Электронная библиотека » Лев Гумилевский » » онлайн чтение - страница 14

Текст книги "Русские инженеры"


  • Текст добавлен: 5 июня 2023, 13:40


Автор книги: Лев Гумилевский


Жанр: Исторические приключения, Приключения


сообщить о неприемлемом содержимом

Текущая страница: 14 (всего у книги 24 страниц)

Шрифт:
- 100% +
Превращение ремесла в искусство

Можно сказать, что вся история металлургии от древнейших времен до открытия, сделанного Черновым, сводится в основном к поискам все новых и новых способов переделки чугуна в железо и сталь.

Вся эта работа велась чисто опытным путем и представляет длинную цепь более или менее счастливых находок. Находки держались в секрете. Так, англичанин Дод Дудлей, открывший способ «плавить железную руду и обращать ее в отличные вещи и полосы посредством ископаемого угля в печах с мехами», ухитрился окружить свое открытие столь густою тайной, что в течение целого столетия, пока оно не было повторено, никто не смог им воспользоваться.

Изготовление знаменитой дамасской, или булатной, стали, даже после открытия ее рецепта Аносовым, до работ Чернова многим представлялось загадкой, хотя закаливать сталь люди умели еще в глубокой древности.

Закаленные булатные клинки, по свидетельству греческого ученого Аристотеля, жившего за две тысячи триста лет до нас, существовали в Индии. Вероятно, задолго до того было замечено, что сталь становится очень твердой, если ее нагреть добела, затем быстро охладить, опустив в воду. При этом, правда, сталь становится очень хрупкой; но также давно кузнецы открыли, что закаленную сталь можно «отпустить», снова нагрев ее уже не добела, а лишь досиня. Разумеется, что эти операции закалки и отпуска производились на глаз, причем каждый мастер хранил свое искусство в большой тайне.

Немало было связано с этим делом всевозможных суеверий и нелепостей. Английский институт железа и стали отыскал, например, в одном старинном рецепте приготовления стальных клинков такое дикое указание:

«Нагревать кинжал, пока он не засветится, как восходящее солнце в пустыне, затем погрузить его в тело сильного раба, пока кинжал не примет цвета царского пурпура».

С подобными рецептами металлургия рассталась, конечно, очень давно; но истинных представлений о строении и превращениях стали при закалке и отпуске ни наука, ни, тем более, сталевары и кузнецы не имели до Чернова.

Самое большое металлургическое предприятие почти ничем, кроме размеров, не отличалось от простой кузницы, качество изделия всецело зависело от опытности, ловкости и цеховой осведомленности мастера. Закаливал ли он сталь, отпускал ее или ковал, или прокатывал, он действовал по традиции, иногда по наитию, но того, что происходило при этом в структуре металла, он не знал, да и не мог знать. Никаких научных знаний тут не существовало. Для каждого отдельного случая существовал выработанный веками наиболее благоприятный режим тепловой обработки, и этим исчерпывались все знания мастера.

«Хотя общее состояние науки, в частности физики, к середине прошлого века достигло уже высокого развития, однако наука о металле представляла всего два-три параграфа в разделе физики, посвященном учению о твердых телах, – говорит профессор Ю. М. Покровский в своих очерках по истории металлургии. – А между тем развитие массового производства требовало сознательного пересмотра производившихся термических и механических операций и поставило совершенно по-иному проблему металла. Рост общего машиностроения и массовое производство самих машин потребовали точного научного знания для оценки какого-либо свойства металла. Необходимы были широкое обобщение и систематизация всех данных о тепловом состоянии металла, как и дальнейшее их углубление и развитие».

Сознательное отношение к тепловой и механической обработке стало еще более необходимо, когда изготовление новых ответственных деталей специального машиностроения заставило заводы придавать металлу качества, необходимые в новых разнообразных условиях эксплуатации. Этого потребовали, например, изделия, работающие под большим давлением, прежде всего стволы орудий. А в то же время само улучшение производства, расчленение заводских операций на составные фазы – ковку металла, отжиг, прокатку и другие – вызвали нужду в согласовании этих операций.

Насколько старая техника металлургии оказывалась внутренне беспомощной в новых производственных условиях, показывает история известного русского инженера Павла Матвеевича Обухова.

* * *

Горный инженер по образованию, Обухов после окончания курса в институте в 1845 году был назначен на скромную должность смотрителя Серебрянского завода в Пермской губернии. Молодой инженер обратил на себя внимание администрации и был послан за границу для изучения железоделательного – производства. Сдав блестящий отчет о своей командировке, Павел Матвеевич получил должность управляющего сначала Кувшиновским заводом, а затем – Вазовским, где он начал производить опыты приготовления литой стали.

Действовал он так же, как и все металлурги. Убедившись, что при разных добавках сталь получается различной твердости, он после многих проб нашел добавки, которые лучше всего прибавлять к сплаву. В 1863 году после ряда проб Обухов получил отличную сталь. Тонкую пластинку, изготовленную из этой стали, не пробивали выстрелы из ружья, в то время как панцырные кирасы вдвое большей толщины, изготовлявшиеся в Златоусте, давали при таком испытании тридцать процентов брака.

Опыты Обухова побудили Военное ведомство перевести талантливого инженера в Златоуст.

Павел Матвеевич явился на Урал во время Крымской войны, в 1854 году. На Златоустовском заводе сталь, хотя и полученная из отличной руды, была все же очень невысокого качества. Заводы, основанные при Петре I, почти ни в чем с тех времен не изменились.

Вот здесь, на Златоустовском заводе, Обухов и начал практиковать стальное литье, которое впервые в мире ввел выдающийся русский металлург П. П. Аносов.

Дело это было трудное. Техника разливки, до введения в практику литой стали, касалась только чугуна. Приходилось варить сталь одновременно во многих небольших по объему тиглях. Сталь должна была поспевать одновременно во всех тиглях.

Павел Матвеевич начал с того, что заказал тигли своеобразной формы, в виде усеченной пирамиды, а затем подготовил нескольких рабочих к варке стали по новому способу. Уральский чугун был достаточно чист, а магнитный железняк находился вблизи Златоуста. Установив опытным путем пропорции того и другого, Обухов в конце 1855 года получил превосходную сталь, не уступавшую по качеству знаменитой крупповской. Сделанные из обуховской стали кирасы, сабли, ружья превосходно выдержали испытания. Инструментальная сталь Обухова рубила английскую такой же закалки, а инструменты, сделанные из нее, работали дольше, чем английские.

Прибывшая из Петербурга специальная комиссия произвела испытания ружейных стволов из обуховской стали. В результате оказалось, что при последовательном увеличении заряда, а стало быть, и давления газов крупповские стволы разрывались при восьмом выстреле, а обуховские – при четырнадцатом.


Сталеплавильня девяностых годов прошлого столетия


Оружейный комитет Военного ведомства, перед которым была поставлена после неудачи Крымской войны задача Перевооружения армии, писал:

«Принимая во внимание, что сталь Обухова, будучи произведением нашего края, может быть приобретаема независимо от политических событий, сверх того она стоит от полутора до двух рублей серебром, крупповская же свыше пяти рублей за пуд, а сталь Эгера около того же, Оружейный комитет признал необходимым сколь возможно скорее повторить опыты в больших размерах над сталью подполковника Обухова, для чего доставить оную с первым весенним караваном в Ижевский и Сестрорецкий заводы в количестве на одну тысячу стволов».

Обухов получил патент на свои рецепты стали, ему был увеличен оклад жалованья.

Небывалый успех не вскружил голову самому Обухову, но создал ему завистников и врагов. Однако Павел Матвеевич спокойно продолжал свое дело и вскоре представил проект изготовления в России стальных орудий.

Надо сказать, что до этого времени у нас умели лить только бронзовые и чугунные орудия с гладкими стволами, литье которых было несложно и хорошо знакомо русским мастерам. Стальные же орудия с нарезными стволами только начинали входить в употребление во всем мире; этому способствовало открытие новых способов переделки чугуна в сталь, ускоривших и удешевивших производство.

Проект Обухова заинтересовал Военное ведомство, и ему была предоставлена возможность начать производство стальных орудий в Златоусте. Подготовительные работы Павел Матвеевич провел очень быстро и в начале 1860 года отлил первые орудия.

Опыт прошел с полным успехом. Его пушки отлично стреляли на опытном полигоне. Их погрузили затем на сани и отправили для показа в Петербург. Здесь результаты стрельбы превзошли все ожидания друзей Обухова. При трехтысячном выстреле ядро летело с такой же точностью, как при первом. Одну из пушек после четырех тысяч выстрелов отправили в Артиллерийский музей.

Павла Матвеевича засыпали наградами и почестями, поручив ему всемерно развивать сталеорудийное производство, с тем чтобы изготовлять в год не менее пятисот орудий в одном Златоусте. Крупповская монополия в России кончилась.

После отмены крепостного права развитие промышленного капитализма в России быстро пошло вперед, несмотря на остатки крепостничества, сильно тормозившие экономический прогресс. По всей стране, и больше всего в Петербурге, стали возникать одно за другим промышленные предприятия – в том числе судостроительные, а рядом с ними и железоделательные заводы.

Дело в том, что созданный Петром I замечательный русский флот, поддерживавшийся на той же высоте в течение всего XVIII века, в царствование Александра I пришел в упадок, так как установился взгляд, что флот России не нужен. Неудивительно, что переворот, произведенный в промышленности паровым двигателем, застал военный флот царской России врасплох. В тридцатых годах вместо колеса появился гребной винт, имевший огромное преимущество для военного судна. Весь мир стал немедленно перестраивать военные суда. Строились только винтовые корабли. В 1848 году, после испытания опытного железного судна, Англия приступила к замене деревянных военных судов железными. За нею последовали и все другие страны.

Но России с ее слабо развитой в те времена промышленностью и техникой не удалось вовремя ввести во флот паровую машину и винт и начать замену деревянных кораблей железными. Вследствие этого русские суда не могли вступить в бой с англо-французским флотом, поддерживавшим Турцию в Крымской кампании, хотя русский флот и одержал на Черном море незадолго до того, в сражении с турками 18 ноября 1853 года, великолепную Синопскую победу.

То была лебединая песня парусного флота. Когда на помощь Турции в Черном море появились англо-французские морские силы, русский флот по приказу командования был затоплен при входе в Севастопольскую бухту и русские войска вместе с моряками начали памятную для всего мира Севастопольскую оборону.

После окончания войны Морское ведомство ревностно взялось за постройку винтовых кораблей. Однако этого было мало. С появлением за границей железных, броненосных судов и нарезной артиллерии русский флот мог опять попасть в положение, подобное тому, какое было перед Крымской войной.

Тогда-то и началось капитальное переустройство казенных верфей для железного судостроения, развитие существовавших и организация новых механических, судостроительных и сталелитейных заводов. Петербург стал в центре развивающейся промышленности и металлургии. Тогда-то и возникли такие заводы, как Невский, Балтийский, Франко-русский и Обуховский.

Инициатором создания Обуховского завода был разбогатевший, окрыленный успехом, деятельный и неутомимый Павел Матвеевич Обухов. Он начал дело один, но затем в 1863 году составил частную компанию, затеявшую постройку большого сталелитейного завода. Компанию составляли Обухов, Путилов и Кудрявцев. Они заложили завод близ Петербурга, в селе Александровском, на берегу Невы. Компании удалось довести постройку и оборудование завода до конца, но из-за недостатка средств через три года она передала предприятие Морскому ведомству.

Оборудование завода было по тем временам превосходно. Завод располагал рецептами обуховской стали и опытом самого Павла Матвеевича, первого директора завода. Привезенные из Златоуста сталевары считались безукоризненными мастерами тигельной плавки.

Таким образом, Павел Матвеевич сделал все, чтобы обеспечить полный успех предприятия; не было человека, который сомневался бы в том, что русская армия и русские корабли получат безукоризненное новейшее артиллерийское вооружение.

А между тем дело не ладилось и вскоре приняло прямо-таки драматический характер.

Когда завод перешел к изготовлению орудий большого калибра, оказалось, что нередко при выстреле пушки разрываются, причиняя увечья артиллеристам. На Охтенском морском полигоне даже из испытанных пушек приказано было выстрел производить гальваническим способом, а прислуге орудия находиться в блиндаже. Несмотря на прекрасный рецепт Обухова, механические качества металла оказывались плохими. Попытки же разобраться в причинах низкого качества орудий оставались безуспешными. В конце концов поднялся даже вопрос о прекращении производства стальных орудий в России и о передаче заказов на иностранные заводы.

Литье стальных орудий обратилось в проблему, которая интересовала всю техническую и военно-морскую общественность. Изучением вопроса занималось множество людей. В «Артиллерийском журнале» за 1867 и 1868 годы появился ряд статей по этому поводу. Двум видным инженерам того времени – А. Н. Лаврову и Г. С. Калакуцкому – как будто бы удалось несколько подвинуть решение задачи путем изучения пороков стального литья: усадочных раковин, пустот.

Статьи по этому поводу в продолжение двух лет не сходили со страниц журналов.

Но все это мало помогало делу. Павел Матвеевич страдал невыносимо, теряясь в догадках. Он запил и с переходом завода в Морское ведомство, после назначения нового директора, отстранился от дела, уехал из Петербурга и, всеми забытый, умер в 1869 году.

Однако перед тем как уйти, этот последний представитель чистого опыта, чистой практики в минуту просветления почувствовал, что необходимость раз навсегда установить законы явлений, протекающих в металле при его тепловой и механической обработке, достигла своего предела. Поняв, что без науки о строении металлов, без установления, точных законов, управляющих этим строением, дальнейшее развитие металлургической промышленности немыслимо, он поступил опять-таки как практик, а не как исследователь, Он не стал сам заниматься исследованием, а решил пригласить для этого человека иного склада мысли.

Выбор его остановился на Дмитрии Константиновиче Чернове, и если, по словам Добролюбова, талантливость деятеля прежде всего познается по умению подобрать себе сотрудников, то Обухова надо признать талантливейшим русским инженером: лучшего выбора нельзя себе и представить.

* * *

Дмитрий Константинович Чернов родился 8 ноября 1839 года, то есть в те самые дни, когда в уме Белинского не только сложилось, но уже и сформулировалось знаменитое пророчество о России через сто лет, о России в 1940 году, «стоящей во главе образованного мира», дающей «законы в науке и искусстве» и принимающей «благоговейную дань уважения от всего просвещенного человечества».

Белинский с его «светлой, русской головой», как сказал о нем А. И, Герцен, с его тонким и глубоким умом одним из первых понял особенный, национальный характер русской научной, технической и художественной мысли.

Чернов был первенцем поколения, на долю которого выпала счастливая обязанность оправдать произнесенное над его колыбелью пророчество великого русского просветителя и демократа.

Дмитрий Константинович родился и вырос в Петербурге. В этой приморской столице, поставленной Петром I на страже интересов России как великой морской державы, Чернов учился, жил и работал до глубокой старости, до тех пор, пока возраст не сказался на самой возможности продолжать этот страстно деятельный образ жизни.

Его отец, петербургский чиновник невысокого ранга, не походил ни на героя «Медного всадника», ни на Макара Алексеевича Девушкина, ни, тем более, на Акакия Акакиевича Башмачкина.

Огромное влияние Гоголя на нашу литературу XIX века общеизвестно, и о нем нет нужды особо говорить. Немудрено, что наше представление о петербургском чиновном мире идет в значительной мере от гоголевской «Шинели». Но это представление – не вся правда. В этом мире существовали и люди совсем другого типа. Может быть, их было немного, но они все-таки были. И при тех возможностях для творческой работы, которые они отвоевывали себе у бюрократической среды, эти люди создавали великие памятники русскому народу.

Отец Чернова хорошо и, главное, вовремя понял, что ему следует избавить сына от бесплодной траты сил в петербургских департаментах и сделать из него человека, более подходящего к духу времени.

Если недовольный своим собственным положением деятельный и способный петербургский чиновник не мог сам превратиться в инженера, то он стал стремиться к тому, чтобы сделать инженером своего сына.

Чернов-отец мало при этом считался с наклонностями сына, да, впрочем, их и трудно было определить. Мальчик одинаково успевал по всем предметам гимназического курса, его как-то все интересовало, но никакой особенной страсти к машинам и механизмам у него невозможно было заметить. Скорее, он даже был склонен к безмолвному размышлению, к отвлеченным рассуждениям, правда, по совершенно конкретным поводам. От сверстников его отличали наблюдательность и верный глаз, подмечавший самые тонкие, едва уловимые характерные черты предмета.


Сталеплавильня начала XX века


Наблюдательность привела Чернова к открытию, составившему ему мировое имя. Но она была у него и каким-то самостоятельным дарованием, которое он берег и развивал в себе. Дарование это проявлялось везде и всюду. Всю жизнь, например, Дмитрий Константинович часами рассматривал старинные скрипки работы знаменитых итальянских мастеров. Он старался подсмотреть, в чем заключается их таинственная особенность. В конце концов от его глаза, очевидно, ничто не укрылось, так как ему удавалось изготовлять скрипки, настолько схожие со старинными итальянскими, что даже специалисты часто не в состоянии были их различить.

Не хуже, чем гимназию, юноша закончил и Петербургский технологический институт. Девятнадцати лет он уже осуществил мечту своего отца и получил диплом инженера-технолога. Но ему самому этого, видимо, было недостаточно. Он остался в институте в качестве преподавателя математики и одновременно зачислился вольнослушателем на физико-математический факультет Петербургского университета.

В то время в Петербургском университете математику преподавали Остроградский и Чебышев. Они очень высоко оценили способности Чернова и его аналитический ум, но в область чистой математики увлечь молодого ученого им не удалось. Время, пространство, движение, вес, масса представлялись Чернову реальными, ощутимыми и видимыми вещами, а не отвлеченными понятиями. Его аналитический ум опирался на верный и точный глаз; оперировать с чисто математическими понятиями он не любил.

Закончив университетский курс, Чернов еще несколько лет оставался преподавателем в Технологическом институте. Он не собирался стать профессором, но хотел быть широко образованным человеком. Будучи помощником заведующего большой научно-технической библиотеки института, он располагал всей новейшей научно-технической литературой и с увлечением предавался чтению. В это время и вспомнил Павел Матвеевич Обухов о молодом преподавателе-математике, имевшем диплом инженера-технолога. Чернов заинтересовался работой на заводе с современным техническим оборудованием и принял приглашение.

Так, в 1866 году он оставил преподавательскую деятельность и начал работать на Обуховском заводе, где ему поручили исследовать вопрос о плохом качестве орудий.

Заложить основы новой науки, проникнуть в загадочную жизнь металла только и мог человек такого творческого склада, каким отличался Чернов. Он не был связан привычным отношением к технологическому процессу и традиционными взглядами, как все специалисты, и мог поступить, как никто еще не поступал. Склонность к широкому обобщению на основе точного исследования основных законов явлений была ему в высшей степени свойственна. И он обладал точным и верным глазом – тонкой наблюдательностью, которая могла в известной мере заменить физические приборы, привычные для металлографа в наши дни.

Молодой инженер два года почти не покидал закопченных, угарных мастерских; он присутствовал при испытаниях орудий в лаборатории и на полигоне. Далеко не все пушки были плохи: одни отличались высокой прочностью, другие разрывались при первом выстреле.

Молодой исследователь стал изучать места разрыва. Тогда он заметил, что сталь разорвавшегося орудия имеет у места разрыва крупнозернистую структуру. Исследуя на разрыв орудия, имеющие продолжительный срок службы, Чернов установил, что их сталь при том же химическом составе имеет другое, мелкозернистое строение.

– Дело не в рецепте Обухова, не в химическом составе стали, а в неодинаковой обработке литья! – заключил Дмитрий Константинович.

Заводские инженеры занимались главным образом изучением самого литья. Чернов отправился в кузнечный цех, где производилась механическая обработка литых болванок.


На старом уральском заводе. Выпуск чугуна


Здесь-то и понадобилась исследователю его тонкая наблюдательность, потому что на первый взгляд никакой разницы в обработке болванок не было. Их нагревали в печи, ковали и, быстро погружая в воду, охлаждали. Так как приборов для измерения высоких температур не существовало, то болванки вынимали из печи, определяя степень нагрева на глаз, по цвету раскаленного металла.

То пользуясь опытом старых кузнецов, то доверяясь собственному чутью, Чернов быстро научился определять степень нагрева по цвету болванки. Сталь принимает при нагревании последовательно все цвета каления – от темнокрасного до ослепительно белого, а при медленном охлаждении на воздухе теряет их в обратной последовательности. Но при таком медленном охлаждении со сталью происходило сверх того нечто очень странное: постепенно темнеющая масса металла в какой-то момент остывания вдруг внезапно раскалялась, точно вспыхивала, а затем снова начинала темнеть и далее-уже ровно охлаждалась до конца.

Самые опытные кузнецы не могли объяснить Чернову, отчего происходит такая вспышка, когда она происходит и что она означает. Да и самое явление это мастера наблюдали редко, потому что еще до вспышки, происходившей при определенной степени охлаждения, сталь обычно погружалась в воду для закалки. При быстром охлаждении вспышек не бывало.

Странное явление необычайно заинтересовало исследователя. Он предположил, что внезапная вспышка стали соответствует какому-то преобразованию, происходящему внутри металла, и стал дознаваться, в чем заключается это преобразование, что происходит со сталью, когда она, как говорил Чернов, «проходит через некоторую критическую точку, соответствующую какой-то определенной температуре».


Дмитрий Константинович Чернов (1839–1921).


Начал он с того, что заставил отковать и закалить болванку, прошедшую через критическую точку, и болванку, не прошедшую через нее, а затем подверг и ту и другую всяческим испытаниям и сравнил результаты. Оказалось, что болванка, прошедшая критическую точку, закалки не приняла, осталась мягкой.

Это было открытие. Повторив опыт десятки раз, Чернов убедился, что ошибки не было, что он подходил к разгадке каких-то очень важных законов, и стал искать новые их проявления.

Но прежде всего надо было ответить на основной вопрос, с которым он пришел в кузнечный цех: при каких условиях получается в стали крупная зернистость и при каких – мелкая. Многие думали, что для получения мелкой зернистости нужно просто усилить давление на сталь при ковке. Это было довольно правдоподобно, но плохо согласовалось с практикой, и Чернов с особенным вниманием начал следить за ковкой отливок.

Среди этих наблюдений он сделал второе открытие, а именно: обнаружил существование другой критической точки, также соответствующей определенной температуре. Эту критическую точку он назвал «точкой В» в отличие от первой, названной им «точкой А».


Открытие Черновым «точки В» особенно удивительно, так как прохождение через нее стали сопровождается почти неуловимыми внешними признаками. Чернову первому удалось заметить такие признаки.

Академик А. А. Байков вспоминает, что много лет назад, посетив однажды Чернова вместе с академиком М. А. Павловым, он спросил Дмитрия Константиновича, каким образом тот заметил, что при температурах возле «точки В» в стальной болванке происходит какое-то непонятное превращение.

Знаменитый металлург ответил:

– Превращение в «точке В», действительно, с внешней стороны ничем не проявляется, но оно сопровождается характерными признаками, которые могут быть наблюдаемы привычным и опытным глазом во время ковки стали. Таких признаков два: первый признак в том, что во время перехода стали через «точку В» поверхность ее, нагретая до красного цвета каления, начинает как бы морщиться и лущиться. Это происходит оттого, что легкий слой окалины на поверхности металла начинает растрескиваться и отделяться от металла в виде мельчайших чешуек. Второй признак такой: хотя температура стали при переходе через «точку В» почти не меняется и болванка, подвергающаяся ковке, сохраняет свой красный цвет почти неизменным, все же внешний вид поверхности ее выше и ниже «точки В» не одинаков.

Дальнейшее объяснение Чернова дает полное представление о его необыкновенной наблюдательности:

– Это различие при известном навыке привычный глаз легко обнаруживает, – говорил он. – Это различие можно сравнить с различием во внешнем виде белого мрамора и гипса. Когда вы бываете в музее, вы легко можете по одному взгляду различать мраморные и гипсовые статуи. И те и другие белого цвета, но мраморные статуи своеобразнее, они имеют как будто блестящий, маслянистый вид, тогда как у гипсовых статуй вид матовый, тусклый. Точно так же стальная болванка: выше «точки В» она имеет накаленную, красную, как бы маслянистую, блестящую мраморовидную поверхность, когда же она охладится ниже «точки В», она сохраняет тот же красный цвет, но поверхность ее тускнеет, утрачивает блеск и становится матовой, напоминающей вид гипсовых статуй.

Опираясь на свой верный и точный глаз, Чернов произвел, как мы увидим дальше, целый переворот в металлургии; но когда после двух лет напряженных занятий на заводе он вышел из угарных цехов, первое, что ему понадобилось, были очки, которых он уже не снимал до конца жизни.

Конечно, не все еще было понятно исследователю в том загадочном мире, таинственную завесу которого он приоткрыл; но одно было для него несомненно: что этот мир существует, что его законы доступны исследованию, что не только можно постигать эти законы, но что, зная их, можно сознательно и безошибочно управлять явлениями природы.

В апреле 1868 года, ясным петербургским вечером, уже предвещавшим приближение белых ночей, Чернов направился не на завод, как всегда, а в зал заседаний Русского технического общества.

Его доклад носил очень скромное название: «Критический обзор статей Лаврова и Калакуцкого о стали и стальных орудиях и собственные Д. К. Чернова исследования по этому же предмету», но значение сделанных им сообщений выходило далеко за пределы предмета.

В зале были и доброжелатели и критики, но, во всяком случае, докладчик имел дело с людьми сведущими. Многие из присутствовавших и сами пытались работать над разрешением проблемы стальных орудий.

Критическим разбором работ Лаврова и Калакуцкого Чернов воспользовался только для того, чтобы резче оттенить найденную им связь между тепловыми превращениями в стали и ее свойствами, чтобы резче подчеркнуть установленную им зависимость свойств и структуры стали от термической и механической ее обработки.

Этот молодой, мало кому известный инженер был более похож на преподавателя математики, нежели на исследователя, и с трудом верилось, что именно ему удалось проникнуть в сущность загадочного явления. Между тем он утверждал необычайные вещи. Он заявил собранию, что сталь не остается неизменной при нагревании, а в определенные критические моменты претерпевает особые превращения. Они изменяют ее структуру и свойства, и он, докладчик, установил критические точки нагревания, при которых происходят внутренние превращения стали.

Дмитрий Константинович объяснил, что одна из этих точек, названная им «точкой А», соответствует темновишневому цвету нагретой стали, вторая, «точка В», характеризуется красным цветом каления, и третья, «точка С», почти совпадает с температурой плавления данной стали.

Затем докладчик перешел к изложению своих взглядов на теоретическое и практическое значение этих критических точек, получивших теперь в науке название «критических точек Чернова».

– Сталь, нагретая ниже «точки А», не закаливается, – заявил он. – При дальнейшем нагревании, если нагревание не дошло до «точки В», сталь хотя и начинает принимать закалку, но по виду излома можно заключить, что в ней не совершается еще заметной перегруппировки частиц, потому что в этом случае и после медленного и после быстрого охлаждения структура стали остается та же, что и до нагрева… Если же нагревание дошло до «точки В», перегруппировка частиц совершается очень быстро, и после охлаждения сталь переменяет свою структуру из крупнозернистой в мелкозернистую. Следует предположить, что при прохождении через температуру «точки В» размягченные зерна, или кристаллы, стали слипаются между собою и образуют воскообразную массу аморфного сложения, которое при быстром охлаждении болванки, прошедшей критическую «точку В», остается уже без перемены. При медленном же охлаждении болванки, прошедшей температуру «точки В», масса стали распадется снова на отдельные зерна, или кристаллы, и степень этой кристаллизации будет зависеть от того, насколько выше температуры «точки В» была болванка нагрета, и от медлительности охлаждения. Этой обратной кристаллизации можно помешать быстрым охлаждением болванки до температуры ниже «точки В».

Практически это означало, что для получения мелкозернистой структуры, или «аморфной», обеспечивающей изделию высшие механические качества, надо нагреть это изделие до «точки В» или немного выше и затем быстро охладить.

К этому молодой инженер мог добавить, что с тех пор, как Обуховский завод стал руководствоваться при обработке орудийных стволов указанными им критическими точками, случаи разрывов пушек при испытаниях совершенно исчезли. Тем не менее большая часть слушателей нашла его выводы поспешными и смелыми. Отвечая критикам, Чернов сказал:


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации