Электронная библиотека » Малкольм Фрэнк » » онлайн чтение - страница 5


  • Текст добавлен: 1 февраля 2022, 10:55


Автор книги: Малкольм Фрэнк


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +
Скорость этого перехода

Наш прогноз состоит в том, что ИИ повлияет почти на 100% интеллектуального труда и полностью устранит примерно 12% подобных вакансий. Но ключевой вопрос здесь – «когда?».

ИИ съест нынешние рабочие места «медленным, медленным, внезапным» образом. Какие-то задачи будут постепенно и все больше автоматизироваться и достигнут потенциальной критической точки, где будет фундаментально изменена сама природа деятельности (как точка каннибализации на 50% в модели Forrester). Этот переход будет следовать по схеме принятия технологии, очерченной Биллом Гейтсом: «Мы всегда переоцениваем изменения, которые произойдут в следующие два года, и недооцениваем те, что произойдут в следующие десять».

Следовательно, легко поверить обеим сторонам спора об исчезновении видов работ. Заглянув недалеко вперед (через следующие три года), человек может подумать: «Не может быть, чтобы наш финансовый отдел был замещен автоматами». Хотя, чтобы понять возможности платформ ИИ, стоит заглянуть на пятнадцать лет вперед и подумать: «Не может быть, чтобы к 2030 году у нас было больше пары человек, обрабатывающих клиентские счета».

Ключ к постановке реалистичных временных рамок:

а) во взгляде на работу как на набор задач;

б) в ценности остающихся человеческих единиц.

Глядя на эти две переменные, мы можем начать делать основательные прогнозы, как скоро боты начнут съедать определенные профессии.

Идти ВПЕРЕД во времена перетряски

Завершая разбор этой уничтожающей рабочие места природы новых машин, надо сказать, что намеченные нами перспективы – суть оставшейся части книги. В следующих главах мы исследуем практическое приложение этих динамических сил и то, что они будут значить для вас и вашей организации. В главе 7 мы более глубоко исследуем автоматизацию, рассмотрев конкретные процессы, функции и рабочие обязанности в вашей компании, наиболее близкие к тому, чтобы их забрали новые машины. Прочитав эту главу, можно подумать: «Тамара в бухгалтерии в опасности, если не будет быстро реагировать». В главе 9 мы обозначим профессии, которые находятся в безопасности и будут расширены. В главах 10 и 11 посмотрим на создание совершенно новых вакансий в связи с современным изобилием, процессом изобретений и открытий.

Однако, прежде чем приступить к определению будущего работы, нужно внимательно посмотреть на новые машины, которые станут драйвером всех этих перемен.

Глава 4
Новая машина: Интеллектуальные системы

Возможно, иногда вас удивляет то же, что и нас: «Как Uber всегда удается находить машину, если я в каком-то случайном закоулке в пятистах милях от дома, а затем автоматически списывать деньги с карты, высылать счет и отмечать мой пассажирский рейтинг – и все за секунды?» или «Как я могу смотреть видео на YouTube на мобильном устройстве, двигаясь в поезде со скоростью 130 миль в час?».

Две этих ситуации, два момента «чуда», которые уже стали обыденными, еще несколько лет назад были бы невозможны. Удивительно то, что и Uber, и YouTube, несмотря на то что предлагают совсем не похожие услуги, выполняют свои операции на «машинах» с практически одинаковыми компонентами. Эта новая машина, та, что мы зовем «интеллектуальной системой», быстро становится краеугольным камнем для компаний, конкурирующих в наукоемкой среде. Она в центре Facebook, Instagram, Google, Е-Trade, Betterment и всех прочих сегодняшних цифровых лидеров.

Однако при всей значимости новые машины по-прежнему остаются во многом непонятыми. Многие из нас активно потребляют результаты действия интеллектуальных систем, не останавливаясь, чтобы задуматься, насколько актуальные, персонализированные и отборные возможности создаются и достаются нам.

В связи с этим в данной главе мы объясним, чем являются эти новые машины – каковы компоненты технологии, как сочетаются, на что похож хороший образец и каким образом они глубоко повлияют на будущее вашей работы.

Мы знаем, обзор может оказаться похожим на то, как вы учились водить, будучи подростком, и ваш дядя, откинув капот машины, объяснял, как все это работает. Некоторые уроки могут быть скучноватыми (например, «это карбюратор, это свечи зажигания»), но сейчас, пользуясь интеллектуальными системами на непрерывной основе, мы должны создавать и применять их в своих компаниях, чтобы добиться конкурентного преимущества, поэтому рабочие знания здесь очень важны.

Дать определение новой машине

Давайте начнем с простого определения, а затем немного его распространим.

Интеллектуальная система совмещает в себе программное обеспечение (алгоритмы, деловой регламент, код машинного обучения, прогнозовая аналитика), комплектующее оборудование (серверы, датчики, мобильные устройства, возможность подключения), данные (контекстуализированные и в реальном времени) и человеческое участие (часто оценка или запросы).

Может прозвучать как «куча оборудования, ПО и данных соединить вместе – и там произойдет чудо». Так что давайте вкратце пройдемся по трем ключевым атрибутам, делающим интеллектуальную систему такой особенной.

Программное обеспечение, которое учится. Программное обеспечение, составляющее центр новой машины, – это то, чего мы не видели никогда прежде. Впервые в истории человечества у нас есть инструмент, который может делать сам себя. ПО, способное к машинному обучению, со временем обновляет само себя. Система учится распознавать схемы и находить скрытые инсайты внутри данных – и все это, не будучи специально запрограммированным на то, что надо делать и где надо искать. Например, именно этим способом Uber узнает, как объединить правильного водителя с правильным пассажиром, а Facebook заполняет вашу персональную ленту новостей. В самих компаниях этим занимается всего несколько человек. И это было бы невозможно, поскольку в случае Facebook – это более миллиарда заходов пользователей на сайт в день1. Поэтому вместо людей за всеми и за каждой сессией следит машина, постоянно становясь еще умнее.

Мощные аппаратные возможности обработки данных. В последние несколько десятков лет мы видели, как мощность оборудования и технологий росла по экспоненте. Ни одна инновация в истории не улучшалась и не проникала во все с такой скоростью. Закон Мура (Moore’s Law), согласно которому число транзисторов на микросхеме (а значит, и его производительность) удваивается приблизительно каждые два года, продолжает действовать, хотя недавно отпраздновал 50-летний юбилей. Однако недавно он был турбирован облаком, которое позволяет сверхмощным компьютерам объединяться друг с другом. Для сравнения: у сильной машины может быть впечатляющее количество лошадиных сил, как, например, четыреста тридцать пять лошадиных сил под капотом Ford Mustang GT, но вы не можете склеить два «мустанга», чтобы удвоить скорость. В то время как один компьютер может получить доступ к множеству других и выдать молниеносный результат. Таким образом, каждый раз, пользуясь Google, Facebook или Amazon, вы подключаетесь к группе связанных, супербыстрых серверов.

Огромное количество данных. Данные – топливо новой экономики. Соотнесите этот факт с примером оператора такси, приведенным выше. В старые добрые времена, скажем, в 2012-м, ваша поездка собрала бы, наверное, три вида «данных»: запись вашего телефонного звонка с заказом такси, записи диспетчера и водителя, сделанные от руки, и детали оплаты (и конечно, эти рукописные записи редко проверяли или анализировали). Сравните это с типичной поездкой на Uber, после которой сохранится запись о вашем запросе, локации, времени, маршруте поездки, использованном устройстве, оплате и чаевых, водителе, пассажире, рейтинге водителя и рейтинге пассажира. А затем умножьте все это на более чем два миллиарда поездок, предпринятых (к середине 2016 года) через Uber.


Коротко говоря, три эти специфические черты – самообучающееся ПО, мощные возможности аппаратной обработки данных и невероятное количество данных – объединяются, чтобы оживить интеллектуальные системы (кстати говоря, в некоторых кругах о них сейчас говорят как о программных «платформах», но для ясности и последовательности будем использовать термин «интеллектуальные системы»). Далее в главе расскажем, как эти участки сочетаются друг с другом. А прежде чем взяться за это, полезно дать несколько определений самой противоречивой и неверно понимаемой части машины – искусственному интеллекту.

Искусственный интеллект: почему узкое понимание – лучшее понимание

Термин «искусственный интеллект» настолько часто употребляется, что на самом деле вызывает больше путаницы, чем ясности. На рынке существует много определений, и почти все подчеркивают сравнение с человеческими существами. Подобные определения, например данное в словаре Мерриам-Уэбстер («способность машины имитировать поведение разумного человека»), немедленно отправляют многих из нас по ошибочной дорожке, поскольку мы начинаем думать: «Какой человеческий разум может быть и будет сымитирован?» Мы считаем, что это неправильно.

Наше определение проще:

ИИ – это область компьютерной науки, занимающаяся машинами, которые учатся.

Это выражение яснее. Стремящиеся к антропоморфизму определения ИИ неверны по двум причинам.

1. ИИ, дающий бизнес-результаты, скорее сосредоточен на том, что по-настоящему хорошо делают машины, а не пытается повторить то, что уже хорошо делают люди.

2. Люди уже давно зарекомендовали себя как несовершенные «машины» (просто посмотрите шестичасовые новости). Есть некий нарциссизм в том, чтобы считать проектной целью создания новой машины именно человека.


Таким образом, ИИ – это не о построении робота, передразнивающего форму и поведение человека. Вместо этого примененный на практике ИИ представляет собой следующее поколение компьютерных систем, которые, как старые системы, располагаются в кондиционируемых компьютерных комнатах, а доступ осуществляется через сети и системы (как те приложения на вашем смартфоне), которые вы, может быть, и не видите, но регулярно используете.

Но это определение – только начало. Прорываясь через мешанину определений, мы нашли крайне полезным разделить ИИ на три подкласса2:

1. Узкий ИИ;

2. Общий ИИ;

3. Супер ИИ.


Узкий ИИ, также называемый «прикладной ИИ», или «слабый ИИ», – это базовое определение для данной книги. Важно отметить, что весь ИИ сегодня – и как минимум на следующее десятилетие – узкий (также говорят «узкий искусственный интеллект», или УИИ). Подобный ИИ создается для конкретных целей и ориентирован на выполнение бизнес-задач (например, управление автомобилем, проверка рентгеновских исследований, отслеживание финансовых операций на предмет мошенничества) внутри «узкого» контекста продукта, услуги или бизнес-процесса. Именно это применяют сегодня разработчики FANG, обеспечивая нас цифровыми приключениями. Несмотря на то что кажется, будто новые машины могут сделать что угодно, их цель очень хорошо делать одну конкретную вещь. И поэтому системы УИИ будут безнадежны в достижении других целей, помимо тех, для которых их специально разрабатывали (просто попробуйте спросить свой GPS-навигатор, подходит ли этот луковый бублик с мягким сыром к вашей диете). УИИ – это просто инструмент, пусть и очень мощный, дающий базу всему, что мы будем исследовать в дальнейшем.

Общий ИИ, который также называют «сильным ИИ». Именно он питает страхи массовки в компьютерной игре Singularity, о нем идет речь в упоминавшихся выше фильмах «Она» и «Из машины»3. Сильный ИИ – это поиски машины, обладающей таким же общим разумом, как человек. Вы, например, в течение всего нескольких минут можете обсудить политику, пошутить о чем-то, а затем забросить мяч для гольфа на сто пятьдесят ярдов. Сильный ИИ будет обладать общим интеллектом, чтобы суметь выполнить то же самое.

Бен Герцель (Ben Goertzel), председатель Общества общего искусственного интеллекта (Artificial General Intelligence Society), как на хорошее определение общего ИИ, указывает на кофейный тест: «Зайдите в средний американский дом и подумайте, как сделать кофе, для чего вам придется найти кофемашину, понять, для чего нужны кнопки на ней, найти в шкафчике кофе и т. д.»4 Этот набор задач, наверное, совсем не трудно выполнить большинству взрослых людей, однако в настоящее время это безумно тяжело сделать компьютеру. Создание общего искусственного интеллекта значительно труднее, чем создание узкого: по многочисленным оценкам, мы все еще находимся более чем в двух десятках лет до того момента, как ИИ разовьет такие способности, если вообще когда-либо это сделает.

Таким образом, пугать себя общим ИИ легко по двум причинам, одна из которых практическая, а другая – теоретическая. С практической – сегодня мы видим примеры узкого ИИ, который, кажется, чем-то похож на общий. Это может быть ваше домашнее приложение Alexa для Amazon, которое справится с тестом Тьюринга (действуя неотличимым от человеческого образом). У нас может быть ощущение, что мы движемся в сторону ОИИ, однако это всего лишь блестящая, элегантная реализация голосового интерфейса интернет-поиска, известного нам уже почти пятнадцать лет.

С теоретической стороны, компьютерная наука смотрит на человека как на машину по природе – машину, имеющую очень отчетливые ограничения. IQ человека обычно колеблется между 80 и 150 пунктами – очень низкими показателями по компьютерным меркам. Если с точки зрения программного обеспечения общий ИИ станет возможным, зачем нам ограничивать машинный «интеллект», скажем, 150 баллами? Почему не сделать 300, или 3000, или 30 000? Ни один из нас не смог бы даже отдаленно понять, чем бы был или что мог бы совершить подобный коэффициент интеллекта, но если это всего лишь вопрос соединения большего числа серверов в облаке для добавления большей операционной мощности, то куда это нас завело бы?

Все это приводит нас к третьему определению. Супер ИИ – это, по сути, технический гений, выпущенный из бутылки. Не понятно, будет ли человек знать, как остановить машину в случае реализации подобного сценария? Она бы оставила далеко позади весь наш коллективный разум (а ведь, как мы знаем, если посадить в одной комнате десять достаточно умных людей, их коллективный IQ будет равняться на 1200, а где-то 95 баллам, хотя мы можем рассчитывать на различные мнения и точки зрения, которые люди всегда приносят с собой). Как мы сможем тогда отключить машину, если она всегда на 10 (или на 1000) шагов впереди нас?

Все это интересно, особенно как предмет для разговора на коктейльной вечеринке. Однако, возвращаясь к нашим исследованиям, будущее в духе Singularity, с бегающими вокруг наделенными супер ИИ терминаторами, – это мираж. Серьезные люди, те, что заняты созданием этих систем сегодня, довольно умерены в оценках того, возможны ли такие сценарии хотя бы через сто лет, не говоря уже о пяти или десяти годах. Эндрю Ын (Andrew Ng), руководитель исследований в Baidu Research, изложил эту мысль коротко и точно, сказав, что «волноваться насчет [общего и супер] ИИ – это как волноваться о перенаселении Марса еще до того, как мы на него ступили»5.

Исходя из вышесказанного, наш фокус в этой книге специально направлен на узкий ИИ, поскольку здесь, в реальном мире, больше озабочены эффективным использованием инструмента для хороших бизнес-результатов современного предприятия. И пока кто-то продолжит мучить себя, волноваться о таких вещах, как супер ИИ, конкуренты выдавят его из бизнеса, применив на практике узкий ИИ. С этим определением искусственного интеллекта давайте углубимся в тему новой машины.

Знакомьтесь – машина: анатомия интеллектуальных систем

Каждая интеллектуальная система может делать совершенно разные вещи, но у всех схожая анатомия. По сути, если вы знакомы с технологиями для предприятия и с предшествующим поколением учетных систем (такими как ERP или CRM-системы), то многие составляющие покажутся уже известными. В конце концов, технологический «стек» учетных и интеллектуальных систем имеют многие общие элементы, такие как интерфейс, прикладная логика, последовательности операций, базы данных и инфраструктура.

Таблица 4.1. Учетные системы vs Интеллектуальные системы

Однако объективные различия есть у каждого слоя этого стека, и самые важные из них касаются трех отличительных характеристик новых машин, выделенных нами раньше: способность обучаться, значительная оперативная мощность и огромное количество данных. В таблице 4.1 мы обозначим несколько ключевых различий в каждом слое этого программного стека. Далее мы проработаем разные компоненты, общие для всех интеллектуальных систем, как показано на рисунке 4.1.


Рисунок 4.1. Анатомия интеллектуальной системы

Пользователи, клиенты и сотрудники

Независимо от того, насколько цифровым становится наш мир, эта перемена в первую очередь ориентирована на людей; это наша, углеродная, форма жизни без кнопки вкл./выкл. Поэтому чем более технологичны успешные цифровые решения, тем более человечными будут ощущаться. Лучшие цифровые решения не замедляют нас, напротив, они как будто отходят в сторону, помогая достичь цели. Мы не хотим обучать системы, мы просто хотим получать результат. GPS-навигаторы Waze дают нам возможность добраться до места самым быстрым путем, платформа Predix от GE – наша ветроэлектростанция, юридический аналитический сервис Lex ех Machina ведет запись действий конкретного судьи. Машины способны на невероятные вещи, но общая черта успешных систем – они ставят в центр разработок человеческое восприятие. Часто даже среди самых автоматизированных, будто богатых искусственным интеллектом средах все еще очень много следов человеческого участия.

Интерфейс приложения

В нашей частной жизни мы думаем о Netflix, Strava, Linkedin и другом как о приложениях. Большинство из нас уже даже не зовет их «программным обеспечением». То, до чего вы дотрагиваетесь, контент, которым делитесь, получаемые информация или идеи, – все это проходит через приложение (или через слой приложения), являющееся входом в оставшуюся часть новой машины. Годами вы загружали приложения в свой компьютер, смартфон или планшет, а сегодня их внедряют и в промышленные машины (такие как автомобили). Важнейшим является то, что ваше впечатление будет сформировано приложением. Остальная часть интеллектуальной системы, если она хоть сколько-то хороша, для нас невидима.

Кроме того, как мы подчеркивали в нашей книге «Code Halos», приложение должно обеспечивать пользователя чувством прекрасного. Приложение должно проходить по критериям FANG в части элегантности и простоты использования. Это объясняет стремительный подъем «дизайн-мышления» в корпоративных IT-кругах, ведь эти интерфейсы должны подходить вашим клиентам, партнерам и сотрудникам для использования в повседневных делах (никакие учебники или тренинги для пользователей не разрешаются!). Ключ к успеху в том, что интерфейс приложения должен быть простым и интуитивным, вписываться в контекст пользовательских потребностей.

«Внутренности» ИИ

Несмотря на всю шумиху, узкий искусственный интеллект – это современное, сложное, адаптивное программное обеспечение в сердце интеллектуальной системы. То, что мы считаем ИИ, по-настоящему должно включать три элемента.

1. Логика цифрового процесса. Каждый раз, входя в интеллектуальную систему, мы участвуем в каком-то процессе: бронируем машину, обращаемся за страховой выплатой, заключаем финансовую сделку или проверяем статус МРТ-аппарата. В этом нет ничего исключительно нового. IT-специалист из 1990-го распознал бы технические элементы, управляющие протекающими внутри интеллектуальной системы процессами. Революционная составляющая интеллектуальных систем в том, что они преобразуют многие ручные процессы в автоматизированные. Вспомните еще раз пример с противопоставлением Uber и такси. Процесс заказа автомобиля в обычном такси выполняется вручную (например, клиент звонит, посредник информирует диспетчера, диспетчер связывается по радио с подходящим водителем и т. д.). В Uber весь процесс автоматизирован. Когда этот оцифрованный процесс вылился в миллионы транзакций, революция в отрасли состоялась. Мы опишем, как это сделать, во второй половине книги. Однако сейчас главная проблема в том, что, хотя руководящая процессным слоем искусственного интеллекта технология довольно проста, правильно структурировать этот лежащий в основе процесс – крайне трудная работа.

2. Машинный интеллект. Вот это действительно новая и другая технология современной машины. С помощью комбинации алгоритмов, процесса автоматизации, машинного обучения и нейронных сетей система подражает «обучению» через получение опыта, то есть через расширение набора данных. Именно так она может автоматизировать рабочий процесс (например, чтение рентгеновского обследования), инструктировать работников по поводу лучшего следующего шага (например, продавец будет знать точную цену, которая с наибольшей вероятностью приблизит сделку) и распознавать рыночные тренды, что поможет создать следующий прорывной продукт. Внутренний «счетчик» (программный механизм внутри интеллектуальной системы) и есть машинный разум, настоящее сердце ИИ. Если смотреть с этой точки зрения, то все не так страшно, загадочно или безнадежно сложно. Не поймите нас неправильно: мы не умаляем техническую сложность этой созидательной работы. Но также в ней нет ничего мистического. Все эти разговоры про «духа в машине»6 в реальном мире едва ли имеют отношение к узкому ИИ. Это ничуть не больше и, конечно, ничуть не меньше, поскольку находится в корпусе новой машины, сердца искусственного интеллекта.

3. Программная экосистема. Наш, как видится, магический опыт взаимодействия с интеллектуальными системами кажется бесшовным, единым, однако мы никогда не взаимодействуем с только одним участком ПО. Обычно эти системы составляют экосистему из десятков разнообразных инструментов, связанных интерфейсом прикладного программирования (API), являющимся частями программного обеспечения, соединяющими один инструмент с другим, как детали Lego. Uber, например, привлекает богатый набор инструментов, в том числе Twilio для облачной коммуникации, Google для карт, Braintree для оплаты, SendGrid для отправки e-mail, и так далее. Благодаря программному интерфейсу Uber у каждого из нас есть собственный первоклассный опыт общения с этой системой, но на самом деле мы взаимодействуем с целой экосистемой инструментов и сервисов.


Это бизнес-книга для технологичной эпохи. Мы не планируем вдаваться в мельчайшие подробности конкретных технологий, включенных в сегодняшний искусственный интеллект. Мы могли бы написать еще одну полноценную книгу о машинном обучении, глубоком обучении и нейронных сетях (эти темы – в топе популярности в ведущих мировых университетах), но, честно говоря, это было бы излишним, поскольку сегодня на рынке уже представлено огромное количество обучающих ресурсов.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации