Текст книги "Телесный интеллект. Парадоксальное открытие о том, как тело определяет наши эмоции, поведение и темперамент"
Автор книги: Назарет Кастельянос
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 1 (всего у книги 15 страниц) [доступный отрывок для чтения: 5 страниц]
Назарет Кастельянос
Телесный интеллект: парадоксальное открытие о том, как тело определяет наши эмоции, поведение и темперамент
© Кускильдина А.Р., перевод на русский язык, 2023
© Оформление. ООО «Издательство «Эксмо», 2024
Вступительное слово
По воскресеньям мы вместе с Оливером часто гуляли по Сьерра-де-Трамонтана на Майорке. Как-то мы вернулись домой, нагруженные апельсинами, хотя на самом деле собирались посмотреть на оливковые деревья. В Сьерре, как здесь говорят, растут вековые оливковые деревья. Скручивание их причудливых стволов-хоботов является проявлением стойкости, а также способности к адаптации. Богатство их плодов украшает средиземноморские столы. Легенда гласит, что бог Посейдон и богиня Афина решили дать имя только что основанному городу Афины, и каждый предлагал свое. Чтобы разрешить их спор, Зевс постановил, что победит тот, кто наделит город самым драгоценным даром. Посейдон воткнул свой трезубец в скалу, из которой вышла дикая лошадь. Афина ударила своим копьем о скалу, в результате чего выросло оливковое дерево. Богиня была провозглашена покровительницей Афин, а оливковое дерево – деревом мира. Оливер, что на латыни означает оливковое дерево, – тот, кто приносит мир.
Иногда, если позволял ветер, Оливер практиковал цигун на склонах горы, а мы с дочерью наслаждались апельсинами, которые он украл за несколько минут до этого. Цигун – это боди-арт, основанный на китайской медицине, который представляет собой слияние тела и ментальной позы. Наблюдая за движениями Оливера, а затем смакуя то влияние, которое эти движения оказывали на его состояние, я как нейробиолог еще раз посетовала на цереброцентризм[1]1
Взгляд на организм, при котором центральное место отводится головному мозгу. – Здесь и далее прим. науч. ред.
[Закрыть], преобладающий в исследованиях, и на забвение, на которое мы обрекли наше тело. В течение последних столетий мало кто изучал человеческую суть с точки зрения абстрактных идей, и его биологический аспект был сосредоточен исключительно на функции мозга. Остальные части тела были лишь его опорой. Организм и поза тела не играли ни малейшей роли в сценарии человеческого сознания.
Телесный остракизм, как я его называла, вызывал во мне чувство неприятия классической западной науки. Я потратила годы на поиск источников вдохновения в медицине далеких культур: тех, для которых тело и разум являются двумя сторонами одной медали, и тех, которые признали, что позы и движения тела влияют на психологию человека. Это видение расходилось с тем, что приходилось защищать в лабораториях. К счастью, это длилось недолго, и сегодня мне повезло, что я могу пережить научную революцию, которая начинает примирять мозг с остальным телом.
Эта книга представляет собой «дорожную карту» для этого примирения, в которой я обобщила выводы научных статей, направляющих текущую революцию. Мы начинаем путешествие по мозгу, конечно, чтобы узнать о функционировании нейронов и наиболее выдающихся областях мозга, особенно тех, которые будут иметь преимущественное значение во взаимоотношениях с организмом. Мы начинаем осознавать свое тело извне – из ощущений, которые дает нам кожа, из жестов, из позы тела. Именно отсюда начинается наш опыт, с ощутимой и видимой стороны организма, эмоциональной составляющей и позы, из которой формируется взаимодействие.
И, теперь да, мы ныряем внутрь. Но снизу-вверх, чтобы узнать, как тело «лепит» мозг. Если вы отправитесь со мной в это путешествие, мы откроем океан микроорганизмов, населяющих наш кишечник и формирующих факторы роста нейронов, без которых не возник бы процесс их изучения. Мы назовем механизмы вмешательства кишечника психологическими, чтобы еще раз подчеркнуть важность образа жизни для нашего благополучия. Мы продолжим подниматься выше и достигнем легких. Там мы увидим, как влияние дыхания на нейронную деятельность накладывает отпечаток на внимание, память, а также на выражение эмоций. Мы с научной точки зрения поймем, что дыхание, когда оно произвольное и сознательное, делает нейроны пластичными, чтобы формировать или реорганизовывать архитектуру мозга. Далее мы приблизимся к трону сердца, вечного соперника мозга. Из анатомии мы увидим, что сердцебиение влияет на активность нейронов в областях мозга, наиболее вовлеченных в восприятие: субъективное восприятие, то, что каждый из нас конструирует из реального мира. Наконец, мы сложим все эти знания воедино. Невозможно то, что было задумано связанным.
Как я уже говорила, в течение многих лет я отвергала западную культуру за ее фрагментарность. Я, конечно, признавала ее преимущества и, когда я чувствовала себя плохо, я покорно ходила в традиционные больницы. Но я не хотела признавать, что различные части тела действуют независимо друг от друга и что мое сознание использует только то, что находится в моей голове. Наконец мне надоело проклинать знания старой Европы, и во время прогулки среди оливковых деревьев средиземноморского леса я решила изучить историю западной медицины. Так я пришла к медицине Древнего Египта и классической Греции, колыбели медицины, которая сегодня обитает в коридорах больниц по всему миру. От Имхотепа до Гиппократа, Аристотеля и Аверроэса – все они защищали интегральную биологию. Фрагментация, или разделение частей тела стали известны нам относительно недавно, понадобилось всего три столетия, чтобы разработать лучший метод исследования, изучения и познания. Благодаря этим поискам я примирилась с истоками своей культуры и хочу поделиться кратким изложением этой истории, чтобы донести до врачей и широкой общественности необходимость восстановления человеческого взгляда на медицину и самого существа человека.
Джордж Оруэлл говорил, что главное не остаться в живых, а остаться человеком.
Назарет Кастелланос,
Майорка, март 2022
Глава 1
Мозг
Нейронный лес
«Для созерцания природы необходима тишина», – предупредил смотритель леса Пьедра-Кантеада. «Пожалуйста, отключите телефоны, наберитесь терпения, не прячьтесь в мыслях, избегайте соблазна выразить свое удивление и постарайтесь молча наблюдать. Прежде всего, наблюдайте молча», – настаивала инженер Диана Моралес. В июле и августе, в половине девятого вечера, заповедник светлячков в мексиканском штате Тласкала выключает свет, и благодаря биолюминесценции светлячков лес озаряется светом. Тем летом, в середине работы над докторской диссертацией, я путешествовала по Мексике из ее столицы в Чьяпас. В тишине, наблюдая за хореографией светлячков, я чувствовала себя крохотным существом, пробравшимся в мой мозг.
Ритмичная вспышка этой популяции насекомых напомнила мне о том, что я измеряла за несколько недель до этого в нейробиологической лаборатории: нейроны разряжаются электричеством, формируя настроенный оркестр, управляемый восприятием. Светлячки – это маленькие насекомые, которые излучают свет благодаря химической реакции фермента люциферазы, происходящей в их брюшке. Светлячки обязаны своим научным названием латинскому слову «Люцифер», то есть тот, кто несет свет. Демонстрируя сложное устройство своего организма, светлячки становятся маяками в темноте леса. Они чередуют моменты темноты с прерывистыми и периодическими вспышками. Их танец света, спрятанный среди густой листвы леса, напоминает северное сияние в скандинавских странах зимой. Когда приходит время, светлячки излучают световые импульсы и создают этот танец света в темноте. Таким образом они предупреждают самок о своем присутствии до тех пор, пока не произойдет спаривание. Эти бесконечные танцы лежат в основе размножения насекомых, без них реакция самок упала бы более чем на 90 %. Красота шоу заключается не в ритмичной вспышке одного светлячка, а в хореографии огней, созданных тысячами особей. Их красота и сила заключены в группе. Общество важнее взаимодействия. То, что молчаливо наблюдает турист, представляет собой не набор огней, испускаемых светлячками независимым или хаотичным образом, а синхронизацию группы светлячков, которые в сочетании с разными ритмами рисуют своим светом сложные узоры, похожие на танцы стай птиц, парящих в воздухе, или косяков рыб в море. Светлячки, рыбы или птицы управляют друг другом, взаимодействуют. В таких случаях говорят, что они синхронизируются.
Синхронизация – это один из принципов биологии, акт разделения, коммуникации. Насекомые, также как птицы и рыбы, создают эту хореографию в соответствии с принципом синхронизации, который профессор Стивен Строгац определяет как самоорганизующуюся сложную систему. В соответствии с этим принципом, применяемым в микроскопическом масштабе к обществам разных видов, включая людей, членам группы удается синхронизироваться, потому что каждый индивид знает и заряжается тем, что делают его ближние. Обычно для синхронизации нужно не более четырех-шести участников группы. Стадная синхронизация достигается за счет взаимодействия. Когда определенное количество светлячков синхронизировалось, их совместная и слаженная деятельность выделяется на фоне беспорядочного гула группы, производя сильный эффект на остальных. Нечто подобное мы наблюдаем, например, на футбольном стадионе. Верное, но громкое меньшинство напевает название команды, соседи, переняв его порыв, присоединяются к хору. Когда количество участников достигает критического значения, рост происходит немедленно. Через несколько секунд весь стадион присоединяется к шуму. Этот механизм распространения информации не требует участия абсолютно всех, так как будут последователи или светлячки, которые не присоединятся к хореографии, не нарушая при этом синхронизацию. Кроме того, такие виды выделяются, что заставляет систему развиваться. Однако деятельность группы будет оказывать мощное притяжение, чтобы поглотить как можно больше участников.
Подобно светлячкам или футбольным болельщикам, нейроны синхронизируются, чтобы распространять информацию по всему мозгу. Без такого синхронизированного поведения не было бы ничего, кроме простого объединения нейронов, действующих случайным образом. Нейроны, насекомые и люди стремятся синхронизироваться с существами, которые их окружают, не теряя при этом своей индивидуальности. Мы склонны формировать единицу, но, как ни парадоксально, для ее формирования необходимо, чтобы между составляющими единицы существовала дистанция.
Именно расстояние в одну миллиардную метра ознаменовало рождение нейронауки, а именно 20 нанометров. Это было в начале XX века, примерно в 1905 году, когда дон Сантьяго Рамон-и-Кахаль смог показать, что мозг состоит из нейронов. В то время господствовала ретикулярная теория, предполагавшая, что мозг представляет собой сплошную массу, состоящую из тел клеток и покрытую столь густыми ответвлениями, что они образуют разветвленную сеть, по которой течет информация. Однако наваррский гений настаивал на том, что нейроны и их ответвления расположены очень близко друг к другу, но на самом деле не соприкасаются. Это деревья в сильно разветвленном лесу, но все-таки деревья. Благодаря открытию техники окрашивания нейронов мозга впервые стало возможным наблюдать, что нейроны действительно разделены; в частности, расстояние между ними составляет 20 нанометров. Это расстояние, такое маленькое и в то же время огромное, известно сегодня как синапсы и позволяет нейронам взаимодействовать электрически и химически, обеспечивая распространение исходящего от них электричества. Это фундаментальный принцип обработки информации в мозге. Не столько важен сам нейрон, сказал Дон Сантьяго, сколько его способность давать, получать, делиться. Биология – это наука о жизни, потому что она основана на разделении. От тел нейронов отходят два типа отростков, называемых дендритами и аксонами, по которым соответственно принимается и распространяется электрический импульс. Таким образом, когда нейрон достигает определенного уровня электричества и испускает потенциал действия или электрический разряд, он распространяется по аксону, который, в зависимости от его диаметра, проводит нервный импульс, подобно кабелю, со скоростью, которая варьируется от единицы до 100 метров в секунду. Есть нейроны с коротким аксоном, которые обеспечивают связь со своими соседями, и нейроны с длинным аксоном, которые действуют как послы между более отдаленными областями мозга. Упомянутый импульс от передающего нейрона будет получен дендритом принимающего нейрона. Название «дендрит» происходит от греческого слова déndron, дерево, – это знание облегчает визуализацию морфологии этой части нейронов. Они являются рецепторными чашечками нервного импульса, которые проводят импульс к телу нейрона, или соме. В детской сказке мы могли бы указать, что нейроны говорят через аксоны и слушают через дендриты. Основой функционирования мозга является этот диалог, обмен.
Рамон-и-Кахаль описал нейроны как «таинственных бабочек души, чьи взмахи крыльев, кто знает, может быть, когда-нибудь раскроют тайну ментального здоровья». Ученый сделал открытие и показал архитектуру мозга благодаря технике, которая позволила визуализировать небольшую часть нейронов, выделяющихся в лиственном нейронном лесу, и только таким образом я могу провести параллель и сказать, что лес состоит из деревьев. Ученый, проводивший «часы в пустынных лесах, лазая по деревьям и пытаясь выяснить направление течения рек», вернулся в свою юность, когда муниципальный совет Валенсии подарил ему микроскоп Zeiss в благодарность за его щедрую клиническую работу во время вспышки холеры и эпидемии туберкулеза 1885 года.
С этим инструментом в руках будущий нобелевский лауреат Рамон-и-Кахаль показал миру, на что похожи деревья, составляющие мозговой лес, и реки, которые его омывают: таким образом он заложил основы гистологии нервной системы.
Дон Сантьяго Рамон-и-Кахаль родился в 1852 году в Петилья-де-Арагон, чуть более чем в 100 км от Сарагосы, в университете которой его отец был профессором анатомии. С любознательным и скорее шутливым, чем игривым, характером в юности он выделялся своими способностями к рисунку. Этот талант определил историю нейроанатомии, использовавшей его рисунки для описания структуры нейронов и нервной системы.
Рамон-и-Кахаль изучал медицину в университете Сарагосы и совмещал учебу с чтением трудов по философии и долгими часами, проводимыми в гимнастическом зале. Проработав какое-то время в Университете Валенсии, он переехал в Мадрид в 1887 году, где познакомился с профессором Луисом Симарро, неврологом, психиатром и психологом, который научил его технике окрашивания, позволившей ученому описать нейронный лес и его деревья. В том же году Рамон-и-Кахаль был назначен профессором медицинского факультета Барселонского университета, где он пережил свой самый плодотворный этап в карьере, добившись международного признания. В 1906 году он был удостоен Нобелевской премии по медицине, которую разделил с Камиллом Гольджи за изобретение метода окрашивания, позволившего Кахалю открыть архитектуру нервной системы. В том же году художник Хоакин Соролья изобразил гения, закутанного в элегантную испанскую накидку, на фоне одного из своих мозговых рисунков. Соролья нарисовал Дона Сантьяго, смотрящего на зрителя, как будто желая выразить то, что нейробиология говорит о нас самих.
Великий оркестр
В математике светлячки и нейроны определяются как осцилляторы. Они испускают электричество прерывисто, с разной скоростью, в виде электрического удара. Каждый из 86 млрд нейронов, составляющих наш мозг, обладает способностью излучать электрический импульс, также называемый возбуждением нейронов, или потенциалом действия, который передается аксоном посылающего нейрона и принимается дендритом принимающего нейрона. Подобно тому, как светлячки какое-то время находятся в темноте, пока не завершится химическая реакция в их брюшках, нейроны проводят время в электрическом безмолвии, пока их нейронное тело не накопит определенный уровень электричества, а затем, подобно светлячкам, испускают разряд, который в случае нейронов проявляется в виде электрического разряда. Подобно светлячкам, нейроны активируются периодически, а не произвольно. Удивительная хореография света, рисуемого светлячками в лесу Пьедра Кантеада[2]2
Лес на окраине Мехико, владелец которого решил проблему нехватки средств за счет привлечения туристов просмотром удивительного зрелища, создаваемого тысячами светлячков. Ранее единственным способом заработка в тех краях были вырубка и продажа леса.
[Закрыть], также наблюдается на поверхности мозга. Электрические разряды нейронов колеблются, нейроны также являются осцилляторами, поскольку демонстрируют ритмичное поведение. Было идентифицировано пять нейронных ритмов, или способов, где нейроны колеблются или испускают электрические разряды. Они также известны как нейронные языки, так как представляют собой коммуникационный код между нервными клетками. Похоже на азбуку Морзе. Есть быстрые ритмы и другие, медленные, и в норме все они присутствуют одновременно и в самых разных задачах. Говорят, что мозг многоязычен. Чем быстрее темп, тем ниже его диапазон. Таким образом, быстрые ритмы полезны для передачи информации соседним нейронам. И, наоборот, чем медленнее ваш темп, тем больше возможностей пройти дальше.
Изучение электрической динамики нейронов показало, что колебательные ритмы ограничены по частоте, и было установлено пять спектральных диапазонов в порядке греческого алфавита: дельта (0,5–2 Гц), тета (3,5–6 Гц), альфа (8–12 Гц), бета (18–30 Гц) и гамма (> 45 Гц). Утверждается, что Гц – это мера частоты, так что 8 Гц предполагает 8 электрических импульсов в секунду. Это мера скорости и периодичности, с которой нейрон активируется электрически. В колебательном поведении нейронов заключен секрет, столь же прекрасный, сколь и практичный. Отношение между центральными частотами каждого диапазона спектра равно золотому числу фи, (1 + √5)/2 ~~ 1,61803. Столь же важное в математике, как и в эстетике, это число присутствует в природе, начиная от улиток и до расположения лепестков цветов относительно ветвей и стволов деревьев. В основе нейронного языка лежит золотое сечение. Средняя частота диапазона нейронного спектра может быть рассчитана путем умножения частоты предыдущего диапазона на золотое число. С точки зрения оптимизации вычислений можно было бы ожидать, что частоты различных диапазонов будут следовать естественному соотношению, а не иррациональному числу. В 2010 году было опубликовано исследование, предлагающее ответ на этот вопрос. Если бы взаимосвязь между диапазонами была естественной, например, если бы одна частота была вдвое или втрое больше другой, мозг мог бы войти в состояние полной синхронизации и постоянно находиться в деятельности, негибкость которой сделала бы его бесполезным. Это происходит, например, при эпилептическом приступе, когда гиперсинхронизация обширной области мозга препятствует ее функционированию. Это было бы похоже на компанию, где все работники делают одно и то же каждый день. Такая работа не кажется полезной. Однако если отношения между частотами иррациональны, то предпочтение отдается синхронизации, но остается возможность для перестановки. Это позволяет мозгу чередовать состояния синхронизации и состояния разрыва связи. Описаное свойство известно как метастабильность мозга. Знать, как войти, не менее важно, чем знать, как выйти.
Основным ритмом мозга является альфа, состояние, при котором нейроны испускают от восьми до 12 электрических разрядов в секунду. Средняя частота ритма составляет 10 Гц, и, умножая на золотое число, мы получаем усредненные колебания остальных спектральных диапазонов. Он был назван в честь первой буквы греческого алфавита, альфа, не потому, что это первый ритм, а потому, что он самый распространенный в мозге и, следовательно, первый, который нужно идентифицировать. Наличие альфа-волн нарастает от детского возраста к подростковому, после чего они начинают исчезать. Один из способов усилить альфа-волны в мозге и заставить хор нейронов активироваться на таких частотах – это, например, закрыть глаза. Именно в этом состоянии наиболее сильно выявляются альфа-волны, особенно в задней части мозга, в затылочной коре. Простое моргание прерывает активацию и уменьшает присутствие этого ритма. По этой причине альфа часто отождествляется с состояниями релаксации. Однако его присутствие тесно связано с когнитивными функциями, например с концентрацией внимания. Давайте остановимся здесь ненадолго. Для человека, читающего эти строки, его главный союзник – внимание. Уильям Джеймс сказал, что внимание – это овладение разумом и, следовательно, оно позволяет нам выбирать нашу реальность. Учитель медитации сравнил внимание с шахтерской лампой, которая освещает только то, на что направлен луч, оставляя остальное в темноте. Обращать внимание здесь означает пренебрегать всем остальным. Для внимательного прочтения этих строк остальной мир должен быть скрыт от глаз. Мозг читателя изо всех сил пытается поддерживать внимание во время чтения перед лицом постоянной волны мыслей, чувств или эмоций, стремящихся занять центральное место. Эта непрерывная бомбардировка известна как перцептивная интерференция – знаменитые отвлекающие факторы. Трудность в контроле внимания заключается именно в споре между тем, на что обращают внимание, и чем пренебрегают, в битве, в которой обычно теряется объект внимания. Читатель поймет, что он не в первый раз соблазняется мыслями во время чтения книги, разговора с другом или работы в офисе. Пабло д’Орс сказал, что тьма – это свет, который не стремится быть замеченным. Держать в неведении то, что не имеет значения, – это работа альфа-волн.
Когда область мозга задействована в решении задачи, связанной с поддержанием внимания, альфа-волны отвечают за торможение тех областей, которые не участвуют в этой задаче, чтобы предотвратить появление помех или отвлечений. Главный враг внимания – отвлечение и его чрезмерное блуждающее свойство. Электрическое состояние, в которое входят нейроны при испускании разрядов в альфа-ритме, препятствует тому, чтобы внимание отвлекалось на мысли, эмоции и ощущения преимущественно внутреннего происхождения. Было подсчитано, что 80 % факторов, которые нас отвлекают, возникают дома, а не снаружи. Привычная практика медитации помогает нам в этой борьбе. Когда мы начинаем контролировать внимание благодаря медитации, уже через несколько дней происходит увеличение количества нейронов, колеблющихся на альфа-частоте. Это усилие родственно тому, которое мы делаем, когда, сидя на подушке, сражаемся с собой.
Постоянство, сопровождающее каждую попытку практиковать медитацию, приводит к усилению альфа-ритма, начиная с задней части мозга и заканчивая лобными областями. Мы можем понять работу, связанную с постоянным перенаправлением внимания на объект наблюдения, если осознаем тяжелую физиологическую работу, происходящую внутри нашего мозга. Каждая попытка сосредоточиться на настоящем моменте и наблюдать за дыханием, например, предполагает сотрудничество миллионов нейронов, которые синхронно колеблются в альфа-ритме, создавая барьер для сдерживания информации, которая непроизвольно создается в мозге и которую мы оцениваем в этот момент как неактуальную – все это происходит без нашего ведома. Мозг новичка в медитации захлестывает множество отвлекающих факторов, которые до сих пор были неподконтрольны. По мере того как человек набирается опыта и постепенно учится контролировать свое внимание, механизмы нейронного обучения в альфа-колебаниях усиливаются, создавая два более эффективных паттерна сдерживания восприятия отвлекающих факторов. Процесс обучения медитации включает в себя значительное увеличение альфа-волн мозга. Когда медитирующий уже достиг опытного уровня, альфа-волны отступают. Больше нет помех для остановки. Для этого ему пришлось наработать более 10 тыс. часов медитации. Остальные из нас довольствуются барьером альфа-колебаний, который защищает наше внимание от постоянных отвлекающих факторов.
В Бирмингемском университете расположена одна из самых престижных кафедр по изучению альфа-волн и их роли во внимании. Учёные кафедры успешно интерпретируют церебральный альфа-ритм как сигнал СТОП, именно благодаря тому, что мы только что видели: из-за его роли в сдерживании отвлекающих факторов и способствованию локализации внимания. Для мозга так же важно стимулирование, как и замедление, то есть активация, а не торможение. Пытаясь предотвратить ошибку, мозг увеличивает количество альфа-волн до 25 % непосредственно перед ошибочным действием. Этот защитный механизм ослабевает, когда мы делаем что-то автоматически, как обычно говорят, «на автомате». Важность альфа-волн для мозга очевидна, однако не следует путать оптимум с максимумом. Существует явление, называемое «альфа-вторжение», когда нейроны колеблются на этой частоте вместо той, которая требуется в моменте. Это особенно актуально перед сном. Мы знаем, что сон требует медленных мозговых колебаний, дельта или тета, когда нейроны замедляют свою активность, чтобы отключиться от внешнего мира. Если непосредственно перед сном мы очень активно занимаемся умственной деятельностью, мы увеличиваем присутствие быстрых волн. Например, медитация усиливает альфа-ритм более чем на час после завершения практики.
Просмотр экранов также распространяет быстрые ритмы по обширному нейронному пространству. Ритмы, которые не прекращаются, когда выключается экран, какое-то время остаются отголосками в нашем мозге. Когда мы решаем заснуть, не будучи сонными, мы считаем само собой разумеющимся послушный и немедленный нейронный ответ, но это не так. Наш мозг все еще наполнен более быстрыми волнами, чем это требуется для засыпания, потому что мы были более активны, чем должны. Когда вместо дельты появляется альфа, происходит прерывание, связанное с фибромиалгией[3]3
Хроническая симметричная мышечно-скелетная боль, распространенная по большей части тела, часто сопровождающаяся и другими симптомами, такими как депрессия, нарушение сна, головные боли и повышенная утомляемость. Точной причины развития симптомокомплекса на данный момент не установлено.
[Закрыть] и некоторыми психическими расстройствами. Для заботы о качестве сна важно научиться готовиться ко сну. Мозг не является системой немедленного реагирования, а переходные этапы очень важны.
Дельта-ритм с испусканием нейронных электрических разрядов частотой от 1 до 4 Гц в основном связан со сном. Это самые медленные волны, но с самой высокой амплитудой в головном мозге. Колебание нейронов очень медленное, но очень громкое, взаимосвязь всегда противоположна. Процесс сна происходит в продолжительной форме. Мозг постепенно засыпает, поскольку нейроны перестают реагировать на стимулы, исходящие от органов чувств. Это молчание распространяется по головному мозгу до определенного уровня, пока не погружает нас в сон. В процессе мозг может обнаружить области, которые остаются очень активными из-за недавних стимулов и вторжения альфа-ритмов, – они затрудняют распространение тишины и, следовательно, закрепление сна. По мере сна нейроны начинают колебаться в дельта-ритме. Когда более 50 % нейронов разряжаются, мы входим в самые глубокие фазы сна. Крайней степенью глубокой фазы сна является анестезия, где наличие этих волн измеряется как показатель состояния бессознательного состояния. Дельта-волны преобладают у детей, в среднем с момента рождения до возраста пяти лет, и уменьшаются в подростковом возрасте. Процесс взросления также измеряется вариациями дельта-ритма: по мере взросления ребенка дельта-волны уменьшаются. Дельта-волны склонны постепенно исчезать в течение жизни, их практически нет в пожилом возрасте. Однако у людей с травматическим или нейродегенеративным поражением головного мозга наблюдается замедление динамики нейронов, характерное для патологической старости. Наличие медленных волн не связано только со сном или патологией, наблюдается также их участие и в таких процессах, как принятие решений, наблюдение за окружающей средой, стремление к вознаграждению и автономное управление телом. То, на что направлено действие волн, зависит от мозговой задачи. Смысл языка – в его употреблении, говорил философ Кьеркегор.
Тета-ритм со спектральным диапазоном от четырех до восьми электрических разрядов в секунду – это медленный ритм, оказывающий сильное влияние на когнитивные функции. Он присутствует в основном в гиппокампе, структуре мозга, наиболее вовлеченной в память, и известен как тета-ритм гиппокампа. Этот ритм связан с формированием воспоминаний, обновлением информации и обучением и является ключом к пространственно-временной организации событий. Учитывая роль тета-волн в развитии способности к изучению и запоминанию, сегодня большие усилия направлены на разработку искусственных устройств, которые увеличивают присутствие этих волн у людей с повреждением головного мозга или болезнью Альцгеймера. Тета-волны необходимы мозгу для получения информации о положении нашего тела и места в пространстве. Тета-ритм устанавливает тесную связь между памятью и нашим местом в пространстве. Когда мы вспоминаем событие, обычно мы ссылаемся на место, где мы были. «Я была в университетской библиотеке, когда услышала о терактах в Нью-Йорке», – так я обычно говорю каждую годовщину теракта. И воспоминание о том, где мы были, помогает нам вспомнить этот факт. Эту функцию выполняют «нейроны места» гиппокампа, которые генерируют ментальную карту с положением, которое мы занимаем в пространстве, и при необходимости разрабатывают стратегию движения. Первая часть тета-цикла задействована в расчете положения, которое мы занимаем в настоящий момент, а вторая часть – в оценке или планировании того, какой будет наша траектория. Это открытие было удостоено Нобелевской премии в 2014 году. Так что мозг постоянно обрабатывает информацию о нашем местоположении в среде и проектирует будущие позиции. Полученная информация связывается с воспоминаниями о переживаемом нами опыте. Поза нашего тела – невидимая для нас часть воспоминаний. Одним из методов усиления действия тета-волн является медитативная практика, состоящая в осознании того места, которое мы занимаем, и пространства, которое нас окружает. Наше положение, движение, память и восприятие сливаются в тета-волны. Как и дельта-волны, тета-колебания также уменьшаются с возрастом, являясь маркером развития нервной системы.
Бета-ритм представляет собой колебания, возникающие в диапазоне от 12 до 30 Гц. Как и альфа-волны, бета-колебания раньше считались ненужным шумом в головном мозге и не были предметом исследования нейронного языка. Различные эксперименты 1990-х годов изменили курс нейронауки и признали функциональную роль обоих ритмов. Бета-волны – один из ритмов организма, наряду с тета-ритмом, который более вовлечен в двигательную активность тела. Любая задача, требующая движений, должна подразумевать бета-десинхронизацию, то есть нейронный паттерн, синхронизированный в указанном ритме, должен быть нарушен, чтобы выполнить движение. Должна быть нарушена стабильность. Его присутствие в моторной коре связано с мышечными сокращениями, исчезающими до и во время движения.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?