Электронная библиотека » Михаил Левицкий » » онлайн чтение - страница 7


  • Текст добавлен: 9 апреля 2019, 17:20


Автор книги: Михаил Левицкий


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 26 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +
Азот недоступный, но необходимый

Азот – это вечный источник танталовых мук человечества, вечные терзания голода среди роскошного изобилия.

АМЕРИКАНСКИЙ БИОХИМИК М. КАМЕН

Вероятно, не существует другого такого химического элемента, который доставил бы человечеству столько хлопот. Необычность ситуации состоит в том, что запасы молекулярного азота N2 громадны, поскольку это основная составная часть воздуха – его содержание в земной атмосфере свыше 78 % по объему, что соответствует 4 × 1015 т. На рисунке 3.7 показаны шары, объемы которых приблизительно соответствуют содержанию основных газов в атмосфере. Для многих, вероятно, окажется неожиданным, что содержание аргона Ar в воздухе заметно выше, чем углекислого газа СО2.

Почувствовать масштаб запасов азота можно, если принять во внимание, что в атмосфере над каждым квадратным километром земной поверхности находится столько азота, что из него можно получить до 10 млн т аммиака NH3.

Но человечеству нужен не молекулярный азот, а химически связанный, т. е. входящий в состав различных соединений. Необходимость связать атмосферный азот – заставить его вступить в химическую реакцию – возникла далеко не сразу.


Заблуждение известного химика

Немецкий химик Юстус Либих (рис. 3.8) в середине XIX в. возглавлял крупнейшую в Европе научную школу химиков. Среди его учеников были видные российские химики: А.А. Воскресенский, Н.Н. Зинин и др. Основным направлением его исследований было получение и изучение новых химических соединений: он впервые описал хлороформ (1831), уксусный альдегид (1835), открыл молочную и другие карбоновые кислоты. Помимо этого, он изучал химию физиологических процессов: например, выдвинул химическую теорию брожения и гниения. Одна из его работ, доставившая много неприятностей, оказалась позже весьма значимой.



Анализируя золу сожженных растений, он установил, что в ее состав входят калий, фосфор, кальций и другие элементы. Рассуждения Либиха были просты и логичны: единственный источник этих элементов для растения – почва, которая постепенно обедняется после многократно собранных урожаев. Следовательно, нужные элементы необходимо добавлять в почву для увеличения ее плодородия. Основные взгляды он изложил в книге «Органическая химия в приложении к земледелию и физиологии» (1840).

Истины, которые нам теперь кажутся совершенно очевидными, вызвали в то время у ряда ученых резкий протест и возмущение. «Это самая бесстыдная книга из всех, которые когда-либо попадали мне в руки», – писал о ней профессор ботаники Тюбингенского университета Г. Моль. «Совершенно бессмысленная книга», – вторил ему известный немецкий писатель Ф. Рейтер, занимавшийся некоторое время сельским хозяйством. Немецкие газеты начали помещать оскорбительные письма и карикатуры на Либиха и на его теорию минерального питания растений. Ситуация осложнялась тем, что ожидаемой эффективности калийно-фосфатные удобрения, предложенные Либихом, во многих случаях не показали. Дело в том, что эти удобрения не содержали еще одного очень важного элемента – азота. Вначале Либих полагал, что азот растения усваивают из воздуха так же, как кислород и углерод (в виде СО2).

К чести Либиха следует сказать, что у него хватило мужества признать свою ошибку, он сумел ее обнаружить и впоследствии исправить. Постепенно взгляды Либиха стали общепризнанными, что вскоре привело к появлению заводов по производству минеральных удобрений.

Воздадим должное Юстусу Либиху: история химии ко всем его многочисленным заслугам причисляет также создание им новой науки – агрохимии, в основе которой лежит необходимость применения удобрений.

Интересно, что ошибка Либиха была в некоторой степени частичной, поскольку существуют растения (например, горох, клевер, соя), которые могут усваивать атмосферный азот с помощью микроорганизмов, развивающихся в особых клубеньках на корнях этих растений. Такие бактерии, называемые азотофиксирующими, умеют в мягких условиях при обычной температуре и давлении превращать атмосферный азот в химические соединения.

Второй, не менее важный процесс связывания атмосферного азота – это электрические разряды в молниях. Каждую секунду по всему миру в землю ударяют до 100 молний, при высоких температурах в электрическом разряде (в канале молнии температура достигает 20 000 °С) азот взаимодействует с кислородом воздуха, образует оксид азота NO, который далее окисляется атмосферным кислородом до диоксида: 2NO + O2 → 2 NO2. Затем оксиды, соединяясь с водой и солями в почве, переходят в нитриты и нитраты. Ежегодно молнии дают несколько миллионов тонн азотистых удобрений – четверть всего образующегося в природе химически связанного азота.

Именно эти два источника связанного азота – азотфиксирующие бактерии и молнии – позволяют растениям существовать и развиваться. Кроме того, опадающие листья и ветви образуют перегной, в котором сохраняется запасенный азот. Благодаря этому леса могут существовать неограниченно долго без дополнительных удобрений.

Ситуация меняется, когда урожай вывозят с полей. По приблизительным подсчетам, ежегодно на земном шаре вместе с сельскохозяйственной продукцией вывозят около 100 млн т связанного азота. Столь громадный дефицит не могут восполнить природные процессы.


Азот – это жизнь!

Напомним, что в растениях азот находится в составе белковых молекул, которые содержат в среднем 17 % связанного азота. Из белков в растениях он далее переходит в белки травоядных животных, а далее поступает в организм млекопитающих. В состав молекул ДНК тоже входит азот. Поскольку белки и ДНК – основа всех живых организмов, то можно утверждать, что от возможности образовывать химические соединения азота зависит существование жизни на Земле.

Ранее было сказано, что биологическая фиксация атмосферного азота возможна с помощью некоторых бактерий. Этот процесс живой природы не менее важен, чем дыхание и фотосинтез (образование органических соединений из СО2 и Н2О). В результате деятельности азотфиксирующих бактерий громадные запасы атмосферного молекулярного азота превращаются в аминокислоты и белки.

Недавние исследования показали, что азотфиксирующие бактерии могут находиться не только на корнях растений, но и в кишечнике некоторых животных, что было воспринято как нечто необычное. Обнаружено это было в результате решения одной интересной задачи: термиты – насекомые тропических стран, напоминающие европейских тараканов, – питаются исключительно целлюлозой древесины, в которой азота нет. Долгое время было непонятно, как же они синтезируют белки, из которых состоит организм любого животного. Японские биохимики установили, что в кишечнике термитов живут простейшие организмы – жгутиконосцы, а в клетках этих организмов находятся особые бактерии. В ДНК этих бактерий обнаружены гены, которые синтезируют специальный фермент, способный связывать атмосферный азот (все это напоминает матрешку).

Попутно отметим, что «азот» в переводе с греческого означает «безжизненный» (а – приставка, указывающая на отрицание, зоэ – значит жизнь, тот же корень в слове «зоология»). Такое название предложил для него А. Лавуазье, который, исследуя процессы горения, установил, что в состав атмосферы входит некое инертное вещество, не поддерживающее окислительные процессы. Однако теперь, учитывая все вышесказанное, мы можем утверждать, что азот – это жизнь. Благодаря этим знаниям много лет назад появилась статья на ту же тему со своеобразным броским заголовком: «Азот? Нет, Зот!»


Запасенный ранее азот

С калием и фосфором, столь необходимыми растениям, особых проблем нет – запасы минеральных соединений, содержащих эти элементы, велики. Естественно, стали искать природные запасы связанного азота, и они были найдены. В первую очередь это нитрат калия KNO3, его единственным источником был минерал, называемый индийской селитрой. Ее в больших количествах стали вывозить из Индии, и довольно быстро запасы были исчерпаны. Кроме того, основное количество этого сырья использовали не в качестве удобрения, а для производства пороха.

Позже был найден другой источник селитры – гуано (от исп. guano), слово, по звучанию очень похожее на русский синоним, означающий испражнения ☺. Это результат тысячелетних процессов разложения растительных и животных органических остатков, в том числе и птичьего помета – гуано, содержащих смесь кальциевых, натриевых и аммонийных солей фосфорной, азотной и некоторых органических кислот. Громадные запасы гуано находились в пустыне Атакама (Чили), расположенной в предгорьях Кордильер. Полагают также, что эти запасы были дополнены вулканическими выбросами аммиака и солей аммония. Поскольку в этом районе почти не бывает дождей, запасы гуано накапливалось в течение многих веков, образовав в некоторых местах залежи длиной около 200 км и шириной 3 км при толщине пласта от 30 см до 3 м. Спрос на гуано постоянно возрастал, потребность в нем достигла такого размаха, что в начале XX в. его экспорт составлял миллионы тонн и запасы стали быстро истощаться. Необходимо было найти способ связывать атмосферный азот. Естественно, человечество в поисках промышленных способов производства азотсодержащих соединений не могло рассчитывать только на бактерии, впрочем, природа дала подсказку – молнии.

Норвежские химики решили воспроизвести природный процесс – молнии – и связать азот с помощью электрического разряда. Для этого они продували влажный воздух через электрическую дугу. Такой возможностью в начале ХХ в. обладала, пожалуй, только Норвегия, поскольку в ней много гидростанций и электроэнергия была сравнительно дешевой. Образующуюся азотную кислоту переводили в нитрат кальция Ca(NO3)2 (получивший название норвежской селитры), который использовали в качестве удобрения. Процесс был исключительно энергоемкий, выход азотной кислоты невелик и не мог покрыть возрастающую во всем мире потребность в азотных удобрениях. Поэтому химики искали и нашли иной путь связывания азота.


Крупная победа химии

Важным событием стал созданный немецкими химиками Ф. Габером (рис. 3.9) и К. Бошем (рис. 3.10) процесс, позволяющий превратить атмосферный азот в смеси с водородом в аммиак (рис. 3.11).

Катализирует процесс металлическое железо с примесями оксидов алюминия и калия при температуре 400–600 °С и давлении до 1000 атмосфер. Найти катализатор оказалось совсем не просто, для этого Габер испробовал несколько тысяч (!) различных соединений, в результате решение остро стоявшей проблемы было найдено. За создание этого процесса Ф. Габер был удостоен в 1918 г. Нобелевской премии (К. Бош получил Нобелевскую премию позже, в 1931 г., за развитие методов высокого давления в химии).



Скромная экспериментальная установка Габера (рис. 3.12) со временем превратилась в крупные заводы по производству аммиака (3.13).

Условия, в которых происходит синтез аммиака (высокие температура и давление), весьма жесткие, все дело в высокой химической инертности азота. Каковы же причины этого? Два атома азота связаны тройной связью, однако она заметно отличается от тройной связи между атомами углерода. Труднее всего разорвать в азоте первую связь из трех, для этого требуется заметная затрата энергии – 523 кДж/моль. Интересно, что разрыв первой связи в азоте наиболее труден, вторая связь раскрывается заметно легче (263 кДж/моль) и еще легче – третья связь (155 кДж/моль). Поэтому в реакциях с участием молекулярного азота обычно раскрываются все три связи. Главное – расшевелить самую прочную связь, т. е. первую, а остальные сами «покатятся под горку» (рис. 3.14).




Совсем иначе обстоит дело с тройной связью между атомами углерода (например, в ацетилене). Первую связь из трех разорвать нетрудно, необходимо всего 222 кДж/моль. Зато прочность второй связи заметно выше, а третьей – еще выше. Поэтому из ацетилена и его производных можно получить соединение с двойной или одинарной связью, а полное разъединение атомов углерода обычно не происходит.

Итак, главную задачу удалось решить – химически связать атмосферный азот с помощью процесса Габера – Боша. Дотошный химик обязательно спросит, а где же брать водород для синтеза аммиака: в отличие от азота, земная атмосфера не может нам его предоставить. С водородом особых трудностей нет, поскольку существует промышленный процесс его получения из метана и воды. Процесс проводят в две стадии в присутствии оксидов железа, меди и цинка, играющих роль катализаторов, на каждой из двух стадий образуется водород (рис. 3.15).

Громадное количество современных заводов синтезируют аммиак по способу Габера – Боша. Далее полученный аммиак каталитически окисляют до оксидов азота, в конечном итоге получают азотную кислоту и нитраты (соли азотной кислоты), которые необходимы не только в сельском хозяйстве и при изготовлении взрывчатых веществ, но и в производстве красителей, медикаментов и в химической промышленности.



Промышленное получение аммиака – процесс исключительно энергоемкий, и проводят его в весьма жестких условиях, поэтому химики решили найти способы фиксации азота, проходящие в мягких условиях, близких к тем, которые наблюдаются в живой природе.


Не обязательно копировать природу

Было совершенно очевидно, что искусственно синтезировать сложные белковые комплексы, которые содержатся в азотфиксирующих бактериях, не имеет смысла: подобный синтез исключительно сложный, трудоемкий, кроме того, химики обычно не стараются копировать природу, а используют только те подсказки, которые дает изучение природных процессов, а далее ищут свои, более эффективные пути.

Как это часто бывает в химии, решение задачи было подсказано предыдущими исследованиями. Одна из подсказок в скрытом виде содержалась в идеях, лежащих в основе промышленного синтеза аммиака. В те времена, когда Ф. Габер создавал свой процесс, представления о механизме катализа были развиты весьма слабо, поэтому в поисках катализатора Габер использовал метод сплошного перебора. Во второй половине ХХ в. наука о катализе весьма усовершенствовалась. Например, было уже понятно, что при синтезе аммиака с участием металлического железа (в роли катализатора) молекулы азота вначале «садятся» на поверхность металла, а затем металл оттягивает на себя электронные облака, связывающие два атома азота, и связь ослабляется. Далее «ослабевшая» молекула может участвовать в различных превращениях.

Пожалуй, наиболее важными наблюдениями были следующие: существуют случаи, когда молекула азота может быть зафиксирована на атоме переходного металла. Например, при взаимодействии хлорида рутения с гидразином H2N-NH2 образуется комплекс, в котором гидразин превращается в аммиак и молекулярный азот, и оба образовавшихся соединения, в том числе нейтральная молекула азота N2, «садятся» на металл (рис. 3.16).



На самом деле в этом случае решена обратная задача: химически связанный азот (в гидразине) переходит в молекулярный азот N2. Результат интересен тем, что показывает, что молекулу азота можно зафиксировать на атоме металла. Были и другие подобные наблюдения. Таким образом, ожидать нужный результат – активировать молекулярный азот N2 – можно будет в том случае, если азот, во-первых, сумеет образовать комплекс с соединением переходного металла, а во-вторых, станет при этом достаточно активным (рис. 3.17).



Далее будут часто упоминаться π-комплексы переходных металлов – поясним, о чем идет речь. Это прямые «потомки» ферроцена – выдающегося соединения ХХ в. Такие комплексы имеют сэндвичевое строение (наподобие бутерброда), где атом металла зажат между двумя плоскими органическими циклами. Чаще всего это циклопентадиенильные циклы С5Н5, их обычно изображают в виде плоского пятиугольника с кружком посередине – признак ароматичности. Химия таких соединений на сегодня хорошо разработана и открывает исключительные возможности для конструирования разнообразных комплексов.

В 1964 г. российские ученые М.Е. Вольпин (рис. 3.18) и В.Б. Шур (рис. 3.19) из Института элементоорганических соединений Российской академии наук опубликовали статью, в которой сообщили, что они нашли возможность восстанавливать молекулярный азот до аммиака в мягких условиях. Основной «козырь» этой работы – специально разработанные катализаторы, процесс получил название «реакция Вольпина – Шура».



Авторы установили, что катализировать такую реакцию может довольно широкий круг веществ – соединения Ti, V, Cr, Mo, W. Однако «расшевелить» тройную связь между атомами азота недостаточно, необходимо предложить этой ослабленной связи то направление, в котором должна идти реакция. Кажется вполне естественным, что это должно быть восстановление, приводящее к образованию связи N – H (наиболее простой вариант – образование аммиака). Таким образом, в реагирующую систему вводится также и восстановитель: например, широко применяемый в лабораторной практике в качестве восстановителя литийалюминийгидрид LiAlH4. Кроме того, можно использовать и другие восстановители: например, натрийборгидрид NaBH4 либо смесь Mg + Mg2.

Авторы пропускали азот через раствор, содержащий каталитическую систему – комплексное соединение титана (C5H5)2TiCl2 с восстановителем (магнийорганическим соединением C2H5MgBr), в результате из азота получался аммиак NH3.

Полученный результат был абсолютно новым и исключительно важным, поэтому авторы приложили специальные усилия, чтобы доказать его истинность. Необходимо было снять подозрение, что источником образующегося аммиака могли оказаться различные азотсодержащие примеси в используемых реактивах. Были проведены специальные опыты, в которых использовали исходный молекулярный азот N2, содержащий изотоп 15N. Такая изотопная метка, которую специальными методами можно обнаружить в соединениях, позволяет «проследить» за перемещением атомов азота из одного соединения в другое. Эксперименты показали, что в полученном аммиаке практически то же количество изотопа 15N, что и у введенного в реакцию молекулярного азота.

Позже удалось более детально описать этот процесс. В реакционной смеси образуется промежуточное соединение – комплекс титана, в котором атом металла окружен двумя циклическими молекулами (С5Н5) и алифатической группой – СН(СН3)2. Молекула азота встраивается между двумя такими молекулами, полученный «агрегат» даже удалось зафиксировать при низкой температуре. Далее, в зависимости от условий, полученное соединение в результате гидролиза образует гидразин H2N – NH2 либо аммиак NH3.

Напомним, что катализатор должен работать в небольших количествах, обеспечивая превращение большого количества реагентов. Все рассмотренные выше системы позволяли получать аммиак при соотношении одна молекула NH3 на один атом T1. Практически это не катализ, а обычная реакция, поскольку соединение титана участвует как рядовой реагент. Авторам работы удалось найти каталитическую систему ТiСl4 – АlВг3 – Аl, которая при давлении 10 МПа и 130 °С дает почти 300 молей аммиака на 1 моль ТiСI4. Такое соотношение можно уже рассматривать как истинный катализ.

Изучая возможности найденных каталитических систем, авторы установили, что если в состав восстанавливающего компонента ввести фенильную группу, то в результате можно получить из молекулярного азота анилин. Такой результат производит впечатление: фактически это получение промышленно важной органической молекулы непосредственно из азота N2. Каталитическая система представляет собой композицию из комплекса титана (C5H5)2ТiСl2 и фениллития РhLi. На первой стадии возникает фенилпроизводное титана (фенильная группа переходит к титану от лития), затем молекула азота внедряется по связи Ti – Ph. Образовавшееся соединение при действии восстановителя и кислоты (Н+) образует анилин и аммиак.

Открытие фиксации молекулярного азота в мягких условиях стало заметным этапом в науке о катализе и привело к появлению целого потока исследований. Например, были найдены каталитические системы, которые работают даже в водной среде, таким образом, исследователи решили проблему не менее эффективно, чем это делают азотфиксирующие бактерии. Впрочем, химия постоянно демонстрирует свое могущество, предлагая замечательные новые композиции и материалы, не существующие в природе.

Интересно, что открытие фиксации азота вышло за рамки химической науки и, по-видимому, произвело впечатление на многих, в том числе и на деятелей искусства. В 1981 г. на экраны вышел фильм Леонида Марягина «Незваный друг». В фильме есть эпизод: молодой ученый (исполнитель – Олег Даль) кладет на стол научному руководителю (его играет Олег Табаков) свою диссертацию, тема диссертации – фиксация азота (рис. 3.20).



С некоторой долей уверенности можно полагать, что прообразами этих героев послужили первооткрыватели процесса М.Е. Вольпин и В.Б. Шур.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации