Электронная библиотека » Коллектив Авторов » » онлайн чтение - страница 9


  • Текст добавлен: 10 августа 2015, 18:00


Автор книги: Коллектив Авторов


Жанр: Культурология, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 9 (всего у книги 26 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +

В. Б. Дорохов, Т. В. Круглова, Т. А. Платонова. Проветривание, ограниченный подогрев, консервация – комплекс мер, обеспечивающий сохранность церковного здания при музейном использовании

Рассмотрим технологические и организационные аспекты нормализации ТВР церковных зданий при их музейном использовании без систем принудительной вентиляции и кондиционирования [1, 2, 3]. Нормализация режима в таких памятниках осуществляется при помощи естественных средств – проветривание, ограниченный подогрев и сезонная консервация в сочетании с регламентацией посещения здания для посетителей в зависимости от погодных условий. Это рассмотрение проведем на примере музейного использования двух церковных зданий г. Пскова.

I. Спасо-Преображенский собор Мирожского монастыря,

II. Собор Рождества Богородицы Снетогорского монастыря.

В рассматриваемых псковских соборах сохранилась уникальная живопись XII в., являющаяся основным объектом хранения и музейного показа. Основная задача Псковского музея-заповедника в части хранительской работы – создание тепловлажностных условий, обеспечивающих сохранность монументальной живописи.

При разработке режима использования памятников исходили из требований обеспечения сохранности настенной живописи, с учетом особенностей эстетики интерьера и состояния ограждающих конструкций. Удовлетворение требований комфорта для посетителей и персонала имели второстепенное значение. Они учитывались постольку, поскольку не противоречили сохранению настенной живописи.

Три компонента организации тепловлажностных условий сохранности минималистскими естественными средствами связаны вместе документами, определяющими порядок работы в здании хранительской службы – инструкция по проветриванию и подогреву здания, инструкция по консервации и расконсервации здания и инструкция по порядку проведения экскурсионной работы.

Порядок составления этих инструкций и их содержание зависит от:

♦ наличия аэрационных устройств (форточки, открывающиеся дверные проемы, клапаны-хлопушки и др.),

♦ типов систем подогрева (или отопления) здания и возможностей регулирования,

♦ наличия тамбуров и притворов,

♦ от приборов и систем контроля параметров микроклимата,

♦ от возможностей сезонной консервации элементов здания (окон и дверей).

Наблюдение за историей создания тепловлажностных условий сохранности в данных памятниках ведется свыше 20 лет.

В данной публикации также учтен опыт работы ГосНИИР и в других памятниках с ограниченным подогревом и естественной вентиляцией (Дмитриевский собор г. Владимир, Рождественский собор г. Суздаль, памятники Вологодской области), результаты исследований ТВР в таких зданиях.

Спасо-Преображенский собор (памятник архитектуры и монументальной живописи XII в.) сохранился до наших дней с минимальным количеством архитектурных дополнений.

На протяжении восьми столетий соборная часть монастыря вместе со Спасо-Преображенским храмом подвергались затоплениям паводковыми водами. Вокруг собора находятся напластования культурного слоя высотой до 1,5 м. Отмостка и каналы для стока паводковой воды с южной и северной стороны собора выполнены в 1907–1911 гг. Состояние каналов аварийное, но как показали наши исследования, наличие каналов способствует улучшению влажностного состояния фундаментов собора.

Подогрев. В зимний период температура поддерживается электрообогревателями по предложенной ГосНИИР схеме размещения. Окна барабана и продухи законсервированы. Окна оснащены двойными столярными заполнениями. Температура в зимнее время опускается до 6–7°, при сильных морозах – до 5°. Влажность в среднем 50–60 %, при сильных морозах – опускается до 40 %. Постепенный подогрев начинается с конца сентября – в октябре. Весной по мере прогрева стен памятника постепенно снижается подогрев. Ограниченный подогрев используется и в летнее время – для улучшения влажностного состояния конструкций при преодолении предела влажности – 80 %, когда нет условий для проветривания.

Проветривание. Ежегодно в летнее время хранители сталкиваются с проблемой повышенной влажности воздуха и высоким влагосодержанием. Основные причины: нижние части стен снаружи и внутри имеют вычинки на цементном растворе, в памятнике существует бетонный пол начала XX в., вентиляционные каналы в аварийном состоянии, до сих пор не установлены клапаны-хлопушки. В этих условиях особое значение приобретает проветривание. Проветривание собора производится двумя способами: ограниченное через притвор и полное, когда открываются северная дверь и окна (в четверике, жертвеннике, дьяконнике и алтаре. Первые короткие и ограниченные проветривания начинаются с апреля-мая, когда температуры в соборе и на улице близки, но влагосодержание на улице ниже внутреннего. Последние проветривания проводятся в августе-сентябре, когда собор начинает остывать и параметры температуры внутри памятника и снаружи также близки. В критические периоды (июль-август), когда влажность превышает 80 %, сотрудники отдела используют все возможности для активного проветривания. Этот способ часто является единственным для снижения влагосодержания воздуха в памятнике и дает положительные результаты.


Мероприятия по оптимизации микроклимата в соборе Рождества Богородицы Снетогорского монастыря с древней живописью с самого начала проводились сотрудниками Псковского музея заповедника совместно с архитекторами-реставраторами и специалистами лаборатории музейной климатологии ВНИИР.

Работы по изучению и нормализации ТВР в памятнике начались в середине 1991 г. В это время в соборе была зафиксирована высокая относительная влажность (выше 90 %), на внутренних стенах наблюдались конденсат и высолы.

Положение усугублялось наличием в памятнике сплошных лесов из неокоренных досок. С осени 1991 г. начались работы по регулированию микроклимата внутри памятника [1, 4]. Прежде всего, в ноябре были проведены работы по консервации памятника на зимний период. Эти работы включили в себя уплотнение оконных заполнений, утепление южной и западной дверей, что позволило не опустить температуру воздуха в памятнике ниже 0°С.

С марта 1992 г. впервые в соборе началось регулярное проветривание по методике специалистов ГосНИИР с целью его прогрева и понижения относительной влажности внутреннего воздуха. Во избежание выпадения конденсата на живописи фиксировалась температура внутренней поверхности стен. Благодаря регулярному проветриванию, чему способствовала теплая и сухая погода летом 1992 г., воздух в соборе прог релся до + 17,5º С. В течение всего летнего периода не было зафиксировано ни одного дня с относительной влажностью внутреннего воздуха в памятнике 90 % и выше. После успешного летнего проветривания осенью в памятнике был организован ограниченный электроподогрев и вновь проведены консервационные работы. Именно прогрев и просушивание памятника позволили избежать вероятных при подключении подогрева скачков параметров ТВР и появления высолов. Уже в первый год работы подогрев дал хороший результат и использовался также во время прохладной влажной погоды в летний период. В результате на второй год работы по регулированию микроклимата в течение весеннелетнего периода в памятнике относительная влажность была близка к безопасным пределам (60–70 %).

Работы по оптимизации тепло-влажностного режима собора велись параллельно с проектированием и проведением архитектурных ремонтно-реставрационных работ. При этом архитекторы-реставраторы учитывали рекомендации специалистов-климатологов. Замена старых столярных заполнений оконных и дверных проемов в конце 2000 г. позволила не проводить мероприятия по консервации памятника на зимний период, так как качество новых заполнений практически свело инфильтрацию атмосферного воздуха в собор до минимума, что показали данные приборов, установленных в храме. Однако сразу после установки столярных заполнений окон в зимний период при отрицательных температурах наблюдалось появление конденсата на стеклах, что было связано с конструкцией самих заполнений и ограниченным воздухообменом внутри храма в это время. Проведенные ремонтные работы позволили активизировать проветривание памятника, так как для этих целей стало возможно применять южную дверь и окна в притворе и приделах.

Летом 2001 г. работы по замене оконных заполнений были завершены установкой в окнах барабана собора клапанов-хлопушек, помещенных в трех окнах барабана с учетом «розы ветров». Клапаны-хлопушки позволили активизировать воздухообмен в соборе даже в зимний период, что проявилось в уменьшении количества конденсата на окнах, и повысить эффективность проветриваний в благоприятную погоду – за счет гарантированного направления проветривания «снизу-вверх».

В настоящее время в соборе Рождества Богородицы Снетогорского монастыря продолжаются работы по регулированию микроклимата. Проведение ремонтнореставрационных работ и устройство электроподогрева позволило использовать активное проветривание (через северную и южную двери, окна в приделах и притворе и клапаны-хлопушки) прежде всего для активизации воздухообмена весной и снижения относительной влажности в летний период.

Из-за отсутствия финансирования ремонтные работы на памятнике приостановлены. В памятнике работает временный подогрев, в холодные зимы мощности конвекторов не хватает для поддержания оптимальной температуры.

Требуется увеличить объем мониторинга параметров воздушной среды в отдельных зонах памятника для разработки дальнейших мероприятий по улучшению тепловлажностных условий сохранности.


Литература

1. Дорохов В. Б., Зотов А. В. Опыт применения неразрушающих методов контроля температурно-влажностного режима ограждающих конструкций памятников архитектуры // Музейное хранение и оборудование. Информкультура ГБЛ. Экспресс-информ. М., 1991. С. 24–30.

2. Дорохов В. Б., Девина Р. А., Илларионова И. В. Взаимосвязь типов организации внутреннего пространства русских церковных зданий и способов оптимизации их микроклимата // Проблемы строительной теплофизики и энергоснабжения в зданиях. Сб. докладов конференции. Академия архитектуры и строительных наук НИИСФ. М., 1997. Т. 1. С. 96–101.

3. Микроклимат церковных зданий. М., 2000.

4. Дорохов В. Б., Платонова Т. А., Рожнятовский В. М. Теплофизические методы сохранения древних церковных зданий с учетом тройственной сущности их использования – храм, памятник, музей // Природные условия строительства и сохранения храмов Православной Руси. 3-й Международный научно-практический симпозиум, 8–11 октября 2006 г., г. Сергиев Посад, Троице-Сергиева Лавра. Сборник трудов. 2008.

В. Б. Дорохов, И. В. Фомин. Аэрационные устройства клапанного типа, с возможностью регулирования расхода для систем естественной вентиляции церковных зданий

Особенности внутренней объемно-пространственной структуры церковных зданий приводят к проблеме наличия зон застойного воздуха, особенно в подсводчатых пространствах и боковых нефах. В зонах застоя происходит интенсивное отложение загрязнений на стенах, развитие микробиологических поражений конструкций, интерьера, возникновение дискомфортных условий для находящихся в церкви. Во время проведения служб все эти проблемы обостряются, поскольку имеет место поступление тепла, влаги и углекислого газа от людей, горящих свечей и лампадного масла, а также продуктов сгорания – в газовой и мелкодисперсной фазе (аэрозоли).

Так, например, исследования лаборатории в одном из соборов Нижегородской епархии, для которого в настоящее время с участием лаборатории прорабатываются предпроектные решения для системы вентиляции и отопления, показали превышение концентрации углекислого газа через полчаса после начала праздничной службы в 4,5 раза. Углекислый газ был выбран нами для исследований в качестве индикатора общей загрязненности воздуха. К началу следующей службы (примерно через четыре часа) концентрация понизилась в два раза, т. е. стала превышать гигиеническую норму лишь вдвое. Стены собора на многих участках нуждаются в очистке от копоти каждые полгода. Вентиляционная система собора крайне несовершенна, устройства естественной вентиляции с трудом поддаются регулированию.

Несовершенство вентиляции негативно отражается на микроклимате церквей, сохранности настенных росписей, иконостаса, декоративной отделки, предметов внутреннего убранства, зачастую представляющих значительную церковную и историко-культурную ценность.

Оснащение автоматическими системами кондиционирования и вентиляции в большинстве случаев невозможно по архитектурным, экономическим и другим соображениям. Кроме того в процессе эксплуатации таких систем значительны затраты на электроэнергию и техническое обслуживание.

Как показывает опыт, установка в окнах барабана вентиляционных устройств, открывающихся механически (форточки, фрамуги и проч.) не обеспечивает вентиляцию церкви, в определенных условиях (довольно часто!) вызывая опрокинутую вентиляцию, в то время как наиболее оптимальный режим проветривания церковных зданий – по схеме снизу-вверх.

Установку механически открывающихся устройств можно допустить в храмах, снабженных системой принудительной вентиляции или кондиционирования, внутренний объем которых находится под избыточным давлением. При этом требуется алгоритм автоматического управления форточками. Проект модернизации такой системы (с использованием наших рекомендаций) осуществлен в Благовещенском соборе Московского Кремля в 2007–2008 гг.

Исследования и практика показывают, что в церковных зданиях может быть создана система естественной вентиляции без применения или с минимальным применением элементов принудительной вентиляции. При этом в качестве вытяжки используются аэрационные устройства, действующие по принципу обратного клапана (АУ), а в качестве приточных устройств форточки, фрамуги, аэрационные клапаны (встроенные в рамы окон). Также возможно использование приточной механической вентиляции в нижней части здания в сочетании с АУ – при этом осуществляется схема вытесняющей вентиляции. В настоящее время наши предложения по такой системе вентиляции в упомянутом выше соборе Нижегородской епархии находятся в стадии рабочего проектирования.

Долгое время идея применения обратного клапана для устройства вентилирования церковных зданий осуществлялась в отдельных музеях и церквях из доступных материалов и по собственным соображениям.

В 1980–1990 гг. были начаты работы по научному обобщению опыта использования АУ, повышению их надежности и долговечности на базе производств ВПК. Были разработаны долговечные подвески подвижных элементов с минимальным трением, проведены испытания в аэродинамических трубах различных конструктивных решений АУ. Совместно с другими научно-исследовательскими учреждениями в этих работах принимала участие лаборатория музейной климатологии ГосНИИР [1, 2, 3, 4]. В период 2004–2009 гг. были получены три патента на конструктивные решения АУ, соавторами которых выступали сотрудники лаборатории.

Последней по времени разработкой сотрудников лаборатории музейной климатологии является АУ с изменяемой площадью проходного сечения для систем естественной вентиляции – приоритет изобретения от 2009 г. [5]. Один из первых образцов такого АУ расположен в барабане конференц-зала ГосНИИР (ил. 1 и 2).


Достоинством аэрационных устройств с изменяемой площадью проходного сечения является возможность при необходимости изменять расход воздуха через АУ. Управление расходом воздуха может осуществляться вручную, дистанционно, а при необходимости в автоматическом режиме – согласно требуемому алгоритму. Это оказывается необходимым при изменении требований к режимам вентиляции в различные интервалы времени, например режимы зима-лето или в суточном цикле проведения церковных служб. Такой подход позволяет значительно увеличивать энергоэффективность систем климатизации при обеспечении требований к параметрам микроклимата и уменьшению времени существования застойных зон.

Описываемые клапаны (при обеспечении дистанционного управления) могут быть установлены в церковных зданиях, оснащенных системой воздушного отопления или кондиционирования – при соответствующем уточнении алгоритма работы системы и создаваемого системой избыточного давления. В настоящее время рекомендации по установке таких клапанов разрабатываются для упомянутого выше собора Нижегородской епархии вместимостью свыше тысячи человек.


Литература

1. Гордеев Ю. И., Илларионова И. В., Сизова Е. А. Аэрационные устройства для зданий – памятников культовой архитектуры (клапаны хлопушки) // Вопросы температурно-влажностного режима памятников истории и культуры: Сб. научных трудов. М., 1990.

2. Микроклимат церковных зданий. М., 2000.

3. Дорохов В. Б., Фомин И. В., Колегаев И. С. Рациональный выбор решений систем климатизации церковных зданий – для обеспечения сохранности зданий, настенной живописи, икон и комфортного микроклимата // EIKΩN KAITEXNH. Церковное искусство и реставрация памятников истории и культуры. Памяти Андрея Георгиевича Жолондзя: Сборник. М., 2007.

4. Фомин И. В., Сизов Б. Т. Использование аэрационных устройств в системах естественной вентиляции церковных зданий – памятников архитектуры // Природные условия строительства и сохранения храмов православной Руси. 4-й международный научно-практический симпозиум: Сб. тезисов. С.-Посад, Троице-Сергиева Лавра, 8-10 октября 2009 г.

5. Дорохов В. Б., Фомин И. В. Аэрационное устройство с изменяемой площадью проходного сечения для систем естественной вентиляции памятников архитектуры. Патент на изобретение № 2375644. Приоритет 03 июля 2008 г. Зарегистирован 10 декабря 2009 г.

Д. Н. Емельянов, Н. В. Волкова, А. А. Молодова, С. А. Мартьянова. Поведение консерванта – сополимера А-45К в экстремальных условиях

Текстильные материалы – ткани – активно стареют. Они очень чувствительны к воздействиям кислорода, пыли, УФ-излучения, колебаниям влажности и температуры, к биологическим агентам. Даже музейные условия не могут предотвратить старение тканей. Выбор методов консервации и реставрации изделий из тканей, подбор консервантов особенно сложен из-за разнообразия изделий и материалов тканей, вида красителей, сохранности экспонатов.

Современным материалом для консервации тканей является акриловый сополимер А-45К, который все шире используется реставраторами [1]. Акриловый полимер А-45К (ТУ-6–01-2–661–83) введен в отечественную реставрационную практику как первый синтетический клей для дублирования ветхих тканей реставраторами Литовского реставрационного центра им. П. Гудинаса в начале 70-х гг. [2]. Клей представляет собой 35 % раствор сополимера, синтезированного из смеси мономеров: 50 мас. % винилацетата, 45 мас. % бутилакрилата и 5 мас. % акриловой кислоты в растворителе этилацетате [3]. Для использования в консервации раствор СПЛ разбавляют ацетоном. Технические характеристики раствора СПЛ следующие: бесцветный однородный раствор с небольшой опалесценцией; массовая доля нелетучих веществ 34,5 %; удельная вязкость 1 % раствора полимера в этилацетате не менее 1,20.

К сожалению, применение А-45К в реставрации носит эмпирический характер, практически отсутствуют физико-химические закономерности этого процесса, особенно при воздействии высоких температур. Целью данной работы было изучение свойств композиций целлюлозная ткань – акриловый сополимер (СПЛ) А-45К и их изменение при температурном воздействии.

В качестве объекта исследований консервации была выбрана целлюлозная ткань – бязь (ГОСТ-29298–2005) производства фабрики «Красная Талка», г. Иваново.

Необходимым условием использования консервантов является отсутствие изменения их цвета, растворимости и прозрачности при старении. Для выяснения этого изменения было изучено сухое старение при температурах 100, 150, 180, 200 и 300оС в течение 1, 2 и 3 часов пленок, полученных из 15 % раствора сополимера. Изменение прозрачности пленок оценивали по их светопропусканию (D) с помощью фотоэлектрического колориметра (ил. 1).

После сухого старения при 100оС в течение 1, 2 и 3 часов пленки сополимера остаются бесцветными и прозрачными, при этом они полностью растворяются в ацетоне. Старение при 150оС приводит к незначительному понижению светопропускания пленок и появлению легкой желтизны. Старение при более высоких температурах (180оС и 200оС) сопровождается тем, что прозрачность пленок резко снижается, пленки темнеют до коричневого цвета. Чтобы понять, что же происходит с сополимером после воздействия на него повышенных температур, проводили растворение его в растворителе – ацетоне. Результаты исследования приведены в Табл. 1.


Ил. 1. Зависимость светопропускания (D) пленок, приготовленных из 15 % раствора сополимера, от времени (t) сухого термостарения при температуре, °С: 1 – 100; 2 – 150; 3 – 180; 4 – 200


Таблица 1. Зависимость растворимости в ацетоне пленок сополимера А-45К, подвергнутых термостарению при различных температурах (Т) и времени воздействия (t)


Видно, что уже при 80°С и при длительном температурном воздействии идет частичное сшивание полимера, о чем свидетельствует наличие в растворе гелеобразных частиц. И чем выше температура и больше время прогрева, тем сильнее идет сшивание. Об этом говорит ухудшение или прекращение растворимости полимера и пожелтение пленок.

Оценкой старения ткани и композиций ткань – СПЛ служило также изменение разрывной прочности (ил. 2).


Ил. 2. Зависимость разрывной прочности (σp) образцов ткани из бязи от температуры (Т) сухого старения. Время старения 1 час.

1 – исходной; 2 – пропитанной 3 % раствором сополимера;

3 – пропитанной 10 % раствором сополимера


Введение в ткань сополимера не оказывает существенного влияния на ее разрывную прочность, т. к. сополимер имеет прочность несравнимо меньшую, чем целлюлоза. Основной вклад в обеспечение прочности композиции вносит жесткоцепной полимер – целлюлоза. Видно, что при прогреве до 140°С как для бязи, так и для композиций имеет место незначительное увеличение разрывной прочности. Это обусловлено тем, что в данном диапазоне температур идет испарение влаги, находящейся между волокнами ткани, ведущее к увеличению прочности. При температуре 160–200°С наблюдается потемнение образцов, что свидетельствует о прохождении термоокислительной деструкции волокон целлюлозы и полимера. Все это сопровождается резким понижением прочности. При более высоких температурах образцы ткани обугливаются, разрушаются макромолекулы, увеличивается хрупкость волокон и прочность как необработанной, так и обработанной полимером ткани снижается на 90 %.

Распространенным методом укрепления ветхих тканей является дублирование их на новую прочную основу. Именно поэтому следующим этапом работы было изучение адгезии дублируемой ткани к дублирующей. В качестве первой брали как несостаренную (исходную), так и предварительно состаренную в течение 1 часа при 180°С ткань, в качестве второй – исходную. В качестве склеивающего вещества использовали 20 % раствор А-45К, который с помощью кисти наносили на дублировочную ткань и затем, не высушивая, прижимали дублировочную ткань к дублируемой. После чего склеенную композицию сушили при комнатной температуре до полного высыхания клеевого шва. Адгезионную прочность оценивали по сопротивлению отслаиванию (о) тканей, которое измеряли на разрывной машине РМИ-5.

Из данных Табл. 2 видно, что 20 % раствор сополимера обеспечивает удовлетворительную адгезию клеевого шва к ткани как до, так и после теплового воздействия.


Таблица 2. Адгезионнная прочность отслаивания (σ) композиций: ткань + сополимер А-45К + ткань


Это можно объяснить с точки зрения одного из видов механической теории адгезии. Согласно этой теории, адгезия осуществляется за счет того, что ворсинки, находящиеся на поверхности материала, при нанесении жидкого клея попадают в его толщу и после отверждения клея оказываются прочно внедренными в адгезив, что обеспечивает прочную связь адгезива с субстратом. Если заменить одну из тканей на подвергнутую ранее старению при повышенной температуре ткань, то адгезионная прочность такой композиции немного снижается, очевидно, из-за отсутствия мелких ворсинок, деструктированных у состаренной ткани.

Изучена способность сополимера А-45К экстрагироваться из ткани растворителем после теплового воздействия на композицию. Полученные результаты позволяют оценивать температурное поведение систем с точки зрения обратимости консервации, т. е. возможности удаления СПЛ из ткани. Предварительно взвешенные образцы исходной ткани размером 80×10 мм пропитывали растворами сополимера 10 % и 5 % концентрации, сушили при комнатной температуре до постоянной массы. Затем образцы прогревали при температурах 40оС, 60оС и 80оС. Такой прогрев композиций может происходить при легком глажении, а повышенные температуры позволяют также моделировать ускоренное старение композиций. Состаренные образцы погружали в растворитель – этилацетат или смесь этилацетата и ацетона. Через определенные промежутки времени образцы вынимали, сушили и взвешивали. По изменению массы образцов судили о том, сколько сополимера вымывается из ткани. Опыт с погружением чистой ткани в растворитель показал, что ее масса со временем пребывания в растворителе остается постоянной. Это означает, что молекулы волокон ткани не растворяются в растворителе. Результаты исследования по вымыванию СПЛ А-45К из ткани приведены на ил. 3а, б.

Из графика (ил. 3а) следует, что после воздействия на композицию ткань – СПЛ температуры до 40°С СПЛ из ткани вымывается полностью. Чем меньше концентрация пропитывающего раствора СПЛ, тем быстрее он вымывается. Так, если для раствора СПЛ с концентрацией 10 % этот срок равен 15 минутам, то для 5 % раствора – 5 минут. Чем выше температура прогрева и больше время теплового воздействия, тем медленнее вымывается СПЛ из ткани. Вероятно, когда температура прогрева невысокая, то имеет место лишь физическое взаимодействие между тканью и пропитывающим агентом. Прогрев композиции в течение 2 и 3 часов при 60°С и 80°С приводит к тому, что полимер вымывается из ткани не полностью. Очевидно, при достижении критической температуры компоненты целлюлозная ткань – СПЛ взаимодействуют химически – и это препятствует вымыванию СПЛ из ткани.


Ил. 3. Изменение содержания СПЛ А-45К в композиции ткань + СПЛ от времени пребывания ее в этилацетате

а) Концентрация р-ра СПЛ, нанесенного на ткань, мас.% (1) -5; (2–4) -10. Температура прогрева, °С: 1,2–40; 3–60; 4–100. Время прогрева 3 часа.

б) Концентрация р-ра СПЛ, нанесенного на ткань 10 мас.%. Время прогрева при 80°С, ч: 1–1; 2–2; 3–3


Данные исследования позволяют установить оптимальный температурный интервал использования сополимера А-45К как консерванта ткани и предотвратить необратимые химические превращения в композициях. Этот интервал до 40–50°С.


Выводы

1. Прогрев сополимера А-45К при повышенных температурах вызывает его частичное или полное сшивание, потерю растворимости и потемнение пленок.

2. Для ткани и ее композиции с сополимером выявлены три области их разрушения под воздействием повышенных температур. В первой области до 150°С происходит испарение сорбированной волокнами ткани воды, в результате прочность ткани и ее композиций с сополимером немного повышается. Во второй области от 150 до 250°С происходит деструкция целлюлозы – прочность ткани и композиций резко падает до 90 %. И в третьей области – выше 250°С – ткань сгорает, образуя обуглившийся остаток, который рассыпается при прикосновении к нему руками.

3. Установлено, что консервация ткани акриловым сополимером А-45К носит обратимый характер только при невысокой температуре воздействия (до 40–50°С). Воздействие температур более 80°С приводит к необратимым последствиям – полимер из ткани вымывается лишь частично.


Литература

1. Федосеева Т. С. Материалы для реставрации живописи и предметов прикладного искусства. М., 1999.

2. Семечкина Е. В. Способы нанесения акрилового полимера А-45К на дублировочную ткань и их эффективность // Скульптура. Прикладное искусство: Реставрация. Исследования. М., 1993. С. 122–126.

3. Емельянов Д. Н. Исследования физико-химических свойств консерванта тканей – полиакрилата А-45К // VI Грабаревские чтения: Доклады, сообщения. М., 2005. С. 208–214.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации