Электронная библиотека » Митио Каку » » онлайн чтение - страница 4


  • Текст добавлен: 4 июля 2017, 12:20


Автор книги: Митио Каку


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 36 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +
Эйнштейн-мятежник

Законы, открытые Ньютоном, так хорошо объясняли мир, что науке понадобилось более 200 лет, чтобы сделать очередной серьезный шаг. Этот шаг был связан с работой Альберта Эйнштейна. Начало его карьеры никак не предвещало такой революции в науке. Получив степень бакалавра в Политехническом институте в Цюрихе (Швейцария) в 1900 году, Эйнштейн обнаружил, что получить работу нет никакой надежды. Его карьеру разрушили его же преподаватели, не любившие самонадеянного дерзкого студента, который часто срывал занятия. Тоскливые безысходные письма свидетельствуют о тяжелой депрессии. Альберт считал себя неудачником и тяжелой обузой для родителей. В одном письме он признавался, что даже собирался свести счеты с жизнью. «Несчастье моих бедных родителей, у которых за столько лет не было ни единой минуты счастья, тяжелее всего давит на мои плечи… Я лишь обуза для родственников… Наверняка было бы лучше, если бы я вообще не жил»{21}21
  Pais2, p. 41.


[Закрыть]
, – с горечью писал он.

В отчаянии Альберт подумывает о том, чтобы бросить науку и пойти работать в страховую компанию. Он даже взялся за частные уроки, но поспорил с работодателем и его уволили. Когда подруга Эйнштейна Милева Марич неожиданно забеременела, он сознавал, что ребенок останется незаконнорожденным, потому что на женитьбу у него нет средств. (Никто не знает, что в конце концов стало с его незаконнорожденной дочерью Лизерль.) Глубокое потрясение, которое испытал Эйнштейн, когда внезапно умер его отец, оставило в душе незаживающую рану, от которой он так никогда и не излечился. Ученый всегда помнил, что отец умер, считая сына неудачником.

Хотя 1901–1902 годы были самым трудным периодом в жизни Эйнштейна, от забвения его спасла рекомендация сокурсника Марселя Гроссмана, который, потянув «за кое-какие ниточки», обеспечил Эйнштейну работу скромного клерка в Швейцарском патентном бюро в Берне.

Парадоксы относительности

На первый взгляд, патентное бюро было не самым перспективным местом, где могла начаться величайшая со времен Ньютона революция в физике. Но были у этой службы и свои преимущества. Быстро разделавшись с заявками на патенты, загромождавшими его стол, Эйнштейн откидывался на стуле и погружался в детские воспоминания. В молодости он прочел «Естественнонаучные книги для народа» Аарона Бернштейна – «работу, которую я прочел, затаив дыхание», вспоминал Альберт. Бернштейн предлагал читателю представить, что он движется параллельно с электрическим током, когда тот передается по проводам. В 16 лет Эйнштейн задал себе вопрос: на что был бы похож луч света, если бы его можно было догнать? Он вспоминал: «Такой принцип родился из парадокса, на который я натолкнулся в 16 лет: если я гонюсь за лучом света со скоростью с (скорость света в вакууме), я должен наблюдать такой луч света как пространственно колеблющееся электромагнитное поле в состоянии покоя. Однако, кажется, такой вещи не может существовать – так говорит опыт и так говорят уравнения Максвелла»{22}22
  Schilpp, p. 53.


[Закрыть]
. В детстве Эйнштейн считал, что если двигаться параллельно лучу света со скоростью света, то свет будет казаться замерзшим, подобно застывшей волне. Однако никто не видел замерзшего света, так что тут явно что-то было не так.

В начале века существовали в физике два столпа, на которых покоилось все: ньютоновская теория механики и гравитации и теория света Максвелла. В 1860-е годы шотландский физик Джеймс Кларк Максвелл доказал, что свет состоит из пульсирующих электрических и магнитных полей, постоянно переходящих друг в друга. Эйнштейну же предстояло открыть, к его великому потрясению, что эти два столпа противоречат друг другу, и одному из них предстояло рухнуть.

В уравнениях Максвелла он обнаружил решение загадки, которая не давала ему покоя его на протяжении 10 лет. Эйнштейн нашел в них то, что упустил сам Максвелл: уравнения доказывали, что свет перемещается с постоянной скоростью, при этом было совершенно неважно, с какой скоростью вы пытались догнать его. Скорость света с была одинаковой во всех инерциальных системах отсчета (то есть системах отсчета, двигающихся с постоянной скоростью). Стояли ли вы на месте, ехали на поезде или примостились на мчащейся комете, вы бы обязательно увидели луч света, несущийся впереди вас с постоянной скоростью. Неважно, насколько быстро вы двигались бы сами, – обогнать свет вам не под силу.

Такое положение дел быстро привело к появлению множества парадоксов. Представьте на миг астронавта, пытающегося догнать луч света. Астронавт стартует на космическом корабле, и вот он несется голова в голову с лучом света. Наблюдатель на Земле, ставший свидетелем этой гипотетической погони, заявил бы, что астронавт и луч света двигаются бок о бок. Однако астронавт сказал бы нечто иное, а именно: луч света уносился вперед, как если бы космический корабль находился в состоянии покоя.

Вопрос, вставший перед Эйнштейном, заключался в следующем: как могут два человека настолько по-разному интерпретировать одно и то же событие? По теории Ньютона, луч света всегда можно догнать; в мире Максвелла это было невозможно. Эйнштейна внезапно озарило, что уже в фундаментальных основах физики таился фундаментальный же изъян. Эйнштейн вспоминал, что весной 1905 года «в моей голове разразился шторм». Он наконец нашел решение: время движется с различной скоростью в зависимости от скорости движения. По сути, чем быстрее двигаться, тем медленнее движется время. Время не абсолютно, как когда-то считал Ньютон. По Ньютону, время однородно во всей Вселенной и длительность одной секунды на Земле будет идентична одной секунде на Юпитере или Марсе. Часы абсолютно синхронизированы со всей Вселенной. Однако, по Эйнштейну, различные часы во Вселенной идут с разными скоростями.

Эйнштейн понял, что если бы время могло меняться в зависимости от скорости{23}23
  Сжатие объектов, движущихся с околосветовой скоростью, в действительности было открыто Хендриком Лоренцом и Джорджем Френсисом Фитцджеральдом незадолго до Эйнштейна, но они не поняли этого эффекта. Они пытались анализировать этот эффект в рамках исключительно ньютонианской системы, предположив, что это сжатие представляет собой электромеханическое сжатие атомов, создающееся вследствие прохождения сквозь «эфирный ветер». Сила идей, предложенных Эйнштейном, состояла в том, что он не только получил всю специальную теорию относительности из одного принципа (постоянства скорости света), он также интерпретировал его как универсальный природный принцип, противоречащий теории Ньютона. Таким образом, эти искажения являлись свойствами, присущими пространству-времени, а не электромеханическими искажениями вещества. Великий французский математик Анри Пуанкаре, вероятно, подошел ближе всех к выводу тех же уравнений, что получил Эйнштейн. Но лишь у одного Эйнштейна были полный набор уравнений и глубокое понимание физической подоплеки проблемы.


[Закрыть]
, то другие величины, такие как длина, масса и энергия, также должны меняться. Он обнаружил, что чем быстрее тело двигается, тем сильнее оно сокращается в направлении движения (что иногда называют «сокращением Лоренца – Фицджеральда»). Подобным образом, чем быстрее вы двигаетесь, тем тяжелее вы становитесь. (По сути, когда вы приблизитесь к скорости света, время замедлится до полной остановки, ваши размеры сократятся до полного нуля, а ваша масса возрастет до бесконечности. Полный абсурд. Это причина того, что нельзя превысить световой барьер, который является скоростным пределом во Вселенной.)

Это странное искажение пространства-времени склонило некоего поэта написать следующее:

 
Жил-был парень по имени Фиск,
Фехтуя, он был крайне быстр,
И так был он быстр во владении,
Что Фицджеральдово сокращение
Превратило рапиру в диск.
 

Подобно тому как прорыв Ньютона объединил земную и небесную физику, Эйнштейн объединил время и пространство. Но он также показал, что материя и энергия взаимосвязаны и потому могут переходить друг в друга. Если объект становится тем тяжелее, чем быстрее он движется, это означает, что энергия движения трансформируется в материю. Обратное также справедливо – материя может быть преобразована в энергию. Эйнштейн подсчитал, сколько энергии будет преобразовано в материю, и вывел формулу Е = ², то есть даже крошечное количество материи m умножается на огромное число (квадрат скорости света) при превращении в энергию Е. Таким образом, был обнаружен таинственный источник энергии звезд – им оказалось преобразование материи в энергию согласно уравнению, которое справедливо для всей Вселенной. Тайну звезд оказалось возможно раскрыть благодаря простому утверждению, что скорость света одинакова во всех инерциальных системах отсчета.

Так, как когда-то Ньютон, Эйнштейн изменил наш взгляд на подмостки жизни. В мире Ньютона все актеры точно знали, который час и как измеряется расстояние. Ход времени и размеры сцены никогда не менялись. Но относительность принесла нам причудливое понимание пространства и времени. Во Вселенной Эйнштейна наручные часы каждого актера показывают свое время. Это означает, что сверить все часы, тикающие на сцене, невозможно. На репетицию, назначенную в полдень, разные актеры явятся в разное время. И вообще, когда актеры бегают по сцене, происходят вещи необыкновенные. Чем быстрее они двигаются, тем медленнее тикают их часы и тем более тяжелыми и плоскими становятся их тела.

Потребовались годы, чтобы широкое научное сообщество приняло взгляды Эйнштейна. Но сам Эйнштейн не стоял на месте; он хотел применить свою новую теорию относительности к самой гравитации. Он осознавал всю сложность своего предприятия – в одиночку заниматься самой прогрессивной и «тяжеленной» теорией своего времени, точнее, опережающей свое время. Макс Планк, создатель квантовой теории, предостерегал Эйнштейна: «Как старший друг я должен предупредить тебя, чтобы ты не делал этого, ибо, во-первых, ты не добьешься успеха, а даже если и добьешься, никто тебе не поверит»{24}24
  Pais2, p. 239.


[Закрыть]
.

Эйнштейн понимал, что его новая теория относительности разрушала теорию гравитации Ньютона. По Ньютону, гравитация распространялась во Вселенной мгновенно. Но тут возникает вопрос, который иногда задают даже дети: «Что будет, если Солнце исчезнет?» По Ньютону, вся Вселенная тут же станет свидетельницей исчезновения Солнца. Но по теории относительности это невозможно, поскольку информация об исчезновении звезды ограничена скоростью света. Согласно теории относительности, внезапное исчезновение Солнца вызвало бы сферическую ударную гравитационную волну, распространяющуюся во все стороны со скоростью света. Наблюдатели, находящиеся с внешней стороны ударной взрывной волны, сказали бы, что Солнце продолжает светить, поскольку гравитация еще не успела достичь их. Но наблюдатель внутри волны сказал бы, что Солнце исчезло. Для разрешения этой проблемы Эйнштейн ввел совершенно новые понятия пространства и времени.

Сила как искривление пространства

Ньютон понимал пространство и время как огромную пустую арену, где события происходят в соответствии с его законами механики. Когда-то сцена была полна чудес и тайн, но, по существу, оставалась инертной и неподвижной, лишь пассивной свидетельницей ритуального танца природы. Однако Эйнштейн перевернул это представление. Для Эйнштейна сама сцена становится важной составляющей жизни. Во Вселенной Эйнштейна пространство и время уже не были статичной сценой, как предполагал (и предписывал) Ньютон, они приобрели динамичность, изгибались и извивались причудливым образом. Представьте, что сцену жизни заменил батут, на котором все актеры мягко проседают под собственным весом. При таком положении дел мы увидим, что сцена становится столь же важной, как и актеры.

Представьте, что на кровать положили шар для игры в боулинг и он мягко утопает в матрасе. Теперь подтолкните небольшой шарик по искривленной поверхности матраса. Шарик будет двигаться. Ньютонианец, увидев с большого расстояния шарик, огибающий большой шар, пришел бы к выводу, что существует некая таинственная сила, с которой шар для игры в боулинг воздействует на маленький шарик. Он сказал бы, что шар для боулинга мгновенно воздействует на маленький шарик, притягивая его к центру.

Для релятивиста, который наблюдает движение шарика с близкого расстояния, совершенно ясно, что никакой силы не существует вообще. Есть лишь искривление матраса, которое и заставляет шарик двигаться по кривой. Он говорит: «При чем тут притяжение? Есть лишь давление, которое оказывает матрас на маленький шарик». Теперь возьмем вместо шарика Землю, вместо большого шара – Солнце, а вместо матраса – космос, и мы поймем, что Земля движется вокруг Солнца не из-за гравитационного притяжения, а потому, что Солнце искажает космическое пространство вокруг Земли и тем создает давление, заставляющее Землю двигаться по окружности.

Таким образом, Эйнштейн пришел к выводу, что гравитация больше похожа на материю, нежели на невидимую силу, действующую мгновенно в пределах Вселенной. Если быстро встряхивать материю, то образовавшиеся волны побегут по ее поверхности с определенной скоростью. Это разрешает парадокс исчезнувшего Солнца. Если гравитация – побочный продукт искривления пространства-времени, то исчезновение Солнца можно сравнить (вернемся к матрасу) с резким подскоком с постели шара для игры в боулинг. Когда матрас резко возвращает себе первоначальную форму, по поверхности простыни бегут волны, двигающиеся с определенной скоростью. Таким образом, сведя гравитацию к искривлению пространства и времени, Эйнштейн смог примирить ее с теорией относительности.

Представьте себе муравья, пытающегося бежать по смятому листу бумаги. Он будет передвигаться, раскачиваясь, будто пьяный матрос, влево и вправо. Муравей горячо возразил бы, что он не пьян, утверждая, что его качает таинственная сила, дергая то влево, то вправо. Для муравья это ничем не заполненное пространство полно таинственных сил, мешающих ему идти прямо. Однако, глядя на муравья с близкого расстояния, мы видим, что никакая сила его не тянет. Его «толкают» складки мятого листа бумаги. Силы, воздействующие на муравья, – всего лишь иллюзия, вызванная искривлением пространства. Воздействие силы – на самом деле лишь «толчок», когда он перешагивает через складку бумаги. Другими словами, не гравитация притягивает, а пространство отталкивает.

В 1915 году Эйнштейну наконец удалось завершить то, что он назвал общей теорией относительности, и это стало фундаментом, на котором покоится вся космология. В этой удивительной картине мира гравитация выступает не как независимая сила, заполняющая Вселенную, а как видимый эффект искривления пространства-времени. Теория Эйнштейна была так всеобъемлюща, что подытожить ее ему пришлось в длиннющем уравнении. В этой блестящей новой теории степень искривления пространства и времени определялась количеством материи и энергии, содержащихся в них. Представьте, что в пруд бросили камень. По поверхности пруда пойдет рябь, вызванная падением камня. Чем больше камень, тем более неровной станет поверхность пруда. Похожим образом, чем больше звезда, тем сильнее искривление пространства-времени, окружающего звезду.

Рождение космологии

Эйнштейн попытался использовать подобный принцип для описания Вселенной как целостного образования. Его ожидало столкновение с парадоксом Бентли. В 1920-е годы большинство астрономов верило в то, что Вселенная однородна и статична. Поэтому Эйнштейн отталкивался от предположения, что Вселенная однородно заполнена пылью и звездами. В одной из моделей Вселенная сравнивается с большим воздушным шаром или мыльным пузырем. Мы живем на его поверхности. Звезды и галактики, которые мы видим вокруг себя, можно сравнить с точками, нарисованными на поверхности воздушного шарика.

К своему удивлению, всякий раз, когда Эйнштейн пытался решить собственные уравнения, он приходил к выводу, что Вселенная динамична. Ученый столкнулся с той самой проблемой, которую сформулировал Бентли более чем за два столетия до него. Поскольку гравитация всегда притягивает и никогда не отталкивает, ограниченное количество звезд должно взорваться в огненном катаклизме. Однако это противоречило господствующему в начале XX века мнению, гласившему, что Вселенная статична и однородна.

Несмотря на всю свою революционность, Эйнштейн не мог поверить, что Вселенная может двигаться. Подобно Ньютону и множеству остальных ученых, Эйнштейн верил в статичную Вселенную. Так, в 1917 году Эйнштейн был вынужден ввести в свои уравнения новое слагаемое, некую поправку – новую, антигравитационную силу, которая толкала звезды прочь друг от друга. Эйнштейн назвал ее космологической константой, и она выглядела гадким утенком, запоздалым дополнением к его теории. Эйнштейн без достаточных на то оснований, чтобы полностью нейтрализовать силы гравитации, ввел антигравитацию, создавая тем самым статичную Вселенную. Другими словами, Вселенная стала статичной просто по воле Эйнштейна: внутреннее сокращение Вселенной благодаря гравитации нейтрализовалось внешней силой темной энергии. (На протяжении 70 лет, вплоть до открытий последних лет, эта антигравитационная сила считалась в физике чем-то вроде сироты.)

В 1917 году нидерландский физик Виллем де Ситтер предложил еще одно решение для уравнений Эйнштейна, где вселенная была бесконечной и полностью лишенной всякой материи. По сути, вселенная состояла только из энергии, содержащейся в вакууме, – космологической константы. Этой чистой антигравитационной силы было достаточно, чтобы вызвать стремительное экспоненциальное расширение вселенной. Даже без всякой материи эта темная энергия могла создать расширяющуюся вселенную.

Теперь перед физиками встала дилемма. Во вселенной Эйнштейна существовала материя, но не было движения. Во вселенной де Ситтера было движение, но не существовало материи. Во вселенной Эйнштейна космологическая константа оказалась необходимой для нейтрализации гравитационного притяжения и создания статичной вселенной. Во вселенной де Ситтера одной космологической константы было достаточно для создания расширяющейся вселенной.

В конце концов в 1919 году, когда Европа, залечивая раны, пыталась выбраться из руин Первой мировой войны, по всему миру были разосланы команды ученых-астрономов для проверки новой теории Эйнштейна. Эйнштейн предположил, что искривление пространства-времени Солнцем будет достаточным для искривления звездного света, проходящего вблизи Солнца. Величину искривления звездного света можно было точно подсчитать, подобно тому как можно вычислить, насколько стекло искривляет свет. Но поскольку днем сияние Солнца скрывает все звезды, для проведения решающего эксперимента ученым пришлось ждать наступления солнечного затмения.

Группа, возглавляемая британским астрофизиком Артуром Эддингтоном, отправилась на остров Принсипи в Гвинейском заливе (у побережья Западной Африки), чтобы запечатлеть искривление света звезд вокруг Солнца во время будущего солнечного затмения. Другая команда под руководством Эндрю Кроммелина отправилась в деревню Собраль в северной Бразилии. Собранные ими данные свидетельствовали, что средняя величина отклонения звездного света равняется 1,79 с дуги, что вполне соотносилось с предсказанной Эйнштейном 1,74 с дуги (неточность объяснялась погрешностью измерений в ходе эксперимента). Иными словами, свет действительно искривлялся вблизи Солнца. Позднее Эддингтон заявил, что проверка теории Эйнштейна стала одним из величайших моментов его жизни.



6 ноября 1919 года на совместном заседании Королевского общества и Королевского астрономического общества в Лондоне нобелевский лауреат и президент Королевского общества Дж. Дж. Томпсон торжественно объявил, что это «одно из величайших достижений в истории человеческой мысли. Это открытие не отдаленного острова, а целого континента новых научных идей. Это величайшее открытие в области гравитации с тех пор, как Ньютон сформулировал свои законы»{25}25
  Folsing, p. 444.


[Закрыть]
.

(По легенде, позднее некий репортер спросил Эддингтона: «Ходят слухи, что во всем мире лишь трое понимают теорию Эйнштейна. Вы, должно быть, один из них». Эддингтон стоял, ни говоря ни слова, и репортер добавил: «Не скромничайте, Эддингтон». Эддингтон пожал плечами и ответил: «Я вовсе не скромничаю. Я просто задумался, кто же может быть третьим»{26}26
  Parker, p. 126.


[Закрыть]
.)

На следующий день лондонская Times вышла с сенсационным заголовком: «Научная революция – Новая теория Вселенной – Идеи Ньютона низвергнуты». Этот заголовок определил момент, когда Эйнштейн стал фигурой мирового значения, посланцем звезд.

Заявление было настолько ошеломляющим, а отход Эйнштейна от идей Ньютона настолько радикальным, что в обществе возникла негативная реакция – даже выдающиеся физики и астрономы осудили эту теорию. В Колумбийском университете Чарльз Лейн Пуэр, преподаватель астрономии, возглавил кампанию по критике теории относительности. Он объявил: «Я чувствую себя так, будто прогулялся с Алисой по Стране чудес и побывал на чаепитии у Безумного Шляпника»{27}27
  Brian, p. 102


[Закрыть]
.

Причина, по которой теория относительности противоречит здравому смыслу, заключается не в том, что она неверна, а в том, что наш здравый смысл не в состоянии представить реальность. Мы – странное произведение природы. Мы заселяем необычный объект недвижимости, где температура, плотность и скорости довольно умеренны. Однако в «настоящей Вселенной» температуры могут быть невероятно высокими в центре звезды или чрезвычайно низкими в открытом космосе, а субатомные частицы проносятся в космическом пространстве со скоростью, близкой к скорости света. Другими словами, наш здравый смысл сформировался в крайне необычной темной части Вселенной, на Земле, а потому неудивительно, что наш рассудок не может постичь истинные размеры Вселенной. Проблема не в теории относительности, а в нашем убеждении, что наш рассудок в состоянии объяснить реальность.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации