальную интенсивность и длительность работы.
Следовательно, разветвленный структурный след «расширяет» звено, лимитирующее работоспособность организма, и таким образом составляет основу перехода срочной, но ненадежной адаптации в долговременную.
Аналогичным образом происходят формирование системного структурного следа и переход срочной адаптации в долговременную при длительном действии на организм совместимой с жизнью высотной гипоксии. Адаптация к этому фактору характеризуется тем, что первоначальная гиперфункция и последующая активация синтеза нуклеиновых кислот и белков охватывают одновременно многие системы организма и образующийся системный структурный след оказывается более разветвленным, чем при адаптации к другим факторам. Действительно, вслед за гипервентиляцией развиваются активация синтеза нуклеиновых кислот и белков и последующая гипертрофия нейронов дыхательного центра, дыхательной мускулатуры и самих легких, в которых увеличивается количество альвеол. В результате возрастает мощность аппарата внешнего дыхания, дыхательная поверхность легких и коэффициент утилизации кислорода – увеличивается экономичность функции дыхания. В системе кроветворения активация синтеза нуклеиновых кислот и белков в костном мозге становится причиной увеличенного образования эритроцитов и полицитемии, что обеспечивает рост кислородной емкости крови. Наконец, активация синтеза нуклеиновых кислот и белков в правых и, в меньшей мере, левых отделах сердца обеспечивает развитие комплекса изменений, сходных с теми, которые возникают при адаптации к физическим нагрузкам. В результате функциональные возможности сердца, и особенно его резистентность к гипоксемии, возрастают.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?