Электронная библиотека » Лев Гумилевский » » онлайн чтение - страница 18

Текст книги "Русские инженеры"


  • Текст добавлен: 5 июня 2023, 13:40


Автор книги: Лев Гумилевский


Жанр: Исторические приключения, Приключения


сообщить о неприемлемом содержимом

Текущая страница: 18 (всего у книги 24 страниц)

Шрифт:
- 100% +

Для облегчения веса двигателя Можайский применил легкую сталь, сделал пустотелым коленчатый вал, штоки поршней. В результате по его проекту Русско-Балтийский завод создал двигатель, легче которого тогда не было в мире.

При испытаниях аппарата Можайский добился серьезного успеха: скатываясь по деревянной наклонной плоскости, заменявшей беговую дорожку, аэроплан Можайского набирал необходимую для взлета скорость и поднимался в воздух, совершая недолгий полет. При одном из повторных опытов, приподнявшись и отделившись от земли, аппарат потерял равновесие и упал крылом набок.

Таким образом, аппарат Можайского был первым в мире аэропланом, на котором впервые человек поднялся в воздух, осуществляя свою вечную мечту.

Если с точки зрения обывателя опыты Можайского и казались в свое время неудачными, передовые люди того времени, как свидетельствуют их воспоминания, научные и технические работники, инженеры чувствовали в этих первых робких полетах нарождающуюся эпоху воздухолетания. Не важно, что полеты Можайского напоминали скачки, что аппарат его лишь приподнимался на воздух, совершая движение в воздухе по прямой, измеряемой десятками сажен; важно то, что человек поднялся на воздух: все остальное было лишь вопросом дальнейшего технического совершенствования.

В наше время строители самолетов, обладая огромным опытом предшественников и большим запасом теоретических знаний, все же отделяют труд конструктора самолета от труда конструктора мотора. Можайскому приходилось быть и конструктором мотора и создателем самолета. Его таланта и сил хватило бы, чтобы справиться с задачей. Ему не хватило другого – денежных средств; по свидетельству его сына, он истратил на опыты все свое состояние. Получить же материальную поддержку от царского правительства Можайскому, как и многим другим изобретателям того времени, не удалось.

Трагическое положение разрешилось смертью изобретателя.

Таким образом, Александр Федорович Можайский первым построил чрезвычайно легкую летательную машину и первым показал возможность подняться на ней в воздух, чем наглядно подтвердил возможность свободного полета. Его самолету недоставало только легкого двигателя, но такого двигателя тогда ведь и не существовало. Когда был изобретен легкий бензиновый мотор, люди стали летать на аппаратах, построенных принципиально так же, как строился первый русский аэроплан.

* * *

Как показывают факты, летное дело не только зачиналось в России, но в нашей стране оно прошло и через все узловые пункты своего нынешнего развития. Так, уже в 1912 году был построен у нас, первый во всем мире, многомоторный самолет.


Зимние полеты «Ильи Муромца» в начале 1914 года


Это было очень смелое, невиданное еще предприятие. Зимою 1912 года Русско-Балтийский машиностроительный завод в Петербурге, не имевший ни опыта, ни оборудования для нового дела, стал строить самолет «Русский витязь» с четырьмя моторами «Аргус», по сто сил в каждом. Моторы были установлены попарно с каждой стороны нижнего крыла. В кабине этого первого гиганта помещалось восемь пассажиров. Пассажирская кабина и кабина летчика были закрытыми. На «Русском витязе» впервые была продемонстрирована возможность полета с одним неработающим мотором, на нем же впервые была показана возможность передвижения в фюзеляже без нарушения равновесия. Осенью 1913 года «Русский витязь», весивший без нагрузки почти три тонны, с семью пассажирами на борту поставил рекорд продолжительности полета, пробыв в-воздухе час и четыре минуты.

В следующую зиму тот же завод построил еще большую машину, получившую название «Илья Муромец». Были построены и другие машины этого типа. Опыт постройки и полетов «Ильи Муромца» открыл новые пути мировому самолетостроению, как и одновременно спроектированный у нас самолет «Святогор», превосходивший «Илью Муромца» и по грузоподъемности и по скорости.

Проектирование и постройка этих машин велись, когда не существовало еще правильного теоретического представления о целесообразной форме винта и крыла, а найденные опытным путем формы были еще очень далеки от совершенства. При таком положении дела резкий переход от легких конструкций одномоторного самолета к машине с четырьмя моторами потребовал не только творческой смелости, но и большого опыта и знания.

По чертежам самолета «Святогор» в аэродинамической лаборатории Московского высшего технического училища были сделаны модели, подвергшиеся испытаниям в аэродинамической трубе, после чего под руководством Н. Е. Жуковского был составлен подробный аэродинамический расчет «Святогора», который полностью подтвердил правильность выбранных конструкторами данных.

Инженер высшего ранга

Лет шестьдесят тому назад люди, которые ведали московским городским хозяйством, столкнулись с загадочным и непонятным явлением: то и дело без всякой видимой причины лопались прочные магистральные трубы водопроводной сети. Бедствие принимало такие размеры, что нашлись хозяева, считавшие нужным закрыть водопровод и возвратиться к прежней системе водоснабжения. Старая система, как известно, состояла в доставке воды бочками и ведрами из Москвы-реки и дворовых колодцев.

После некоторых размышлений Управление городским хозяйством создало комиссию для изучения странного явления. В комиссию решено было ввести профессора механики Московского высшего технического училища Николая Егоровича Жуковского. В приглашении этом не было ничего случайного. Когда водопровод проектировался и строился, к Жуковскому обращались за разрешением разных сложных вопросов и получали от него точные ответы в виде целых докладов и статей. Так, например, он установил, что колебание уровня подпочвенных вод связано с давлением барометра, и создал классический труд «О движении подпочвенных вод». Он даже продемонстрировал на докладе движение струек воды в песках.

Профессор Жуковский не только помог строителям составить себе представление о необходимой мощности водосбора для снабжения водой Москвы и выбрать место для станции. Он неожиданно оказал большую услугу конгрессу врачей в Вене: конгресс изучал вопрос о развитии эпидемий в связи с колебанием уровня подпочвенных вод. Труд московского ученого сыграл видную роль в занятиях и решениях съезда.

Для изучения причин бедствия, постигшего московский водопровод, Жуковский отправился на Алексеевскую водокачку под Москвой. Он указал комиссии, что одна из главных причин аварий магистральных труб – развитее сильного ударного действия воды в трубах, когда их быстро открывают или закрывают. Но надо было проверить свою догадку, исследовать явление так называемого гидравлического удара, распространение которого происходит по законам волн. Все происходящее в теснинах чугунных труб Жуковский представлял себе очень ясно и, пожалуй, даже угадывал основные черты закона, управлявшего водной стихией. Однако чтобы выразить этот закон с помощью формул, доступных общему пониманию, требовалось еще тщательно исследовать явление опытным путем.

По указанию Николая Егоровича на водокачке соорудили опытную сеть водопроводных труб разных диаметров. Сеть заставляли работать при самых разнообразных условиях. Электрические звонки, хронометры, пишущие аппараты сторожили каждое движение воды, каждое колебание труб. Опытная сеть была построена с большим остроумием и предусмотрительностью.

Прежде всего экспериментатор определил длину и скорость волны при гидравлическом ударе. Далее оказалось, что действительно все явления гидравлического удара, как и предполагал Жуковский, объясняются возникновением и развитием в трубах ударной волны, происходящей в несжимаемой жидкости от расширения стенок трубы. Инженеры, строившие водопровод, не обратили внимания на то, что когда задвижка или кран быстро закрываются, то вода останавливается, давление внезапно возрастает и это новое состояние с возросшим давлением передается по трубам по закону распространения волнообразного движения. Обстоятельство это строители упустили из виду, очевидно, потому, что имели дело с недостаточно длинными трубами: в коротких трубах, ввиду громадной скорости распространения ударной волны, поднятие давления кажется происходящим вдоль всей трубы одновременно.

Жуковский установил затем, что опасное возрастание гидравлического удара получается при переходе ударной волны из труб большого диаметра в трубы малого диаметра и что сила ударного давления удваивается, достигнув концов больших труб. Такое удвоение, нарастая, в конце концов, при особо неблагоприятных условиях, вызывает разрыв трубы.

Установив причину аварий, исследователю оставалось только предложить меры к их предотвращению. Жуковский предложил ввести краны с приспособлением для медленного закрывания. Когда их ввели, аварии, донимавшие московский водопровод, прекратились.

Но этим дело не кончилось. Водопроводные аварии и медленно завинчивающиеся краны для Жуковского были только внешней, практической стороной дела. Истинная наука начиналась дальше этих границ, а Жуковский был великий ученый. Он заглянул гораздо глубже в сущность стихии и, возвратившись в практический мир, предложил нечто похожее уже на колдовство. Он, видите ли, нашел способ определять место аварии, не выходя из водокачки, не дожидаясь, чтобы вода в месте разрушения трубы выступила на поверхность мостовой. Секрет заключался в том, чтобы создать искусственный гидравлический удар на водокачке и затем взглянуть на ударную диаграмму; пользуясь теоретическим построением Жуковского, оказалось возможным точно определять место, где происходит утечка воды.

Когда старых рабочих-водопроводчиков прислали впервые на спокойную улицу с сухой и чистой мостовой и сказали им: «Ройте, тут лопнула труба!» – они посмотрели на инженера так, как будто тот сошел с ума или решил пошутить. Сняв верхний покров мостовой, люди молча приступили к работе. Они видели в этом неуважение к их труду, казавшемуся заведомо напрасным и бесполезным. Молодой инженер ждал, закусив губы. Люди шумно швыряли землю, но ждать пришлось недолго. За песчаным слоем последовала глина, напитанная до отказа водою, и вслед за тем захлюпала жидкая грязь: место разрыва трубы было определено по диаграмме с точностью до одного метра!

Так была решена профессором Жуковским задача о величине гидравлического удара и о скорости его волны.

Когда Жуковский 26 сентября 1897 года делал доклад об этом решении в Политехническом обществе, деловой вечер обратился в триумф отечественной теоретической науки и ее блестящего представителя. Слушателям было ясно, что они присутствовали на докладе мирового значения. И действительно, работа Жуковского «О гидравлическом ударе в водопроводных трубах», переведенная почти на все языки, стала теоретической основой для совершенствования всех гидравлических машин. Московский профессор рассеял туман, окутывавший многие вопросы, связанные с работой таких машин. Гидротехники получили возможность производить точные расчеты не только в водопроводном деле. Прежде всего были созданы правильные конструкции гидравлических таранов; тараны работали до тех пор очень плохо, так как наука не имела исходных положений для расчета длины трубы, подводящей воду. Как обеспечить наивыгоднейшее использование в таране гидравлического удара, никто не знал.

Попав в сферу влияния научных идей русского ученого, гидравлический таран начал жить заново. Без всяких дополнительных сооружений, без насосов, плотин и моторов тараны сейчас в наших колхозах подают из ложбин и овражков с текучей водой высоко наверх в коровники и конюшни живую струю.

Таковы теоретические и практические результаты решения одной из задач, изученных знаменитым ученым. За долгую свою жизнь Жуковский решил несколько сотен таких задач. И все эти задачи были труднейшими из предложенных мировой науке и технике практическими работниками самых разнообразных областей жизни.

Метод решения этих задач у Жуковского никогда не менялся. Он начинал с теоретического построения, основанного на глубоком понимании физической сущности явления, и, опираясь на свой разносторонний инженерный опыт, кончал практическим предложением.

Таким именно образом, например, подверг он дальнейшей разработке «Гидродинамическую теорию» Н. П. Петрова. В первой своей статье по этому вопросу, озаглавленной «О гидродинамической теории трения хорошо смазанных тел», Жуковский указывает на затруднения, с которыми приходится практикам встречаться, принимая теорию Петрова.

«В основу своей теории, – говорит Жуковский, – автор берет задачу о движении жидкого слоя между двумя вращающимися концентрическими поверхностями круглых цилиндров в предположении, что гидродинамическое давление вдоль всего слоя постоянно, во всех же приложениях он имеет дело с подшипниками, в которых упомянутый слой в некоторых местах находится под атмосферным давлением, так что по смыслу рассматриваемого движения жидкости давление вдоль всего слоя должно быть также равным атмосферному давлению. Откуда же берется сила, уравновешивающая давление шипа на подшипник?»

Отвечая на этот вопрос, Жуковский не только находит объяснение, но и дает формулу гидродинамического напора, поднимающего подшипник.

Во второй статье – «О движении вязкой жидкости, заключенной между двумя вращающимися эксцентрическими цилиндрическими поверхностями» – Жуковский исследует вращение шипа в подшипнике в другом случае, когда оба они вращаются в противоположных направлениях с одинаковой угловою скоростью. Наконец в третьей статье, написанной совместно с А. С. Чаплыгиным – «О трении смазочного слоя между шипом и подшипником» – Жуковский и его первый ученик дают полное и окончательное решение интересующей их задачи.

Вопрос, поставленный Н. П. Петровым, был теоретически исчерпан в этих работах. Но этого мало. Для определения вязкости смазочных масел Н. П. Петров устроил весьма точный прибор, требующий, однако, продолжительных наблюдений и вычислений. Положив в основу тот же принцип течения масла в тонких трубках, Жуковский построил свой прибор, который позволяет делать наблюдения очень быстро и с достаточной точностью.

В разные периоды своей ученой деятельности Жуковский занимался и вопросом о прочности велосипедного колеса, и вопросом о наивыгоднейшем угле наклона аэроплана, и вопросом о рациональной форме корабля. С исчерпывающей полнотой, вплоть до демонстрации механических моделей, он отвечал и на вопрос, почему кошки при падении всегда падают на лапы, и на вопрос, почему из фабричных труб дым выходит клубами, и на тысячу других больших и малых вопросов. Он дал ясное объяснение явлений кровообращения в человеческом организме и явлений кавитации гребного винта. Он делал доклады о парении птиц, о движении прямолинейных вихрей, о сопротивлении воздуха при больших скоростях, о движении вагонов по рельсам, о снежных заносах, о ветряных мельницах, о качке кораблей и еще о множестве других разнообразных явлений, которые служили ему только поводом для теоретических построений огромного и широчайшего значения.

Самое большое практическое значение среди всего, что сделал Жуковский, получили его работы по вопросам авиации и воздухоплавания.

Этими работами, доставившими ему мировую славу, он воздвиг себе нерукотворный памятник и завоевал почетное имя «отца русской авиации».

Но мы должны все-таки указать, что из девяти томов сочинений Жуковского вопросам авиации посвящен только один.

Уже в раннюю пору своей научной работы Николай Егорович не сомневался в возможности осуществления динамического полета.

– Птицы летают, почему же человек не может летать? – говорил он.

Жуковский начал свою ученую деятельность как гидродинамик; он много занимался вопросами чистой математики, теоретической и прикладной механики, всегда отзываясь на запросы живой практики. Но время от времени он выступал с докладами и по вопросам воздухоплавания и авиации. После доклада «К теории летания», состоявшегося в 1890 году, и знаменитой работы «О парении птиц», вышедшей в 1892 году, появляется его статья «О наивыгоднейшем наклоне аэропланов».


Рисунок Н. Е. Жуковского, доказывающий возможность совершения мертвой петли планером. Из работы «О парении птиц», 1892 год


В первой из этих работ Жуковский решает вопрос о происхождении силы тяги у тела, которое как бы внутренними силами перемещается в воздухе. Он доказывает, что сила тяги не может получиться, если не учитывать трения и если считать, что при таком движении происходит плавное обтекание тела, без образования срывов воздушных струй. Не решая окончательно вопроса о том, трению или срыву струй обязана своими образованиями сила тяги, Жуковский склоняется к мнению, что сила тяги возникает вследствие трения.

За несколько лет до того, как поднялся в воздух первый планер, Жуковский в статье «О парении птиц» дал объяснения тому, каким образом птицы могут парить в воздухе с неподвижно распростертыми крыльями, и теоретически доказал, что можно построить аппараты для искусственного парения – планеры, которые будут устойчивыми в воздухе и даже смогут совершать «мертвые петли». Много позже первую в мире мертвую петлю, возможность которой доказал Жуковский, осуществил русский летчик Нестеров.

Доказав в статье «О парении птиц» возможность создания устойчивых в воздухе летательных аппаратов, Жуковский в новой работе – «О наивыгоднейшем наклоне аэропланов» – решает задачу о нахождении наивыгоднейшего угла наклона, что имеет решающее значение при проектировании самолета.

Таким образом, к тому времени, когда жизнь предъявила к теоретической авиации свои требования и когда состоялись первые полеты, Жуковский, внимательно следивший за всеми новостями в этом деле, оказался во всеоружии тех знаний, которые нужны были для создания теоретических основ авиации.

Как только были совершены первые робкие полеты на аппаратах тяжелее воздуха, тотчас же перед наукой стал вопрос, выдвинутый практической авиацией: откуда берется подъемная сила у крыла и, главное, каким теоретическим способом можно ее вычислить?

Насколько Жуковский был готов ответить на этот основной вопрос, видно из того, что уже в 1906 году он дал в своей работе «О присоединенных вихрях» и правильный ответ на вопрос и формулу, позволяющую произвести расчет сил, действующих на крыло.

Статья эта появилась в результате сделанного Жуковским замечательного открытия. Он открыл, что, кроме всех известных типов течений газа или жидкости, есть еще один тип, при котором образуется особенная сила, получившая название «сила Жуковского». Благодаря этому открытию стали понятными все явления, происходящие в воздухе близ летящего тела, была создана полная теория крыла моноплана, началось строительство современных самолетов, имеющих толстое крыло с острой задней кромкой, и авиация получила то развитие и то значение, которые теперь всем известны.

Жуковский показал, что механизм образования подъемной силы у хорошо обтекаемой «дужки», какою является крыло, не сводится к сопротивлению. Наличие подъемной силы обусловлено тут не сопротивлением, как у змея, а разностью скоростей под крылом и над крылом, или, как говорят, «циркуляцией» воздушных струй вокруг крыла.

Это открытие Жуковского и до сих пор остается предметом величайшего внимания аэродинамиков во всем мире.

А. А. Микулин, вспоминая о Н. Е. Жуковском в двадцатую годовщину его смерти, писал в заключение:

«Имя Н. Е. Жуковского известно во всем мире. Помню, однажды в 1935 году мы приехали с комиссией осматривать лабораторию Кембриджского университета в Англии. В большой аэродинамической трубе гудел ветер, английские инженеры и профессора вели наблюдения за приборами и вели записи в протоколах. По окончании эксперимента мы спросили, что они изучают? С уважением к великому имени нам ответили: «Дужку Жуковского!»

Ученик и ближайший сотрудник Жуковского академик Л. С. Лейбензон вспоминает, что впервые мысль о роли циркуляционных потоков в образовании давления, которое испытывают обтекаемые воздухом крылообразные тела, возникла у Жуковского осенью 1904 года, при наблюдении полетов воздушного змея. За этим наблюдением последовала догадка, проверке которой Жуковский посвятил два года. После многих опытов и размышлений Жуковский установил тот закон, который получил во всем мире его имя.


Листок из записной книжки первого русского военного летчика Нестерова. Схема «петли Нестерова» (мертвой петли), сделанной Нестеровым 27 августа (9 сентября) 1913 года.

Автограф летчика.


Закон этот гласит:

«Подъемная сила равна по величине произведению плотности воздуха, циркуляции и скорости потока, а направление ее получается поворотом скорости потока на прямой угол в сторону, обратную циркуляции».

До открытия Жуковского единственным источником подъемной силы приходилось считать, при отсутствии трения, образование срывов при отрыве струй от поверхности обтекаемого тела. Жуковский указал другой возможный источник образования силы – присутствие добавочного циркуляционного движения вокруг обтекаемого тела. Он открыл, таким образом, совершенно новый тип течений – течений, плавно обтекающих тело, но с присоединенным «циркуляционным» вихревым потоком.

Понадобилось, однако, еще много времени, труда, опытов и размышлений для того, чтобы ответить на вопрос, откуда берется этот добавочный циркуляционный поток и как определить величину циркуляции вокруг крыла.

Только в 1910 году удалось Н. Е. Жуковскому ответить с предельной ясностью на этот вопрос. Известный под названием «основной гипотезы Жуковского» ответ этот практически сводится к тому, что циркуляция образуется при наличии у обтекаемого тела острых кромок. Так как при плавном обтекании, согласно открытому Жуковским закону, подъемная Сила возникает только благодаря добавочному циркуляционному потоку, то для крыла необходима острая кромка. Таким образом, теоретически удалось выяснить, что наивыгоднейшей формой крыльев в авиации будут крылья с острой кромкой.

Такие крылья и стали применяться конструкторами.

После всех этих открытий Жуковского в авиации стали пользоваться исключительно течениями с циркуляцией, так как при прочих равных условиях подъемная сила, возникающая благодаря добавочному циркуляционному потоку, намного больше, чем подъемная сила, возникающая при срыве струй.

При малых углах атаки крыло самолета как раз и находится в воздушном потоке с циркуляцией.

После всех этих теоретических открытий оказалось возможным не только создать полную циркуляционную теорию крыла, но и чисто теоретическим путем рассчитать его подъемную силу.

Метод расчета, как мы увидим дальше, разработал первый ученик Жуковского – Сергей Алексеевич Чаплыгин.


Николай Егорович Жуковский (1847–1921)


Предоставив своим русским ученикам и иностранным последователям дальнейшую разработку теории крыла, Жуковский сам обратился к более частному случаю винтового пропеллера. Надо заметить, что лопасть винта также представляет собой крыло, с той разницей, что крыло при движении самолета перемещается только поступательно, в то время как лопасть винта совершает гораздо более сложное движение, одновременно вращаясь около оси винта и перемещаясь вместе с самолетом.

Фотографии одного исследователя, работавшего над корабельными гребными винтами, побудили Николая Егоровича заняться головоломной задачей о движении винта. Жуковский заметил, что на фотографиях работающих винтов видны светлые полоски, имеющие вид винтовых линий, сбегающих с концов лопастей. По мнению Жуковского, эти полоски указывали направление осей тех вихрей, которые сбегали с лопастей винта. Высказав эту гениальную догадку, он обратился к проверке своей мысли и в результате в 1912 году опубликовал знаменитую «Вихревую теорию гребного винта».

Вихревая теория позволила сразу же вывести формулы для расчета силы тяги винта и мощности двигателя, который необходим для его вращения. Оказалось также возможным теоретически указать наиболее выгодную форму винта. Такие винты получили в честь Н. Е. Жуковского название винтов «НЕЖ».

Вихревая теория гребного винта, конечно, может быть распространена и на крыло. Она рассматривает различные схемы вихрей, образующихся за лопастью, и изучает влияние этих вихрей на распределение скоростей в потоке. В ней рассматривается также сила лобового сопротивления, которая получается за счет образования определенного вида вихрей. Это последнее, так называемое индуктивное, сопротивление, сложенное с сопротивлением от трения и различных побочных вихреобразований, и дает то общее лобовое сопротивление, которое встречает движущееся в воздухе крыло.

Как истинный гений, Жуковский рассыпал вокруг себя идеи, не заботясь о том, кому они будут приписаны. За всю свою жизнь он не запатентовал ни одного своего изобретения, а когда однажды по настоянию своих учеников согласился было это сделать, то сам же лишил себя права на патент, не отменив опубликования изобретения до выдачи привилегии.

«Не отвлекаясь ничем преходящим, лишь в меру неизбежной необходимости отдавая дань потребностям жизни, он все свои гигантские силы посвящал научной работе. Его цельная натура была беззаветно посвящена этому труду», – говорит о нем С. А. Чаплыгин.

Жуковский родился 17 января 1847 года. Он был сыном инженера, одного из строителей Нижегородской шоссейной дороги, впоследствии скромно занимавшегося сельским хозяйством в своем имении, в деревне Орехово Владимирской губернии. Мальчик рос в доме исконно дворянском, хотя далеко не богатом. Все в этом доме делалось на французский лад; не только воспитание, но даже мысли и чувства здесь определялись манерами, перенятыми у французов.

Случилось, однако, так, что учителем старшего брата оказался не только хорошо воспитанный, но и прекрасно образованный человек, да к тому же еще пылкий фантазер. Это был студент А. X. Репман. Он нашел прилежного слушателя в младшем члене большого семейства и легко привил ему любовь к чтению фантастических романов и повестей о путешествиях, о необычайных приключениях на земле, под водой и за облаками.

И вот этот мир, населенный не столько учеными и исследователями, сколько пиратами и разбойниками, мир, где не церемонились поклонами и снимали скальпы с живых людей проворнее, чем хозяйка дома приподнимала крышку с суповой миски, этот мир заворожил мальчика и пробудил его к действию и размышлению.

В Московской 4-й гимназии, куда отвезли юного Жуковского, он был первые три года очень плохим математиком. Математику в 4-й гимназии преподавали Малинин и Буренин – авторы распространеннейших учебников в России. Арифметика не давалась мальчику не то по причине его рассеянности, не то из-за угнетающего действия тогдашней системы ее преподавания, основанной на бессмысленном заучивании правил.

Скорее всего, однако, по самому складу своего ума Жуковский мог воспринимать мир и понимать отношения в нем только геометрически, в виде предельно ясных образов, обнаженных геометрических отношений. Жуковский не любил цифр и расчетов в отвлеченном виде и у Малинина учился плохо. Но у Буренина, преподававшего геометрию, он вдруг оказался лучшим учеником, что, впрочем, суеверная мать Жуковского приписала исключительно благословению митрополита Филарета, к которому она однажды подвела мальчика.

Окончив курс в гимназии, Жуковский поступил на математический факультет Московского университета. Он охотно предпочел бы один из тогдашних политехникумов, но в университете читали лекции известные тогда ученые Давидов, Слуцкий, Цингер, и юноша примирился с судьбой, тем более, что уже с первого курса начал участвовать вместе со своими учителями в занятиях математического кружка. Из этого кружка впоследствии выросло знаменитое Московское математическое общество.

В те годы Жуковский вел жизнь, типичную для многих русских студентов. Он жил в комнатке, названной товарищами «шкафчиком», и когда причесывался, гребенкой задевал потолок. Он бегал по городу, давая уроки отсталым ученикам, и издавал литографским способом лекции, им самим аккуратно записанные и имевшие в его редакции большой успех. Уже в этой работе сказывалось характеризующее Жуковского стремление к ясности, к определенности.

В 1868 году университетский курс был закончен. Жуковского все еще тянуло в политехникум. Он тяготел к практической деятельности и мечтал стать инженером, как его приятель Щукин. Друзья вместе отправились в Петербург и поступили в институт путей сообщения. Но тут профессора занимались не выяснением руководящих научных идей, а простым изложением фактического материала, потребного для повседневной практики. Студентов учили считать и чертить, к чему Жуковский не имел ни охоты, ни способностей. Через год он провалился на экзамене по геодезии и решил, что инженера-практика из него никогда не выйдет, что не в этом дело его жизни. Он оставил институт и неприятный ему холодный Петербург.

Из-за болезненного состояния он должен был провести целый год в Орехове, а осенью 1870 года вернулся в Москву и стал преподавать физику в женской гимназии. Вскоре ему поручили преподавание математики в Московском высшем техническом училище, которого он уже не покидал до самого конца жизни.

Оторванному от университета молодому ученому не легко далась его первая научная работа – «Кинематика жидкого тела», которую он представил на соискание ученой степени магистра. Это был первый вклад Жуковского в гидродинамику. Отвлекаясь от вопросов взаимодействия физических тел и учитывая лишь их внешнюю форму, Жуковский рассматривал жидкость с чисто геометрической стороны, или, как говорят, «кинематически», и пришел к ряду ценнейших заключений.

«Существуют такие умы, которые могут с удовлетворением рассматривать чистые количества, представляющиеся глазу в виде символов, а разуму в форме, которую не может понять никто, кроме математиков, – говорит знаменитый английский ученый Джемс Максвелл. – Другие получают большее удовлетворение, следя за геометрическими формами, которые они чертят на бумаге или строят в пустом пространстве перед собой. Иные же не удовлетворяются до тех пор, пока не перенесутся в созданную ими обстановку всеми своими физическими силами. Для этих людей момент, энергия, масса не являются просто отвлеченным выражением результатов научного исследования. Эти слова имеют для них глубокое значение и волнуют их душу, как воспоминания детства».

Чисто конкретное, образное художественное мышление, каким обладали, скажем, Пушкин или Гоголь, и мышление чисто отвлеченное, мышление Лобачевского или Чаплыгина, так же как и ум геометра, – явления редкостные: они предвещают гения. Однако система конкретного художественного мышления и даже система обычного отвлеченного математического мышления доступнее нашему пониманию, может быть, оттого, что эти системы несравненно более исследованы, а может быть, еще и потому, что они более приближаются к нашим собственным.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации