Текст книги "Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу"
Автор книги: Малкольм Фрэнк
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]
Это фаза, когда инновации смещаются с радикальных окраин в мейнстрим. Это время «демократизации» инноваций, когда новые идеи, изначально применявшиеся в очень концентрированной среде, распространяются на гораздо более широком пространстве.
Это произойдет в течение нескольких следующих десятилетий, когда институты, служащие столпами нашего общества – банки, страхование, здравоохранение, образование, транспорт, правоохранительные органы, правительство, – применят силу новых машин и переведут алгоритмы своих действий на цифровые технологии.
Хорошо, достаточно экономической теории. Мы предприняли это короткое путешествие в историю и экономику (выводы на рис. 2.4), чтобы предварить разговор о том, что происходит в настоящее время, и указать, что все очевидно свидетельствует о нашем нахождении не на пути к концу времен, а к распространению Четвертой индустриальной революции. Все предыдущие индустриальные революции проходили тот же базовый цикл из инновационного пузыря, застоя и взрыва. Цифровая революция не станет исключением, и есть три серьезные причины того, что мы близки к переходу к широкому, повсеместному цифровому росту.
Рисунок 2.4. Три фазы S-образной кривой
Три серьезных причины того, почему вот-вот произойдет взрыв
Как мы это видим, переход к фазе распространения будут двигать три параллельных крупных тренда:
• Ubiquitech (Ubiquitech от лат. ubique – «везде», «повсюду», и technica) – технология внедряется во все. По мере того как в жизнь будет воплощаться система контроля предметов с помощью Интернета «Интернет вещей» (Internet of Things, или IoT), почти все станет проникнутым техникой, связанным и умным. Когда техника повсюду, изменения могут прийти откуда угодно.
• По стандартам 2030 года, мы дурно пахнем. В 2030 году мы будем смотреть на многие аспекты сегодняшнего общества и удивляться: «И как мы это терпели?» Нам нужно решить важные проблемы с новыми машинами, а в процессе будут сформированы массовые новые формы потребностей.
• Стать цифровыми – создать Три М (сырьевые Материалы, новые Машины и бизнес-Модели). Предприятия «становятся цифровыми», организуя сотрудников и процессы вокруг возможностей новых машин. Из застойной зоны возникает все больше и больше новых успешных бизнес-моделей, что ведет к перегруппировке рейтингов в индустрии после индустрии.
Давайте разберемся с тремя этими явлениями.
Ubiquitech – технология внедряется во всеВ следующие десять лет все вокруг нас окажется технически оснащенным и связанным. «Интернет вещей» – обобщающее понятие, описывающие внедрение компьютерных функций в устройства и объекты, у которых прежде таких функций и способностей не было, а также подключение их к Интернету. Представьте свои туфли, терморегулятор или фен для волос, уличное освещение вашего города или парковочные счетчики, а еще многочисленные детали реактивного лайнера, сборочного конвейера или электросети.
Рисунок 2.5. Наш подключенный мир
В некоторых случаях цифровая «магия» относительно ограничена8. Например, сегодня лампочка может иметь сенсор, сообщающий, что стало темно, тогда лампочка будет включаться сама. В других случаях вещь может быть гораздо более сложной. Можно подключить целый дом, тогда, по сути, он становится компьютером в сети – «умным домом». Не только лампы, но и двери, окна, температура, системы безопасности, развлекательные системы и кухонное оборудование могут быть запрограммированы на автоматическое выполнение определенных задач. Более того, все это может контролировать хозяин, находящийся в пяти шагах или в пяти тысячах миль от дома.
Распространение этих возможностей – превращение каждой «вещи» в доступную для интернет-протокола – происходит с головокружительной скоростью, масштаб роста вселенной «вещей» сбивает с ног, его трудно осознать. Например:
• Cisco Systems полагает, что количество подключенных устройств к 2020 году вырастет до пятидесяти миллиардов9. Intel заходит еще дальше, предполагая, что к тому времени будет подключено к связи двести миллиардов устройств10.
• McKinsey предсказывает, что к 2025 году мировые траты на устройства и сервисы для «Интернета вещей» достигнут одиннадцать триллионов долларов11.
• IDC ожидает, что в том, что касается «носимых устройств», составляющих важный элемент этого рынка, мировые поставки вырастут с 76,1 миллиона штук в 2015 году до 173,4 миллиона в 2019-м12.
• Упомянутый выше сценарий «умного дома» станет значительной зоной роста; согласно Harbor Research and Postscapes, в 2014 году, будучи еще в младенческом состоянии, он принес прибыль в 79,4 миллиарда долларов13. Ожидается, что эта цифра вырастет до 398 миллиардов, поскольку повсеместное распространение информации об этих умных приложениях продолжается14.
• С каждым днем становится «умнее» автоиндустрия. Еще до того, как машины станут полностью автономными («беспилотными»), они будут все более походить на полностью подключенные к системам связи передвижные центры обработки и передачи данных. К 2020 году 90% машин будут онлайн, в сравнении лишь с 2% в 2012 году15.
• По оценке General Electric, рынок «Индустриального интернета» за следующие двадцать лет добавит мировому ВВП от 10 до 15 триллионов долларов16.
Конечно, все это лишь прогнозы, и относиться к ним нужно со здоровым скептицизмом. Однако, какими бы ни оказались реальные цифры, нет сомнения, что линии тренда тянутся только в одном направлении. Следующее поколение умных устройств будет иметь колоссальное значение практически для любого вида бизнеса.
Тем не менее в реальности мы лишь наметили очертания этой «умной» волны. Мы уже можем видеть тексты и частоту ударов сердца на Apple Watch – конечно, это круто, но почему они не могут делать намного больше? Почему Alexa от Amazon не может управляться со всем нашим домом? Почему термостат Nest не может отслеживать в доме протечки и другие страховые риски? В свое время все это произойдет, и миллион других подобных «умных сценариев» перестанет быть научной фантастикой и станет просто нашей реальностью.
Однако улучшения в сфере развлечений и организации быта не окажут на широкий экономический контекст влияния, достаточного, чтобы привести нас от застоя к взрыву. А то, что уже начинает происходить и действительно имеет потенциал поднять все наши корабли, – это применение идей «Интернета вещей» к критически важным для достижения цели отраслям экономики, таким как здравоохранение, транспорт и оборона. Это уже начало радикально менять работу, имеющую значение.
Гораздо больше умных девайсов мы рассмотрим в главе 8. А сейчас просто осознайте, что скоро вашей базовой позицией станет добавление измерительных инструментов всем вашим действиям, товарам и покупательскому опыту.
По стандартам 2030 года мы дурно пахнемТак же как мы подтруниваем над родителями, бабушками и дедушками за уборную во дворе, черно-белые телевизоры и машины без ремней безопасности, распространенные в их годы, дети будут дразнить нас за то, какими недоразвитыми и странными были сегодняшние инструменты. Они будут смотреть и удивляться: «И как только люди могли так жить?»
Если у вас есть маленькие дети, представьте, что пятнадцать лет спустя сидите за ужином с подростками и рассказываете о мире, в котором они родились. После смешков по поводу Джастина Бибера, семейства Кардашьян («Что, вообще, это было?»), бородах хипстеров и хэштегах, разговор может перейти к более приземленным вещам. Например, вы можете рассказать, через что приходилось пройти, чтобы починить машину.
Вам знаком этот сценарий в сервисном центре своего автодилера: вы сидите там с дюжиной незнакомцев, пьете безвкусный кофе, смотрите CNN по телевизору, включенному на 10 дБ тише комфортного уровня. В вашей голове начинает складываться вопрос: «Как долго это продлится? Успею я вовремя обратно в офис? И действительно ли я доверяю тому, что механик скажет об объемах и стоимости ремонта?» Десять лет спустя ваша машина с помощью самодиагностики точно определит, что с ней не так, оценит примерную стоимость ремонта и запишется к дилеру на обслуживание, сверившись с календарем. А потом, когда машина выедет с вашей офисной парковки и доставит себя на ремонт, вы сможете подумать о том, как много терпели, и о цене упущенных возможностей, которых было так много в доцифровую эру.
В 2030 году пятнадцатилетние будут удивляться, как мы не знали за несколько дней наперед, что сляжем с простудой. Что каждый школьный ученик не имел совершенно четкого понимания личного стиля обучения и опорной индивидуализированной программы обучения, чтобы развитие шло максимально эффективно. Что, попадая к врачу и нуждаясь в экстренной помощи, человеку приходилось тратить время на предъявление страховки и ожидание в очереди вместо того, чтобы личная история здоровья, а также фото и видео травмы были высланы вперед, а по прибытии у дверей пациента ожидала команда хорошо подготовленных докторов.
Неэффективность нашей индустриальной эпохи может казаться ужасной, но кто-то, имеющий предпринимательскую жилку, видит в проблемах и помехах бизнес-возможности по устранению этих недостатков. Новые машинные, цифровые решения, распространенные по всем отраслям, будут направлены на мириады общественных проблем, а в процессе будут создавать огромную экономическую ценность. Так что технологии, скорее, не предрекают конец среднего класса, а обещают стать двигателем массовой финансовой экспансии.
Вот что здесь важно: думая о цифровых решениях и искусственном интеллекте, мы часто фокусируемся на влиянии технологии на мир, который знаем. Многие критики сразу переходят к вопросу «Как много рабочих мест уничтожат машины?», хотя в действительности надо спрашивать: «Что эта технология может улучшить?» Ответом будет – «огромное количество вещей», поскольку, глядя с точки зрения 2030 года, можно понять, как многое должно измениться.
Чтобы лучше осознать объем и масштаб этой возможности, мы в «Центре осмысления будущего работы» вместе с экономистами из Roubini ThoughtLab (ведущая независимая макроэкономическая исследовательская фирма, основанная известным экономистом Нуриэлем Рубини (Nouriel Roubini) изучили две тысячи компаний по всему миру на предмет экономического воздействия новых машин. Наше исследование, проведенное в начале 2016 года, было сосредоточено на нескольких, центральных для экономики отраслях, которым предстоит стать по-настоящему цифровыми (например, ритейл, банки, страхование здоровья, имущества и транспорта, промышленность и медико-биологические науки), которые вместе приносят сегодня более шестидесяти триллионов долларов дохода (примерно 40% ВВП)17.
По ответам респондентов, примерно 6% этого дохода было получено с участием цифровых технологий, однако за следующие три года эта цифра почти удвоится и составит 11,4%. Сравнив, мы поймем, что «Цифровая республика», если бы была отдельным государством, вскоре стала бы экономикой в 6,6 триллиона долларов, третьей экономикой в мире после США и Китая и почти равной в числе лошадиных сил с экономиками Германии, Великобритании и Австрии в 2015 году вместе взятых. Поскольку имеющая значение работа становится все более цифровизированной, привлекая машины с ИИ, огромное экономическое расширение должно вот-вот произойти.
Стать цифровыми: создать Три МПри взгляде на цифровую экономику у всех создается ощущение, что землю унаследуют недавние стартапы. В конце концов, кто сможет остановить инерцию движения таких богатых и массовых компаний, как Amazon, Google, Facebook и Uber? Где окажутся столетние или даже сорокалетние компании? Что насчет них? А собственно, окажутся в очень хорошем месте… если будут двигаться быстро.
Рисунок 2.6. Три М в Большой революции в бизнесе и технологии
С нашей точки зрения, давно сложившиеся компании находятся в потрясающе хорошей позиции для цифрового расширения. Дело в том, что перед совершением шагов, необходимых на следующем этапе пути к имеющим значение цифрам, у них уже есть нужное преимущество. Они понимают свои рынки, продукты и соответствующее законодательство лучше, чем кто-либо. И у компаний есть все возможности получить нужные сведения об операциях и рынках с помощью «Интернета вещей». Однако им все еще нужно совместить Три М.
Эти Три М относятся к (сырьевым) материалам, (новым) машинам и (бизнес-) моделям. В дальнейшем мы посвятим отдельные главы тому, насколько необходим каждый из этих элементов для победы в цифровом взрыве. Пока речь идет о том, что три этих элемента должны быть интегрированы и настроены на создание ценности. Почему? Давайте посмотрим на то, как комбинация из этих трех элементов двигала главные технологические и бизнес-сдвиги прежде.
Как эти Три М были исторически взаимосвязаны, показано на рисунке 2.6.
В нашем сегодняшнем контексте Три М это:
• Сырьевые материалы: данные, передаваемые устройствами из «Интернета вещей» и оснащенными контрольно-измерительными приборами людьми, местами и вещами.
• Новые машины: интеллектуальные системы, совмещающие оборудование, ПО с искусственным интеллектом, данные и человеческий вклад в создание ценностей, согласующихся со специфическими бизнес-процессами и покупательским опытом.
• Бизнес-модели: коммерческие модели, монетизирующие основанные на интеллектуальных системах услуги и решения.
Возможно, лучший пример совмещения Трех М даст компания, которой намного больше ста лет.
Сегодня многие верят в легенду о Генри Форде как об изобретателе автомобиля. Он его не изобрел. Когда Форд организовал Ford Motor Company, это была на самом деле его третья автомобильная компания (первая провалилась, а вторая превратилась в Cadillac), и только в одном Детройте у него были десятки конкурентов, в том числе Oldsmobile, Packard и Buick.
Что действительно изобрел Генри Форд, что стало его величайшим даром, так это совмещение Трех М его времени с изначальным фокусом на третьей М. Он создал бизнес-модель, основанную на сборочной линии, что радикально изменило цену автомобиля и стандарты качества. Объединение Трех М позволило Форду начать массовое производство машин (превратив их из игрушки для богача в необходимую вещь для масс), выиграть в конкурентной борьбе, переформировать транспортную систему и переформировать общество.
В последующих главах мы более детально обсудим, как Три М повлияют на вашу организацию и работу.
Новые бизнес-модели формируются в Зоне застояЗона застоя жизненно важна, поскольку материалы и машины бывают поняты задолго до того, как могут быть приняты соответствующие бизнес-модели.
Отправной точкой для по-настоящему цифровой бизнес-модели или специфического бизнес-процесса, или для обсуждаемого нами покупательского опыта не должно быть «Как нам это сделать лучше/быстрее/дешевле с добавлением новой технологии?». Вопрос должен быть таким: «Если бы цифровые технологии были доступны в момент, когда мы разрабатывали этот процесс, мы структурировали бы его по-другому?» Первый подход демонстрирует Blockbuster, который помещает интернет-торговлю поверх розничной торговой сети. Плодами последнего подхода пользуется Netflix, который с самого начала задумывал основные процессы как цифровые.
В настоящее время отраслевым лидером, проводящим трудную работу по реконфигурации себя вокруг Трех М для вступления в цифровую экономику, выступает General Electric. Созданная в 1892 году, GE – это старейшая компания, внесенная в списки Нью-Йоркской фондовой биржи, так что лучшего образца для подражания среди индустриальных компаний просто не найти. Она удерживает лидерство в производстве силовых турбин, самолетных двигателей, приборов освещения и локомотивов, однако в настоящее время становится и чем-то еще намного большим.
Генеральный директор GE Джефф Иммельт (Jeff Immelt) признал необходимость сочетать данные, интеллектуальные системы и новые бизнес-модели, чтобы побеждать на поле цифровой индустриальной экономики. Он отметил: «Если вчера вы легли спать как индустриальная компания, то сегодня утром проснетесь как программная и аналитическая»18.
Руководители GE предпринимают тактические шаги для того, чтобы переход к Четвертой индустриальной революции произошел через создание того, что они называют «первая в мире цифровая индустриальная компания». В последние годы они полностью погрузились в Ubiquitech, помещая сенсоры практически в любую изготовленную «вещь», чтобы создавать новые сырьевые материалы. GE инвестировал в разработку административной платформы «Интернета вещей» (Predix) – интеллектуальной системы компании. GE не упускает из виду новые бизнес-модели. Сейчас он продает уникальную информацию, основанную на сырьевых материалах, открывая совершенно новые линии бизнеса. По сути, сейчас программный бизнес GE приносит более шести миллиардов долларов, делая его одной из крупнейших софтверных компаний мира19.
Другой пример 100-летней отрасли, перестраивающей себя вокруг модели Трех М и применяющей в качестве рычага новую машину, – это образование, которое, безусловно, является столпом общества, где чрезвычайно нужен прогресс, где он давно назрел и которое, наконец, оказывается в центре внимания. Мы встречались с Джоэлом Роузом (Joel Rose), сооснователем New Classrooms Innovation Partners, чья работа – ярчайший пример выстроенного в гармонии с Три М будущего. С помощью новых инструментов, машин и подходов Роуз пытается заново изобрести закостенелую отрасль и мировоззрение, которое, кажется, не менялось еще задолго до того, как многие из нас пошли в школу.
Раскрывать интеллектуальных людей с помощью интеллектуальных систем
Фраза «заново изобрести образование» имеет длинную и ухабистую историю, начавшуюся до пришествия компьютера, но, конечно же, ускорившуюся с того времени, в конце 1970-х, когда компьютеры проторили дорожку в школы. Объем книги не позволяет нам слишком глубоко вдаваться в эти истории, но достаточно сказать, что чаще всего они заканчивались плохо.
Программа New Classrooms была запущена в 2011 году учителями, администраторами от образования и технологами и всерьез использует силу данных, чтобы настроить обучение индивидуально и тем самым сломать давно сложившуюся образовательную норму: учитель, стоящий перед классом из тридцати учеников, изучающих одно и то же в одно и то же время. Эта традиционная модель обучения буквально является индустриальной моделью. Крупномасштабное общественное образование начинается со времени, когда фабрики и заводы накачивали рабочими, и отображает конвейерный менталитет, бывший ключевым для эффективности и продуктивности в те времена новых пространств технологий.
В школе New Classrooms студенты вооружены лэптопами или планшетами, сгруппированы обычно по 5–20 человек и прорабатывают задания и проекты, где применяют разные образовательные «приемы» на «станциях» внутри класса. Некоторые приемы требуют сотрудничества в командах, некоторые – непосредственной работы с учителем, некоторые, «виртуальные», – с онлайн-программами. На станциях учителя взаимодействуют с группами, отвечая на вопросы, ставя задачи или новые вопросы. После каждого момента взаимодействия группа переходит к новому заданию и перемещается на новую станцию. Там, где в традиционной школе один класс из тридцати человек общается в одном помещении с одним учителем, в школе New Classrooms будет от двух до шести учителей, а также дополнительная команда педагогов в большом пространстве или нескольких классных комнатах, с 60–80 детьми, двигающимися между станциями (см. рис. 2.7).
Рисунок 2.7. Типичная образовательная среда New Classrooms
Все уроки проходят онлайн (хотя надо отметить, не все обучение идет через компьютер). Большая часть оценок выставляется автоматически и за небольшую долю времени, которое потратил бы на это учитель-человек – к шести утра следующего дня каждый студент и работающий с ним учитель получают полностью индивидуальный учебный план на наступающий день. Этот примерный план основан на компьютерном анализе прогресса ученика: что нужно переделать, что нужно закрепить и какая новая информация может быть добавлена, чтобы увлечь и задействовать ученика.
Сооснователь New Classrooms Джоэл Роуз, говорит, что главная проблема индустриальной образовательной модели в том, что в классе из тридцати учеников троим самым умным будет до смерти скучно, десять наименее академически одаренных будут чувствовать себя безнадежно потерянными (и, вероятно, расположенными похулиганить), а средние ребята будут кое-как продираться вперед. Некоторые будут неплохо справляться благодаря природным склонностям (или с помощью родительского кнута и пряника), а некоторые просто болтаться туда-сюда по образовательному процессу. В школе New Classrooms, управляемой данными, обучающими машинами и платформами, философия «нет задним партам», присущая частным учебным заведениям, становится доступна ученикам в среде бесплатного образования, ни один ученик не сорвется в пресловутую категорию. Таким образом, модель New Classrooms воплощает в жизнь концепцию «демократизации роскоши» на жизненно важном для нас, как в личном, так и в общественном плане, поприще.
Команда New Classrooms полностью осознает окружающую их инерцию, но сообщает о растущем числе инвесторов, учителей, руководителей и родителей, открытых к радикальным изменениям как физических классных комнат, так и организации образовательного процесса.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?