Автор книги: Митио Каку
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 36 страниц) [доступный отрывок для чтения: 12 страниц]
Работу Хаббла, утонченного аристократа от астрономии, продолжил не менее талантливый ученый, Георгий Гамов. Во многом Гамов являл собой противоположность Хабблу: шутник, карикатурист, прославившийся розыгрышами и двадцатью занимательными научными книгами, многие из которых были предназначены для молодежи. Несколько поколений физиков (включая и меня) было воспитано на его занимательных и содержательных книгах по физике и космологии. В то время, когда теория относительности и квантовая теория производили переворот в науке и обществе, книги Гамова занимали особое место, потому что они были достоверным источником информации в вопросах передовой науки, вполне доступным даже подросткам.
Ученые менее крупные часто бывают не слишком богаты идеями, они довольствуются разработкой чужих. Гамов же был одним из самых плодовитых гениев своего времени, эрудитом, стремительно выдававшим на-гора идеи, изменившие ход развития ядерной физики, космологии и даже исследований ДНК. Возможно, не случайно автобиография Джеймса Уотсона, который вместе с Фрэнсисом Криком раскрыл тайну молекулы ДНК, называется «Гены, Гамов и девушки» (Genes, Gamow, and Girls). Коллега-физик Эдвард Теллер вспоминал: «90 % теорий Гамова были неправильны, очень легко было понять, что они неправильны. Но он никогда не возражал. Он был одним из тех, кто не испытывает особой гордости за свои открытия. Он выдавал последнюю идею, а затем рассматривал ее как шутку»{31}31
Smoot, p. 61.
[Закрыть]. Но оставшиеся 10 % его теорий продолжали развиваться, изменяя всю мировую науку.
Гамов родился в Одессе в 1904 году, когда страна стояла на пороге революции. Он вспоминал, что «уроки часто отменяли во время стрельбы или штыковых атак греческих, французских или британских экспедиционных войск на главных улицах города против красных, белых или даже зеленых или когда русские разных цветов сражались друг против друга»{32}32
Gamow1, p. 14.
[Закрыть].
Решающий момент в жизни Гамова наступил в тот день, когда он пошел в церковь и после службы тайком унес домой кусочек просфоры. Глядя в микроскоп, он не смог разглядеть разницы между хлебом причастия, символизирующим тело Христово, и обычным хлебом. Он заключил: «Я считаю, что именно этот эксперимент сделал меня ученым»{33}33
Croswell, p. 39.
[Закрыть].
Гамов получил образование в Ленинградском университете, где физику преподавал Александр Фридман. Позднее в Копенгагенском университете он встретился со светилами науки, такими как Нильс Бор. (В 1932 году он и его жена совершили неудачную попытку оставить Советский Союз, отплыв на плоту из Крыма в Турцию. Позднее ему удалось покинуть страну благодаря поездке на конференцию по физике в Брюссель, что обеспечило ему смертный приговор в Советском Союзе.)
Гамов прославился тем, что посылал шуточные стишки своим друзьям. Большинство из них нецензурные, но в одном описывается беспокойство космологов, когда они встречаются лицом к лицу с огромностью астрономических чисел и глядят в лицо бесконечности:
В 1920-е годы в России Гамов впервые добился большого успеха, разрешив загадку радиоактивного распада. Благодаря работам мадам Кюри и других ученых стало известно, что атом урана нестабилен и излучает радиацию в виде альфа-лучей (ядро атома гелия). Но, согласно механике Ньютона, загадочная ядерная сила сцепления, сохраняющая ядро целым, должна была предотвращать расщепление атома. Как же это было возможно?
Гамов (а независимо от него – Р. Гёрни и Э. Кондон) понял, что радиоактивный распад стал возможен потому, что принцип неопределенности в квантовой механике гласит: нельзя одновременно узнать точное местоположение и скорость частицы; следовательно, существовала ничтожно малая вероятность того, что она может туннелировать, или проникать сквозь барьер. (Сегодня теория квантового туннелирования частиц занимает центральное место в физике и используется для объяснения свойств электронных устройств, черных дыр и Большого взрыва. Сама Вселенная могла быть создана подобным туннелированием.)
Проводя аналогию, Гамов говорил об узнике, который заточен в темницу, окруженную высокими тюремными стенами. В классическом мире Ньютона побег невозможен. Но в мире квантовой теории вы не знаете точно, где находится узник в любой момент времени, так же как не знаете и скорость его перемещения. Если узник станет биться о стены с достаточной частотой, возникнет некоторая вероятность того, что однажды он пройдет сквозь них, хотя это будет прямым противоречием здравому смыслу и ньютоновской механике. Существует конечная, поддающаяся вычислению вероятность того, что узник окажется за пределами тюремных стен. В случае с объектом «узник», имеющим большие размеры и малую энергию, для такого чуда может понадобиться время, превышающее время жизни всей Вселенной. Но с альфа-частицами и субатомными частицами так происходит почти все время, потому что они часто бьются о стены ядра, используя огромные энергии. Многие считали, что эта работа Гамова заслуживает Нобелевской премии.
В 1940-е годы интересы Гамова от теории относительности переместились в сторону космологии, которую он рассматривал как неизведанную ранее сферу деятельности. Что было известно в то время? То, что небо черное, а Вселенная расширяется. Гамов руководствовался единственной целью: найти любые свидетельства, или «окаменелости», доказывающие, что миллиарды лет тому назад произошел Большой взрыв. Это было бесперспективно, поскольку космология не экспериментальная наука в истинном смысле этого слова. Не существует таких экспериментов, которые бы доказали Большой взрыв. Космология больше похожа на криминальную дедукцию – науку, основанную на наблюдениях, где нужно искать «следы» или «свидетельства» на месте преступления, – чем на науку, где можно ставить точные эксперименты.
Ядерная кухня ВселеннойОчередным вкладом Гамова в физическую науку стало открытие ядерных реакций, в результате которых образуются легчайшие элементы, существующие ныне во Вселенной. Ему нравилось называть это «доисторической кухней Вселенной», в которой все элементы изначально возникли из жаркого пламени Большого взрыва. Сегодня этот процесс носит название нуклеосинтеза, или установления относительного содержания элементов во Вселенной. Суть теории Гамова в том, что существует нерушимая цепочка элементов, начинающаяся с водорода, которая может быть построена путем последовательного добавления частиц к атому водорода. Гамов утверждал, что вся периодическая таблица элементов Менделеева могла быть создана в пекле Большого взрыва.
Гамов и его последователи доказывали, что в момент творения Вселенная представляла собой невообразимо горячее скопление протонов и нейтронов; затем, видимо, произошло слияние – атомы водорода образовали атомы гелия. Подобное происходит в водородной бомбе или звезде: температуры настолько велики, что протоны – ядра водорода – с огромной скоростью сталкиваются друг с другом и сливаются, превращаясь в ядро гелия. По этому сценарию последующие столкновения водорода с гелием рождают набор следующих элементов, включая литий и бериллий. Гамов предположил, что элементы более высокого порядка могут быть образованы последовательно путем добавления все большего количества субатомных частиц к ядру: иначе говоря, что сотня или более того элементов, составляющих всю видимую Вселенную, были «испечены» в огненном жару Большого взрыва.
В свойственной ему манере Гамов в общих чертах нарисовал свою претенциозную идею и предоставил своему аспиранту Ральфу Альферу доработать детали{35}35
Croswell, p. 40.
[Закрыть]. Когда работа была закончена, Гамов не смог удержаться от розыгрыша. Он поставил имя физика Ханса Бете на титуле своей работы без его ведома, и она стала известна как альфа-бета-гамма теория.
Гамов обнаружил, что Большой взрыв был действительно настолько мощным, что его жара хватило для образования гелия, который составляет около 25 % массы Вселенной. Работая в другом направлении, «доказательство» теории Большого взрыва можно обнаружить лишь при взгляде на многочисленные звезды и галактики нашего времени – мы понимаем, что они состоят примерно на 75 % из водорода, а на 25 % – из гелия и некоторых других микроэлементов. (Как сказал астрофизик Дэвид Спергель из Принстона: «Каждый раз, покупая воздушный шарик, наполненный гелием, вы покупаете атомы, многие из которых образовались в первые несколько минут после Большого взрыва»{36}36
The New York Times, April 29, 2003, p. F3.
[Закрыть].)
Однако у Гамова появились проблемы с расчетами. Его теория была абсолютно верна лишь для очень легких элементов. Но элементы с 5 и 8 нейтронами и протонами чрезвычайно неустойчивы, а потому не могут служить «мостом» для создания элементов с большим количеством нейтронов и протонов. «Мост» смыло на пяти и восьми частицах. Поскольку Вселенная состоит из тяжелых элементов с намного большим количеством частиц, чем 5 и 8 протонов и нейтронов, то, как же они образовались при Взрыве, осталось космической тайной. Неудача Гамова в попытках преодолеть разрыв на пяти и восьми частицах на долгие годы поставила перед физиками нерешенную проблему, отрезая путь его идее о том, что все элементы Вселенной возникли в момент Большого взрыва.
Микроволновое реликтовое излучениеВ то же время Гамовым овладела другая идея: если Большой взрыв был так невообразимо горяч, то, возможно, часть его остаточного «жара» все еще циркулирует во Вселенной. Если так, то этот жар предоставил бы «ископаемую запись» о Большом взрыве. Возможно, интенсивность Большого взрыва была настолько невообразимой, что Вселенная до сих пор наполнена однородной туманностью его излучения.
В 1946 году Гамов предположил, что Большой взрыв – это взрыв сверхгорячего ядра нейтронов. То было вполне разумное предположение, поскольку о других субатомных частицах (помимо электрона, протона и нейтрона) известно было очень мало. Гамов понял, что если бы он смог оценить температуру нейтронного шара, то смог бы подсчитать количество и природу излучения, которое тот испускал. Через два года Гамов доказал, что излучение этого сверхгорячего ядра действовало бы как излучение абсолютно черного тела. Это совершенно особый вид излучения, отдаваемого горячим объектом: свет, падающий на него, объект поглощает полностью, испуская излучение особым образом. Например, Солнце, расплавленная лава, горячие угли в огне и горячая глина в печи светятся желто-красным и испускают излучение абсолютно черного тела. (Излучение абсолютно черного тела было впервые открыто известным фабрикантом фарфора Томасом Веджвудом в 1792 году. Он заметил, что при обжиге в печи свежеизготовленных изделий они меняют свой цвет от красного к желтому, затем к белому по мере того, как повышается температура.)
Это важный момент, поскольку, зная цвет горячего объекта, примерно знаешь его температуру, и наоборот. Точная формула, связывающая температуру горячего объекта и испускаемого им излучения, была впервые получена Максом Планком в 1900 году, что привело к рождению квантовой теории. (Это, по сути, одна из теорий, при помощи которой ученые определяют температуру Солнца. Солнце излучает в основном желтый цвет, что соответствует температуре абсолютно черного тела 6000 К. Таким образом, нам известна температура внешних слоев атмосферы Солнца. Подобным образом рассчитывалась температура поверхности красной звезды-гиганта Бетельгейзе – 3000 К – температура абсолютно черного тела, соответствующая красному излучению: такую температуру имеет раскаленный кусок угля.)
В своей работе 1948 года Гамов впервые предположил, что излучение Большого взрыва может иметь характерную особенность – это излучение абсолютно черного тела. Важнейшей характерной особенностью излучения абсолютно черного тела является его температура. Теперь Гамову необходимо было вычислить температуру излучения абсолютно черного тела.
Аспирант Гамова Ральф Альфер и другой его ученик, Роберт Херман, попытались завершить расчеты Гамова, вычислив точную температуру излучения. Гамов написал: «Экстраполируя от первых дней Вселенной до настоящего времени, мы обнаружили, что за прошедшие эпохи Вселенная должна была охладиться до температуры 5 градусов выше абсолютного нуля»{37}37
Gamow1, p. 142.
[Закрыть].
В 1948 году Альфер и Херман опубликовали работу, где были представлены аргументы в пользу того, что температура излучения, сохранившегося после Большого взрыва, сегодня должна составлять 5 градусов выше абсолютного нуля (их оценка была поразительно близка к той цифре, которая известна нам сейчас, – 2,7 К). Они постулировали, что излучение, которое они определили как излучение микроволнового диапазона, должно до сих пор циркулировать по Вселенной, наполняя космос однородным «послесвечением».
(Аргументация следующая. В течение многих лет после Большого взрыва температура Вселенной была настолько высока, что всякий раз, когда образовывался атом, его снова разрывало на части; поэтому образовалось множество свободных электронов, которые и могут рассеивать свет. Таким образом, Вселенная была темной, непрозрачной. Любой луч света, двигающийся в этой сверхгорячей Вселенной, поглощался, пройдя короткое расстояние, поэтому Вселенная выглядела облачной. Однако через 380 000 лет температура упала до 3000 градусов. При более низкой температуре атомы, сталкиваясь, уже больше не разрывались. В результате стало возможным формирование устойчивых атомов, а лучи света смогли перемещаться на расстояние во много световых лет без поглощения. Таким образом, впервые пустое пространство стало прозрачным. Излучение же, которое больше не поглощалось сразу же, как только возникло, продолжает циркулировать во Вселенной и в наши дни.)
Когда Альфер и Херман показали Гамову свои окончательные расчеты температуры Вселенной, их учитель был разочарован. Температуру настолько низкую измерить было чрезвычайно трудно. Гамову понадобился целый год, чтобы в конце концов согласиться с тем, что их расчеты верны. Но он отчаялся когда-либо измерить столь слабое поле излучения. Приборами 1940-х годов безнадежно было измерять слабое эхо Большого взрыва. (В более поздних вычислениях, отталкиваясь от неверного предположения, Гамов поднял температуру излучения до 50 градусов.)
Ученые прочитали цикл лекций для популяризации своей теории. Но, к несчастью, их пророческие выводы были проигнорированы. Альфер писал: «Мы потратили уйму энергии на лекции о нашей работе. Никто не клюнул; никто не сказал, что температура может быть измерена… И вот где-то в период с 1948 по 1955 год мы, наверное, сдались»{38}38
Croswell, p. 41.
[Закрыть].
Непоколебимый Гамов благодаря своим лекциям и книгам стал ведущей фигурой в области теории Большого взрыва. Но он встретил достойного соперника – яростного противника его взглядов. Гамов был способен очаровать слушателей шутками и остротами, зато Фред Хойл мог потрясти слушателей ослепительным блеском своего красноречия и агрессивной дерзостью.
Микроволновое реликтовое излучение – это второе доказательство Большого взрыва. Но то, что третье серьезное доказательство Большого взрыва (через нуклеосинтез) даст Фред Хойл, трудно было себе представить: по иронии судьбы, в течение всей своей профессиональной карьеры он пытался оспорить теорию Большого взрыва.
Хойла можно было бы назвать олицетворением человека, не способного к научной деятельности. Он был блестящим оппонентом, и ему ничего не стоило в несколько агрессивной манере отрицать традиционную мудрость. В то время как Хаббл был изысканным аристократом с манерами оксфордского преподавателя, а Гамов – остроумным шутником и эрудитом, привлекающим слушателей остротами, стишками и шутками, Хойл напоминал неотесанного деревенского бульдога; он казался странным образом не на своем месте в древних стенах Кембриджского университета, старинной альма-матер Исаака Ньютона.
Фред Хойл родился в 1915 году на севере Англии. Он жил в районе, где суконная промышленность занимала ведущее место, был сыном торговца тканями. С детства в нем проснулся интерес к науке. В те времена радио еще только-только появилось в сельской местности. Хойл вспоминал, что человек 20–30 с большим энтузиазмом установили у себя дома радиоприемники. Но поворотный момент наступил в его жизни, когда родители подарили ему телескоп.
Воинственный стиль Хойла сформировался в глубоком детстве. В возрасте трех лет он знал таблицу умножения, а затем учитель показал ему римские цифры. «Как может быть кто-то настолько глуп, чтобы писать VIII вместо 8?» – вспоминал он с презрением. Но когда ему сказали, что закон требует от него посещения школы, Хойл написал: «Я сделал вывод, что, к несчастью, я родился в мире, где господствует яростное чудовище, называемое "закон", всесильное и безмерно тупое»{39}39
Croswell, p. 42.
[Закрыть].
Пренебрежению Хойла к авторитетам способствовала стычка с учительницей, которая сказала всему классу, что у хорошо известного всем цветка пять лепестков. Как доказательство ее неправоты Фред принес в класс именно этот цветок, но с шестью лепестками{40}40
Croswell, p. 42.
[Закрыть]. За эту дерзость она сильно ударила его по левому уху. (Позднее Хойл на это ухо оглох.)
В 1940-е годы Хойл не принял теорию Большого взрыва. Одним из недостатков этой теории было то, что из-за ошибок в измерении интенсивности излучения далеких галактик Хаббл неправильно рассчитал возраст Вселенной – 1,8 млрд лет. Геологи же утверждали, что Земля и Солнечная система, вполне возможно, насчитывают миллиарды лет. Как же могла Вселенная быть моложе собственных планет?
Вместе с коллегами, Томасом Голдом и Германом Бонди, Хойл начал работу над созданием собственной теории. По легенде, их теория стационарной Вселенной была навеяна триллером «Глубокой ночью» (Dead of Night) с Майклом Редгрейвом в главной роли. Фильм состоит из нескольких страшных историй, но в последней сцене происходит неожидаемый виток: фильм заканчивается точно так же, как и начался. Таким образом, события замыкаются в круг, не имея ни начала, ни конца. Как утверждают, именно фильм вдохновил троих ученых на разработку теории Вселенной, у которой также не было ни начала, ни конца. (Позднее Голд внес немного ясности в эту историю. Он вспоминал: «Кажется, несколькими месяцами ранее мы смотрели фильм, и, предложив рассмотреть теорию устойчивой Вселенной, я сказал: "А не напоминает ли это фильм «Глубокой ночью»?"»{41}41
Croswell, p. 43.
[Закрыть])
По этой теории части Вселенной действительно расширялись, но новая материя постоянно создавалась из ничего, так что плотность Вселенной оставалась неизменной. Хотя Хойл не мог объяснить, каким же именно таинственным образом эта материя появлялась ниоткуда, теория незамедлительно привлекла сторонников, которые вступили в борьбу с приверженцами теории Большого взрыва. Хойлу казалось нелогичным, что огненный катаклизм возник ниоткуда, став причиной того, что галактики разлетелись во все стороны. Он предпочитал спокойное создание вещества из ничего. Иными словами, такая Вселенная была бы безвременной. У нее не было ни начала, ни конца. Она просто была всегда.
(Противостояние стационарная Вселенная – Большой взрыв походило на противостояния разных теорий в геологии и других науках. В геологии существовал затянувшийся спор между теорией однородности (мнение о том, что Земля приобрела свою теперешнюю форму в результате постепенных изменений в прошлом) и теорией катастроф (которая постулировала, что изменения произошли в результате ужасных катаклизмов). Несмотря на то что теория однородности и до сих пор объясняет многие из геологических и экологических особенностей Земли, никто не станет отрицать влияния комет и астероидов, которые становились причинами массовых вымираний или разрушения и смещения континентов в результате тектонических сдвигов.)
Лекции BBCХойл всегда любил хорошую драку. В 1949 году его и Гамова пригласила Британская радиовещательная корпорация (BBC) для проведения дискуссии о происхождении Вселенной. Во время этих передач Хойл, оспаривая теорию Большого взрыва, и дал ей, собственно, такое название. Он сказал следующее: «Эти теории основывались на гипотезе о том, что вся материя во Вселенной была создана в результате одного Большого взрыва, происшедшего в определенное время в далеком прошлом». Это название пристало. Теория Гамова отныне была официально названа теорией Большого взрыва, и название это придумал ее величайший враг. (Позднее Хойл заявил, что не имел в виду унизить противника. «Я ни в коем случае не выдумал это название для уничижения. Оно было выбрано в качестве аргумента в споре»{42}42
Croswell, pp. 45–46.
[Закрыть], – признался он.)
(В течение многих лет сторонники теории Большого взрыва героически пытались это название изменить. Они недовольны этой, почти вульгарной коннотацией названия теории, а также тем фактом, что его изобрел основной ее противник. Языковых пуристов особенно раздражало то, что название и по сути-то абсолютно неверно. Во-первых, Большой взрыв не был большим (поскольку это был взрыв некоего крошечного образования, намного меньшего, чем атом), а во-вторых, взрыва как такового не было (поскольку в открытом космосе не было воздуха). В августе 1993 года журнал Sky and Telescope объявил конкурс на новое название теории Большого взрыва. На конкурс было представлено 13 000 предложений, но жюри не смогло выбрать из них вариант лучше первоначального.)
Чем Хойл поистине прославился в народе, так это своими знаменитыми радиолекциями на BBC, посвященными науке. В 1950-х годах BBC планировала транслировать научные лекции в субботу вечером. Однако, когда изначально приглашенный гость отказался прийти, продюсеры вынуждены были искать замену. Они связались с Хойлом, и тот согласился. И только потом они проверили досье ученого, где было написано: «Этого человека мы опасаемся приглашать».
К счастью, они проигнорировали неприятное предостережение предыдущего продюсера, и Хойл прочитал миру пять захватывающих лекций. Эти классические передачи BBC очаровали всю нацию и даже вдохновили молодое поколение будущих астрономов. Астроном Уоллес Сарджент вспоминает, что эти передачи оказали на него сильное воздействие: «Когда мне было пятнадцать, я послушал лекции Фреда Хойла по BBC под названием "Природа Вселенной". Сама мысль о том, что вы знаете, какова температура и плотность в центре Солнца, чудовищно шокировала. В пятнадцатилетнем возрасте казалось, что такие вещи лежат за пределами возможного знания. Шокировали не просто сами цифры, а тот факт, что их вообще можно узнать»{43}43
Croswell, p. 111. Пятая и последняя лекция Хойла, однако, была самой спорной, потому что он в ней критиковал религию. (Хойл однажды сказал со свойственной ему прямотой, что решить проблемы в Северной Ирландии можно, если отправить в тюрьму каждого священника. «И все религиозные распри в мире, которые я когда-либо видел или о которых читал, не стоят смерти одного ребенка», – сказал он. Croswell, p. 43.)
[Закрыть].
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?