Электронная библиотека » Мередит Бруссард » » онлайн чтение - страница 7


  • Текст добавлен: 21 января 2020, 10:41


Автор книги: Мередит Бруссард


Жанр: Компьютеры: прочее, Компьютеры


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 17 страниц)

Шрифт:
- 100% +

Заглядывая в эпоху Минского, можно заметить, как появившаяся дисциплина компьютерных наук наследует стереотипы математического сообщества того времени. Насколько Минский и его коллеги были невероятно изобретательными, настолько же они кристаллизовали технокультуру в качестве мужского братства миллиардеров. Математика, физика и другие «сложные» науки никогда не были гостеприимны к женщинам и небелым, технологии следуют этой тенденции.

История, которую физик Стефан Вольфрам рассказывает о Минском, демонстрирует едва уловимые гендерные настроения сообщества:

Марвин, которого я знал, совмещал серьезность с чудаковатостью. Практически по каждой теме у него было свое – нередко экстравагантное – мнение. Иногда оно было действительно интересным, а порой – просто необычным. Вспомнилось начало 1980-х гг., когда я приехал в Бостон и снял квартиру у дочери Марвина Маргарет (сама она тогда была в Японии). У нее была большая и ухоженная коллекция растений, и однажды я заметил, что у некоторых из них на листьях появились мерзкие пятна.

Поскольку я не разбирался в этом (и не было интернета, где можно было бы выяснить, в чем дело), я позвонил Марвину и спросил, что делать. А дальше последовала долгая дискуссия о возможности создания микророботов, способных прогнать паразитов. Это была, разумеется, удивительная идея, однако в конце беседы мне все же пришлось спросить: «Что же мне делать с растениями Маргарет?» – «О, думаю, тебе стоит поговорить с моей женой», – ответил Марвин[57]57
  Wolfram, “Farewell, Marvin Minsky (1927–2016).”


[Закрыть]
.

Представьте себе эту трогательную беседу: двое знаменитых ученых обсуждают наноботов, созданных, чтобы уничтожить бактерии. Хотя из моей головы не выходит мысль, что эти двое не представляли, как ухаживать за цветами. Вместо этого ответственность о заботе легла на жену и дочь Минского. Причем обе были вполне состоявшимися женщинами: его жена Глория Рудиш была успешным педиатром, а дочь Маргарет получила докторскую степень в МТИ и руководила несколькими компаниями, занимающимися разработкой ПО. Однако от женщин также ожидали, что они будут заботиться о растениях – эдакая незримая обязанность, которая не заботит мужчин.

А поскольку у человечества за всю историю накопился достаточно большой опыт обращения с разного рода растениями, похоже, что у обоих ученых мы наблюдаем выученную беспомощность. В 1980-е гг. было несложно диагностировать болезнь растений даже без интернета. Можно было просто пойти к местному флористу и описать пятна. Можно было пойти в ближайший хозяйственный магазин и обсудить проблему. Либо можно было позвонить в локальное представительство образовательного центра по сельскому хозяйству. В любом из этих мест нашелся бы осведомленный в области цветоводства человек. От паразитов можно избавиться, добавив немного мыла в бутылку для орошения и обработав больное растение. Применение ботов на растениях, конечно, забавная, но совершенно нецелесообразная идея.

Я понимаю, что интереснее обсуждать дурацкие идеи, а не гендерную политику. Это было справедливо тогда, это работает и сегодня. К сожалению, дурацкие идеи повсеместно захватили публичный дискурс о технологиях и обсуждение важных социальных вопросов на годы исчезло из повестки. Из Кремниевой долины пришло множество подобных идей, например: покупка островов в Новой Зеландии и подготовка к Судному дню; систейдинг, то есть строительство островов из списанных контейнеров с целью создания рая на земле без государственной власти и налогов; заморозка трупов для того, чтобы сознание умершего можно было пересадить в искусственное тело в будущем; проектирование гигантских дирижаблей; изобретение порошкового заменителя пищи, названного в честь научно-фантастического фильма «Зеленый сойлент» (Soylent Green), или производство летающих машин. Все эти идеи, безусловно, креативны; кроме того, в жизни важно оставить место мечтам, так же важно, как не воспринимать всерьез безумные идеи. Необходимо быть внимательными. Тот факт, что кто-то совершил прорыв в математике или заработал кучу денег, совсем не означает, что мы должны прислушиваться к ним, когда они убеждают нас в реальности пришельцев или говорят, что в будущем будет возможно оживлять людей, поэтому необходимо хранить мозги умных людей в огромных холодильниках вроде тех, в которых лежат овощи в магазинах Costco. (Минский состоял в научно-экспертном совете Alcor Cryonics – фонда для обеспеченных и истинных приверженцев «трансгуманизма», имеющего в Аризоне морозильную камеру, где хранятся тела и мозги. Многомиллионное обеспечение фонда гарантирует стабильное снабжение электричеством.)[58]58
  Alcor Life Extension Foundation, “Official Alcor Statement Concerning Marvin Minsky.”


[Закрыть]

Читая о миллиардерах из Кремниевой долины, стремящихся дожить до 200 лет или мечтающих побеседовать с маленькими зелеными человечками, хочется спросить: был ли ты под кайфом, когда придумал это? Нередко ответ положительный. Стив Джобс бросил «кислоту» в начале 1970-х гг., почти сразу после ухода из колледжа. А Даг Энгельбарт, ученый, которого спонсировали NASA и Управление перспективных исследовательских проектов Министерства обороны (ARPA), тот, кто создал в 1968 г. «Мать всех демо» (Mother of All Demos), кто впервые выдвинул концепцию аппаратного и программного обеспечения современного компьютера, бросил употреблять «кислоту», только будучи в Международном центре специальных исследований (International Foundation for Advanced Study), который вплоть до 1967 г. оставался законным пристанищем исследований ЛСД.

Во время демонстрации Энгельбарта за съемочной камерой был Стюарт Бранд, основатель Whole Earth Catalog, в свое время помогавший ЛСД-гуру Кину Кейси в организации печально известных «кислотных» тестов – огромных наркотических вакханалий, проходивших по всей стране и задокументированных в книге Тома Вулфа «Электропрохладительный кислотный тест» (The Electric Kool-Aid Acid Test). Бранд был важным связующим звеном между миром ученых Минского и контркультурой. «Мы подобны богам и можем наловчиться быть ими» – гласит первая строчка, написанная им в Каталоге всей Земли в 1968 г.[59]59
  Brand, “We Are As Gods.”


[Закрыть]
Эта книга стала вдохновением практически для всех зачинателей интернета – от Стива Джобса до технотитана Тима О’Райли. Создавая первые электронные доски сообщений, разработчики пытались воплотить открытую культуру рекомендаций и комментариев, процветавшую на последних страницах каталога, где читатели записывали вопросы, заметки и секреты жизни в коммунах. В книге «От контркультуры к киберкультуре: Стюарт Бранд, Всемирная сеть и развитие цифрового утопизма» (From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network, and the Rise of Digital Utopianism) Фред Тернер писал, что Бранд стоял почти за всеми ранними разработками интернета. Колонизация космоса? В 1970-х гг. Бранд уже размышлял об этом в журнале CQ, который он основал после выхода каталога и который стал предтечей культового журнала о технологиях Wired, который также основал Бранд. «Для читателей CQ колонизация космоса стала риторическим прообразом. Это позволило бывшим Новым коммуналистам перенести их чаяния общинной жизни к тем же самым крупномасштабным технологиям, характеризующим технократию времен холодной войны, которую они стремились подорвать. Мечты о коллективном трансцендентном сознании порождали представления о беспроблемном взаимодействии в технологически обусловленном пространстве. Через 10 лет эти мечты появятся вновь в виде идеи о киберпространстве, технотронном фронтире, по мере чего они помогут сформировать общественное восприятие компьютерных сетевых технологий»[60]60
  Turner, From Counterculture to Cyberculture.


[Закрыть]
.

Минский и Бранд были близкими друзьями. Минский является центральной фигурой книги «Медиалаборатория». Амбициозность, любопытство и страсть Бранда идеально сочетались с «иконоборческой бандой хакеров» Минского. Вспоминая Каталог всей Земли, Бранд писал: «Когда новые левые взывали к политической воле народа, Каталог всей Земли избегал политики и раскрывал непосредственную силу и знания людей. Когда хиппи нью-эйдж оплакивали интеллектуальный мир бесплодных абстрактных конструкций, проект поддерживал науку, критический порыв, новые и старые технологии. В результате оказалось, что Каталог всей Земли был у истоков развития инструмента, наделяющего всех небывалой силой, – персональных компьютеров (коим сопротивлялись и новые левые и коих презирала Новая эра)»[61]61
  Brand, “We Are As Gods.”


[Закрыть]
.

Бранд, выпускник Эксетера и Стэнфорда, чей отец был разработчиком в МТИ, ждал появления персональных компьютеров, для него это было светлое, утопическое будущее[62]62
  Hafner, The Well.


[Закрыть]
. В 1985 г. он запустил первое онлайн-сообщество Whole Earth eLectronic Link (WELL), где техноиндустрия выработала свои политические принципы – либертарианство. Паулина Борсук описала либертарианский поворот в техноиндустрии в книге «Киберэгоистичность: Критическая возня в контексте жутко либертарианской технокультуры» (Cyberselfish: A Critical Romp through the Terribly Libertarian Culture of High Tech). Ядовитая форма философского технолибертарианства проникла в самое сердце онлайн-сообществ, которые более прочих настаивали на так называемой ими «свободе высказывания» и радикальном индивидуализме. Подобные сентенции процветали на досках объявлений, а в 2017 г. они процветали на «краснопилюльных»[63]63
  От названия сабреддита r/TheRedPill, посвященного «правам мужчин». – Прим. науч. ред.


[Закрыть]
форумах Reddit и в дарквебе. Борсук пишет: «Все это свидетельствует об утере связи между людьми и дискомфорте от того, что многие из нас понимают под человечностью. Это неспособность сочетать индивидуальные потребности и необходимость быть частью сообщества, которая прекрасно стыкуется с предпочтением и даже восхвалением роли единоличного командующего собственного компьютера и отказа от каких бы то ни было иных экономически состоятельных практик. Ведь компьютеры работают только по правилам, их можно контролировать, проще починить и гораздо легче понять, чем любого из людей»[64]64
  Borsook, Cyberselfish, 15.


[Закрыть]
. Это что-то вроде той самой социальной странности Тьюринга, разве что политизированной и усиленной.

Идеологический отказ активистов киберпространства от хиппи-культуры в пользу антигосударственных идей проиллюстрирован в «Декларации независимости киберпространства», опубликованной в 1996 г. автором текстов группы Grateful Dead Джоном Перри Барлоу. «Правительства индустриального мира, вы, изнывающие от скуки гиганты из плоти и стали, я пришел к вам из Киберпространства, нового пристанища разума, – пишет Барлоу. – От лица будущего я требую оставить нас в покое. У вас нет власти в нашем пристанище. У нас нет избранного правительства, и мы не желаем его»[65]65
  Barlow, “A Declaration of the Independence of Cyberspace.”


[Закрыть]
. Благодаря дискуссиям, в которых он участвовал на форумах WELL, Барлоу также открыл либертарианский Фонд электронного фронтира (Electronic Frontier Foundation), защищающий хакеров.

Затем появился Питер Тиль, очередной выпускник Стэнфорда и либертарианец, основатель PayPal, один из первых инвесторов Facebook и основатель компании Palantir, финансируемой ЦРУ. Он никогда не скрывал своей неприязни к властным структурам и вопросам гендерного равноправия. В эссе для журнала Cato Unbound он пишет: «Начиная с 1920-х гг. существенное увеличение числа получающих пособие и расширение прав женщин – две печально известные и неподдающиеся либертарианцам силы – превратили понятие “капиталистической демократии” в оксюморон». Тиль, как и Барлоу, считает киберпространство страной без государственности: «Поскольку в мире не осталось по-настоящему свободных мест, полагаю, придется спасаться средствами прежде неопробованными, которые приведут нас в ранее неизвестные места; по этой причине я сосредоточил свое внимание на новых технологиях, которые как раз способны создать это новое пространство свободы»[66]66
  Thiel, “The Education of a Libertarian.”


[Закрыть]
. Питер Тиль поддерживал и был советником президентской кампании Дональда Трампа и финансировал судебный процесс против таблоида Gawker. В книге «Двигайся быстро и круши» (Move Fast and Break Things) Джонатан Таплин, почетный директор Инновационной лаборатории Аннерберга, исследует, как распространяется влияние Тиля на Кремниевую долину посредством его «мафии PayPal», других венчурных инвесторов и топ-менеджеров, принявших анархо-капиталистическую философию[67]67
  Taplin, Move Fast and Break Things.


[Закрыть]
.

Когнитивные психологи задаются вопросом, почему обеспеченные люди вроде Тиля серьезно относятся к пришельцам и идеям вроде систейдинга. Пол Слович, эксперт в области оценки рисков, уверен, что у людей бывают когнитивные искажения, связанные с пространствами экспертизы. Мы склонны предполагать, что если человек является экспертом в чем-либо, то его экспертные знания автоматически распространяются и на все прочие области[68]68
  Slovic, The Perception of Risk; Slovic and Slovic, Numbers and Nerves; Kahan et al., “Culture and Identity-Protective Cognition.”


[Закрыть]
. Поэтому люди уверены: если Тьюринг был гением математики, то он был прав и в своих соображениях о том, как устроено общество. Это особенно проблематично сегодня, в эпоху узкоспециализированного труда. Хорошо разбираться в компьютерах не значит разбираться в людях. И не стоит спешить делегировать принятие решений вычислительным системам, созданным людьми, которых не волнуют культурные системы (в которые мы встроены).

Сплетение предрассудков белых мужчин с мифом о гениях в области точных наук еще более губительно. Даже сегодня женщин и небелых реже признают математическими или технологическими гениями. В 2015 г. профессор Принстона С.-Дж. Лесли вместе с коллегами изучил стереотипы о способностях, то есть что предпочитает академическое сообщество – гениальность и ум либо эмпатию и работоспособность. Они пишут: «В пространстве академической культуры женщины представлены гораздо меньше там, где голый талант является залогом успеха, поскольку считается, что женщины априори менее одарены. Эта гипотеза распространяется и на слабую представленность афроамериканцев, поскольку эта группа является жертвой того же стереотипа»[69]69
  Leslie et al., “Expectations of Brilliance Underlie Gender Distributions across Academic Disciplines,” 262.


[Закрыть]
.

Гендерные стереотипы повсеместны для точных наук. Сама культура в этих науках устроена так, чтобы «навязывать маскулинизированные нормы и ожидания, ограничивающие исследовательские практики», пишут Шейн Бен, Хизер Ленч вместе с коллегами в статье 2015 г. «Дисциплинарные нормы точных наук предписывают ученым быть решительными, методичными, объективными, безэмоциональными, конкурентоспособными и настойчивыми – все эти характеристики ассоциируются с мужчинами и мужественностью, и женщины их считают прямо противоположными себе и убеждены, что точные науки не для них… чем больше женщины воспринимают среду (например, класс информатики) маскулинной, тем меньший, по их словам, интерес вызывает конкретное профессиональное пространство»[70]70
  Bench et al., “Gender Gaps in Overestimation of Math Performance,” 158. Also См. Feltman, “Men (on the Internet) Don’t Believe Sexism Is a Problem in Science, Even When They См. Evidence”; Williams, “The 5 Biases Pushing Women Out of STEM”; Turban, Freeman, and Waber, “A Study Used Sensors to Show That Men and Women Are Treated Differently at Work”; Moss-Racusin, Molenda, and Cramer, “Can Evidence Impact Attitudes?”; Cohoon, Wu, and Chao, “Sexism: Toxic to Women’s Persistence in CSE Doctoral Programs.”


[Закрыть]
.

Ситуация, описанная Бенч с коллегами, кажется актуальной и для кафедры математики Гарварда, альма-матер Минского. «Нынешние и бывшие студенты и члены кафедры – мужчины и женщины – говорят, что недостаток женщин среди преподавателей и студентов обескураживает абитуриентов, – пишет Ханна Натансон в статье Harvard Crimson в 2017 г. – На кафедре женщинам нередко советуют выбирать более легкие предметы; кроме того, взаимодействие кафедры со студентами и простое общение заставляют женщин чувствовать себя некомфортно, ощущать себя центром притяжения излишнего внимания»[71]71
  Natanson, “A Sort of Everyday Struggle.”


[Закрыть]
. На кафедре математики Гарварда также нет ни одной женщины на руководящей должности. Впервые кафедра присвоила женщине звание профессора – высшее в академической системе – лишь в 2009 г. Затем сотрудница перешла в Принстон. После этого только трем женщинам предложили бессрочный контракт профессора, все три отказались.

Бенч с коллегами также описывают, как «позитивная дискриминация» способствует расширению гендерной пропасти в точных науках. В рамках своего исследования они предложили испытуемым – мужчинам и женщинам – пройти математический тест и затем спросили, как те, по собственному мнению, справились. Когда исследователи проверили тест и сверились с тем, как испытуемые оценили свои работы, оказалось, что мужчины уверенно полагали, что справились лучше, чем на самом деле. «Подобная переоценка результатов объясняется их бо́льшим, чем у женщин, стремлением заниматься математикой, – пишут Бенч с коллегами. – Результаты исследования показывают, что гендерная пропасть в точных науках, вероятно, обусловлена не тем, что женщины трезво оценивают свои возможности, но тем, что мужчины переоценивают свои».

В итоге мы имеем небольшую группу мужчин, переоценивающих свои математические способности, которые систематически не допускали и игнорировали женщин и людей с небелым цветом кожи, веками занимаясь разработкой машин. Группу мужчин, желающих превратить научную фантастику в реальность, которые не слишком заботятся о социальных нормах и не верят, что общественные нормы и правила применимы к ним. Тех, кто, прохлаждаясь, не успевает тратить выделяемые государством средства. Тех, кто также с радостью принял идеологическую риторику крайне правых либертарианских анархо-капиталистов.

Что же пошло не так?

7
Машинное обучение: DL на ML

Чтобы сделать мир технологий справедливее, необходимо привлечь больше разнообразных мнений при создании технологий. Добиться этого можно посредством банального сокращения количества преград, а также решения проблем а-ля «протекающий трубопровод», заставляющих профессионалов средней руки отказываться от дальнейшего карьерного роста. Мне также кажется, что поможет нестандартное решение: разобраться с нюансами обсуждения цифрового мира. Иллюстрирует сложность обсуждения информатики веб-комикс xkcd Рэнделла Манро. На одной из картинок женщина сидит за компьютером, мужчина стоит позади нее:

– Приложение должно проверять, действительно ли пользователь находится в национальном парке, когда делает фотографию, – говорит мужчина.

– Разумеется, простой запрос в ГИС, – отвечает женщина. – Дай мне несколько часов.

– И проверь, есть ли на фотографии птица, – продолжает мужчина.

– Для этого мне понадобится команда исследователей и пять лет.

«В компьютерном мире бывает непросто объяснить разницу между простым и невозможным в виртуальном мире» – гласит подпись к комиксу[72]72
  См. https://xkcd.com/1425, and note that the hidden text on the online version of the comic refers to a famous anecdote about Marvin Minsky.


[Закрыть]
.

Поскольку сложно объяснить, почему компьютер затрудняется распознать птицу на изображении или отличить попугая от гуакамоле, нужно больше людей (может, дата-журналистов?), способных перевести сложные технологические темы на простой язык, демистифицировать потайные уголки мира ИИ.

Из-за этих нюансов появилась путаница. На протяжении всей книги мы возвращаемся к идее, что компьютеры отлично справляются с одними задачами и совершенно неприменимы к другим, а социальные проблемы начинаются тогда, когда люди не могут оценить, насколько корректно компьютер выполняет задачу. Движение по комнате, на полу которой разбросаны игрушки, – простейшая задача для человека и очень сложная для компьютера – классический пример моего тезиса. Ребенок, только что научившийся ходить, может пройти по этой комнате, не задев игрушки (если, конечно, решит, что их задевать не стоит). Робот не может этого сделать. Чтобы робот смог пройти по такой комнате, нам нужно запрограммировать его: вписать всю информацию об игрушках и их точные размеры, чтобы он смог вычислить путь. И, если их передвинуть, понадобится обновлять программу. Беспилотные машины, о которых мы поговорим в главе 8, работают примерно как робот в игровой комнате: они постоянно обновляют свою карту мира.

Владельцы питомцев, купившие роботы-пылесосы Roomba, выявили еще кое-какие сложности. Если животное наделает дел на полу, робот непременно развезет их по всему дому. «Честно говоря, мы часто сталкиваемся с этим, – комментирует ситуацию представитель компании-производителя iRobot для Guardian в августе 2016 г. – Мы настоятельно рекомендуем не планировать уборку, если вы знаете, что ваша собака может набедокурить. Поведение животных невозможно точно предсказать»[73]73
  Solon, “Roomba Creator Responds to Reports of ‘Poopocalypse.’”


[Закрыть]
.

К счастью, наш повседневный язык позволяет описывать определенные вещи, не называя их конкретно, и я могу использовать эвфемизмы для отвратительных вещей, которые способны вытворить питомцы. Если я скажу, что моя собака чудесная, но при этом гадкая, вы поймете, что я хочу сказать. Вы можете удержать в голове две противоречивые идеи одновременно и способны догадаться о том, что я подразумеваю под гадостью. В математическом языке не существует подобных эвфемизмов, в нем все крайне четко. Например, в программировании имеется концепт под названием переменная. Переменной присваивается определенное значение, например «х=2», а затем ее можно использовать в процедурах. Существует два типа переменных: изменяемые, которые называются собственно переменными, и неизменяемые – константы. И это предельно ясно для программиста: переменная может быть константой. Для непрограммиста такая запись, скорее всего, не слишком понятна: ведь константа противоположна переменной, то есть изменяемое не равно неизменяемому. Это сбивает с толку.

Проблема терминов не нова. Язык эволюционирует вместе с наукой. Например, в биологии клетки называются так, а не иначе, поскольку Роберту Гуку, открывшему их в 1665 г., они напомнили монастырские кельи[74]74
  И то и другое на английском именуется cells. – Прим. ред.


[Закрыть]
. Проблема наименования особенно актуальна сегодня, в свете динамичного развития технологий. Нам приходится привыкать к новым компьютерным концептам и внедрять различные устройства поразительно часто. Однако всему этому создатели присваивают имена, основанные на уже существующих объектах или концептах.

И, хотя информатики и математики талантливы в своих областях, они совершенно нечувствительны к особенностям языка. Так что, если что-то требуется назвать, они не будут сильно стараться, пытаясь найти превосходный вариант с идеальными коннотациями, латинскими корнями и прочим. Они просто выбирают название, которое обычно связано с чем-то, что им симпатично. Язык программирования Python был назван в честь комик-группы «Монти Пайтон» («Монти Пайтон» – это пракомедия, как «Звездные войны» – пранарратив). Django, сетевой фреймворк – в честь Джанго Рейнхардта, любимого джаз-гитариста создателя фреймворка. Язык Java – в честь кофе. Язык JavaScript – никак не связанный с Java – к несчастью, тоже был назван в честь кофе.

Лингвистические проблемы стали появляться и по мере того, как термин «машинное обучение» становился частью популярного дискурса. Машинное обучение (ML) предполагает, что каким-то образом компьютер обзавелся субъектностью и разумом, поскольку он «учится», ведь обучение – это слово, которое применяется к разумным существам вроде людей (или частично разумным, например животным). Тем не менее информатики прекрасно понимают, что «машинное обучение» – это скорее метафора, она означает, что машина может улучшать свои показатели при решении запрограммированных, рутинных, автоматизированных задач. Это вовсе не значит, что машина каким-то образом приобретает знания, мудрость или субъектность, несмотря на все то, что подразумевает слово «обучение». Подобная лингвистическая путница лежит в основе большинства ошибочных представлений о компьютерах[75]75
  Busch, “A Dozen Ways to Get Lost in Translation”; van Dalen, “The Algorithms behind the Headlines”; ACM Computing Curricula Task Force, Computer Science Curricula 2013.


[Закрыть]
.

Воображение добавляет неразберихи. Ваше понимание феномена искусственного интеллекта зависит от того, каким вы видите будущее. Один из студентов Марвина Минского, Рэй Курцвейл, является сторонником теории сингулярности – гипотезы, согласно которой к 2045 г. человек интегрируется с вычислительными системами. (Курцвейл известен тем, что изобрел музыкальный синтезатор, который звучит как рояль.) Современная научная фантастика охвачена идеей сингулярности. Однажды во время интервью для конференции футуристов меня спросили о теории скрепок: «Что если бы вы изобрели машину, которая хочет делать скрепки, затем научили бы ее хотеть делать что-то другое, а потом машина создала бы множество других машин и они бы захватили мир? Это и есть сингулярность? – спросил интервьюер. – Беспокоит ли вас это?» Это забавно, хотя и бессмысленно. Машину можно просто выключить из розетки. Проблема решена. А еще это чисто гипотетическая ситуация. Она не настоящая.

Как сказал психолог Стивен Пинкер в специальном выпуске журнала IEEE Spectrum (журнала Института инженеров электротехники и электроники), посвященном сингулярности: «Нет ни единой причины верить в скорое приближение сингулярности. Тот факт, что вы можете представить будущее в собственной голове, еще не значит, что оно наступит. Вспомним о купольных городах, передвижениях на реактивных ранцах, подводных городах, зданиях высотой километр и автомобилях на ядерном топливе – все это футуристические фантазии, которые я слышал с детства, так и не ставшие реальностью. Возможность обработки огромных массивов данных непохожа на волшебную пыль, которая внезапно решит все проблемы»[76]76
  IEEE Spectrum, “Tech Luminaries Address Singularity.”


[Закрыть]
.

Ян Лекун из Facebook тоже скептично относится к идее сингулярности. В своем комментарии IEEE Spectrum он сказал: «Есть люди, которые ожидаемо раздувают концепт сингулярности, – как Рэй Курцвейл. Он футуролог. Ему нравится позитивный настрой относительно грядущего. Так он продает много книг. Однако, насколько мне известно, он никак не способствовал развитию исследований в области ИИ. Он продавал продукты, основанные на технологии ИИ, некоторые из которых были в известной степени инновационными. Но концептуально не было ничего нового. И, конечно, он не написал ни единой страницы, где бы показал миру, как нам продвинуться в разработке ИИ»[77]77
  Gomes, “Facebook AI Director Yann LeCun on His Quest to Unleash Deep Learning and Make Machines Smarter.”


[Закрыть]
. Разумные люди не принимают никаких сценариев будущего – в том числе потому, что никто не может видеть будущее.

Я попытаюсь внести ясность в сложившийся хаос: определим, что такое машинное обучение, и на примере посмотрим, как абсолютно любой человек может его использовать применительно к массиву данных. Я не просто покажу несколько путей использования машинного обучения, но и приведу кусочек кода. Будет много технических деталей, но, если они вас смущают, не переживайте – к ним можно вернуться чуть позже.

Искусственный интеллект оказался на пике популярности в 2017 г., до этого годами длилась «зима ИИ». В 2000-х гг. ИИ попросту игнорировался общественным дискурсом. Поначалу все технологическое внимание и наше коллективное воображение занимал интернет, затем мобильные устройства. В середине 2010-х люди заговорили о машинном обучении. Внезапно ИИ стал горячей темой. Повсюду появились стартапы в этой области. Watson от IBM победил человека в Jeopardy!; алгоритм перехитрил человека в игре го. Даже слова «машинное обучение» звучали круто. Машина может учиться! Надежды сбылись!

И поначалу мне хотелось верить в то, что каким-то гениям удалось решить сложнейшую задачу и заставить машину думать, но, присмотревшись, я поняла, что реальность куда сложнее. В действительности ученые дали машинному обучению новый смысл, соответствующий ему. Они так часто его использовали, что значение действительно изменилось.

Такое случается. Язык – это подвижная структура. Хороший тому пример – слово literally (буквально), которое обычно было антонимом к слову figuratively (фигурально)[78]78
  Пример актуален для США. – Прим. ред.


[Закрыть]
. В 1990-е гг., если бы вы сказали что-то вроде «Мой рот буквально горел после этого перца чили», это бы означало, что у вас во рту случился реальный пожар и из-за ожогов третьей степени вам пришлось говорить прямо из реанимационного отделения. Однако в 2000-х люди стали повсеместно использовать это слово как синоним «фигурально» и для усиления эффекта. «Я буквально бы убил кого-нибудь, если бы пришлось снова слушать песню Джона Майера» стали интерпретировать как «Я бы предпочел не слушать песню Джона Майера снова», а не предупреждение о готовящемся убийстве или беспорядках.

Согласно Оксфордскому словарю, термин «машинное обучение» вошел в массовый вокабуляр в 1959 г. А начиная с 2000-х гг. и третьего издания словаря термин стали включать целиком как словосочетание. Оксфордский словарь определяет машинное обучение как:

Машинное обучение – сущ. Вычислительная возможность компьютера к обучению на основе опыта, а именно к изменению работы в соответствии с вновь полученной информацией.

1959 г. Журнал записей IBM 3 211/1. В нашем распоряжении есть компьютеры с адекватными возможностями для обработки данных и скоростью работы, достаточной для применения техник машинного обучения.

1990 г. Журнал New Scientist от 8 сентября 78/1. Когда Даг Ленам из Стэнфорда разработал Eurisko, систему машинного обучения второго поколения, ему казалось, что он создал настоящий интеллект[79]79
  “machine, n.”


[Закрыть]
.

Это определение справедливо, но не слишком точно улавливает актуальные представления ученых о машинном обучении. Так, более релевантное определение можно найти в Оксфордском словаре по информатике:

Машинное обучение

Ответвление исследовательской области искусственного интеллекта, посвященное разработке программ, обучающихся на основе опыта. Обучение может принимать различные формы – от обучения на примерах и обучения на основе аналогии до автономного постижения концепций и обучения посредством находок.

Инкрементное обучение подразумевает непрерывное улучшение за счет вновь поступающих данных – обучение по одному примеру или пакетное обучение. Существует различение двух стадий – стадии обучения и применения.

Обучение с учителем предполагает явное указание принадлежности вводимых данных классам, которые требуется выучить.

Большинство методов обучения имеет тенденцию к генерализации, что позволяет системе развивать эффективную и качественную структуру репрезентации для больших массивов тесно связанных друг с другом данных[80]80
  Butterfield and Ngondi, A Dictionary of Computer Science.


[Закрыть]
.

Это уже ближе, но все еще не совсем точно. Документация к scikit-learn, популярной библиотеке для машинного обучения на языке Python, определяет машинное обучение иначе: «Машинное обучение заключается в усваивании системой ряда особенностей массива данных и последующем применении их к новому массиву. Поэтому в области машинного обучения существует распространенная практика разделения имеющегося массива данных на две части – обучающей выборки, на основе которой характеристики выучиваются, и тестовой выборки, на базе которой проверяется результат обучения»[81]81
  Pedregosa et al., “Scikit-Learn: Machine Learning in Python.”


[Закрыть]
.

Подобное расхождение источников относительно определения феномена – редкость. Например, в определении слова «собака» вполне сходится множество источников. В то же время «машинное обучение» – достаточно новый феномен, потому неудивительно, что пока не сложилось его общепринятое определение и лингвистика до него еще не добралась.

Том М. Митчелл, профессор кафедры машинного обучения в Школе компьютерных наук Университета Карнеги – Меллона, предлагает неплохое определение машинного обучения в книге «Наука машинного обучения» (The Discipline of Machine Learning). Он пишет: «Мы считаем, что машина обучается с учетом конкретной задачи Т, системы оценки эффективности Р для конкретной задачи, основываясь на опыте Е. В зависимости от того, как мы определяем Т, Р, и Е, задачу обучения можно назвать добычей данных, автономными исследованиями, обновлением базы данных, программированием на основе примеров и т. д.»[82]82
  Mitchell, “The Discipline of Machine Learning.”


[Закрыть]
. Это определение кажется мне подходящим потому, что Митчелл использует конкретные термины для определения феномена обучения. «Обучение» машины вовсе не означает, что у нее есть металлические «мозги». Это значит, что в выполнении конкретной задачи она стала точнее – в соответствии с метрикой, определенной человеком.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации