Электронная библиотека » Нейт Сильвер » » онлайн чтение - страница 12


  • Текст добавлен: 27 мая 2015, 03:05


Автор книги: Нейт Сильвер


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 12 (всего у книги 42 страниц) [доступный отрывок для чтения: 14 страниц]

Шрифт:
- 100% +
Почему теория хаоса так напоминает безумие

Итак, с чем может быть связана очередная ваша проблема? С теорией хаоса. Возможно, вам доводилось слышать выражение «взмах крыльев бабочки в Бразилии может привести к торнадо в Техасе». Изначально это было частью заглавия научной работы{255}255
  Работа Лоренца изначально не была опубликована. Он произнес речь по ее тезисам на собрании Американской ассоциации развития науки 29 декабря 1972 г. Позднее, однако, она вошла в состав книги Лоренца The Essence of Chaos (Seattle: University of Washington Press,1995). http://www.washington.edu/uwpress/search/books/LORESS.html.


[Закрыть]
, представленной в 1972 г. преподавателем Массачусетского технологического института Эдвардом Лоренцем, который начинал свою карьеру как метеоролог. Теория хаоса применима в отношении систем, для которых справедливы два утверждения:

1) системы динамичны, что означает, что поведение системы в один момент времени влияет на ее поведение в будущем;

2) системы нелинейны, иными словами, в них поддерживаются скорее экспоненциальные, а не аддитивные связи.

Динамические системы доставляют специалистам по прогнозированию немало проблем. Примером может служить описанный в главе 6 факт, свидетельствующий о том, что американская экономика постоянно вызывает цепную реакцию событий, что и является одной из причин, по которым ее развитие так сложно предсказать. Развитие при этом остается нелинейным: ценные бумаги, обеспеченные закладными, стимулировавшие начало финансового кризиса, были разработаны таким образом, что небольшие изменения в макроэкономических условиях значительно повышали риск дефолта по ним.

Совмещая все эти параметры, вы получаете на выходе настоящую неразбериху. Сам Лоренц не понимал, насколько масштабны эти проблемы, до тех пор пока (следуя той же традиции, что и Александр Флеминг и пенициллин{256}256
  Douglas Allchin, «Penicillin and Chance», SHiPS Resource Center. http://www1.umn.edu/ships/updates/leming.htm.


[Закрыть]
или команда «Нью-Йорк Никс» и баскетболист Джереми Лин) он не сделал свое открытие, причем совершенно случайно.

Лоренц и его команда разрабатывали программу прогнозирования погоды на одном из первых компьютеров, известном как Royal McBee LGP-30{257}257
  По материалам интервью с Ричардом Лофтом.


[Закрыть]
. Исследователи полагали, что все идет как надо, но лишь до тех пор, пока компьютеры не начали выдавать совершенно бессмысленные результаты.

Они начали еще раз анализировать, почему так получается, что, вводя в точности те же самые, как они считали, данные, после запуска программы на выходе в качестве результата они получают в одном случае – чистое небо над Канзасом, а в другом – сведения о надвигавшемся шторме.

После нескольких недель, проведенных за проверкой оборудования и программ, Лоренц и его команда поняли, что исходные данные не были в точности одинаковыми: один из техников не вводил в систему цифры после третьего знака после запятой. Например, вместо того чтобы вводить в одно из полей сетки значение атмосферного давления, равное 29,5168, в расчетах использовалось число 29,517. Неужели вся разница возникла именно из-за этого?

Лоренц понял, что это действительно так. Один из основных постулатов теории хаоса гласит, что небольшое изменение в начальных условиях – бабочка машет крыльями в Бразилии – может привести к масштабному и неожиданному развитию последующих событий – торнадо в Техасе.

Это не значит, что поведение системы случайно, как можно было бы считать, увидев слово «хаос». Более того, теория хаоса отнюдь не является проявлением одного из следствий знаменитого Закона Мерфи («если что-то может пойти не так, оно обязательно пойдет не так»). Это всего лишь значит, что поведение систем определенного типа достаточно сложно предсказать.

Проблема возникает тогда, когда наши данные не совсем точны (или неточны наши предположения, как в случае ценных бумаг, обеспеченных закладными). Представьте себе, что мы должны были сложить вместе 5 и 5, однако неправильно взяли второе число. Вместо того чтобы сложить 5 и 5, мы сложили 5 и 6. Это получим 11, хотя правильный ответ равен 10. Мы ошибемся, но ненамного: сложение, как линейное действие, умеет прощать. Куда хуже будут обстоять дела в том случае, когда мы возводим число в степень. Если вместо того, чтобы рассчитать значение 55, равное 3215, мы рассчитаем 56, то получим в результате 15 625. И это уже серьезная ошибка – мы промахнулись на 500 %.

Значимость подобных неточностей существенно возрастает, когда речь идет о динамическом процессе, при котором результат вычислений одного этапа становится входящими данными следующего. Например, предположим, что нам нужно рассчитать, чему будет равно пять в шестой степени, а затем возвести полученное значение в пятую степень. Если мы допустим ту же ошибку, что и выше, и заменим вторую цифру 5 на 6, то ошибка в окончательном результате увеличится примерно в 3000 раз{258}258
  5^5^5 равно 298 023 223 876 953 000, то есть около 298 квадрильонов. Однако 5^6^5 равно 931 322 574 615 479 000 000, или около 931 квинтильона. Эта «небольшая» ошибка могла бы привести к тому, что мы ошиблись бы в расчете нужного значения в 3125 раз.


[Закрыть]
. Влияние небольшой и, на первый взгляд, тривиальной ошибки становится все больше и больше.

Изменения погоды представляют собой проявление динамической системы, а уравнения, описывающие движение атмосферных газов и жидкостей, нелинейны (чаще всего это дифференциальные уравнения){259}259
  Да, в исчислениях подобного рода есть своя польза.


[Закрыть]
. Таким образом, теория хаоса явным образом применима к прогнозированию погоды, а следовательно, наши прогнозы оказываются в высшей степени уязвимы к неточностям в исходных данных.

Иногда эти неточности возникают в результате человеческой ошибки. Еще бо́льшая фундаментальная проблема состоит в том, что мы можем наблюдать за окружающим нас миром лишь с определенной степенью точности. Ни один термометр не идеален, и ошибка в его показаниях в третьем или даже четвертом знаке после запятой может оказать огромное влияние на прогноз.

На рис. 4.2 показаны результаты, полученные после 50 запусков программ, моделирующих прогноз погоды для Франции и Германии на сочельник 1999 г. Все модели используют одни и те же программы и основаны на одних и тех же предположениях о поведении погоды. Фактически эти модели являются детерминистическими: в них заложено допущение, что если мы в полной мере знаем все изначальные параметры, то можем создать идеальный прогноз. Однако небольшие различия во входных параметрах способны привести к огромным отличиям в результатах, полученных на выходе. В Европейском центре метеорологических прогнозов пытались принять во внимание эти ошибки. В одном из процессов имитационного моделирования закладывалось условие, что атмосферное давление в Ганновере подвергалось лишь незначительным колебаниям. В другом менялись характеристики ветра в Штутгарте, причем на долю процента. Однако даже таких небольших изменений может быть достаточно для того, чтобы в одних прогнозах говорилось об урагане в Париже, а в других – о тихом зимнем вечере.


Рис. 4.2. Результаты расчетов прогноза погоды с немного различающимися начальными условиями


Именно такие модели и используют для создания современных прогнозов погоды. Небольшие изменения, сознательно добавляемые в модель для имитации неопределенности в качестве данных, превращают детерминистический прогноз в вероятностный. Допустим, если ваш местный метеоролог говорит о том, что вероятность дождя на следующий день составляет 40 %, это можно понимать и так, что результаты расчетов используемых им моделей в 40 % случаев говорят о том, что ожидается предштормовое состояние, а в 60 % случаев – при использовании лишь незначительно измененных начальных параметров – результат противоположный.

Но на практике все не так просто. Программы, которые метеорологи используют для прогнозирования погоды, довольно хороши, но не идеальны. Прогнозы, которые вы слышите постоянно, представляют собой комбинацию компьютерных расчетов и человеческого суждения. Порой люди способны улучшить компьютерные прогнозы, а порой – ухудшить их.

Важность ви́дения

Здание World Weather Building – довольно уродливое сооружение в стиле 1970‑х гг., выкрашенное в цвет ириски и расположенное в Кэмп-Спрингз, штат Мэриленд, примерно в 20 минутах езды от Вашингтона.

Здесь находится штаб-квартира NOAA (National Oceanic and Atmospheric Administration – Национального управления по исследованию океанов и атмосферы) – материнской организации Национальной службы погоды (National Weather Service, NWS), входящей в состав правительственных служб{260}260
  NCAR не входит в состав этой бюрократической структуры, напротив, она управляется некоммерческим консорциумом исследовательских университетов и получает финансирование из Национального научного фонда. Именно поэтому у фонда более приятные на вид здания.


[Закрыть]
. В отличие от зданий NCAR в Булдере, расположенных в живописном уголке Скалистых гор, это здание заставляет думать исключительно о бюрократии.

Изначально Служба погоды была организована в 1879 г. в структуре военного ведомства Соединенных Штатов президентом Улиссом С. Грантом. Отчасти это было связано с убежденностью президента Гранта в том, что только культура, основанная на военной дисциплине, обеспечит должный уровень точности прогнозирования{261}261
  «History of the National Weather Service», Public Affairs Office, National Weather Service, National Oceanic and Atmospheric Administration, United States Department of Commerce. http://www.weather.gov/pa/history/index.php.


[Закрыть]
, а отчасти с тем, что это предприятие выглядело настолько безнадежным, что заниматься им имело смысл лишь во время военных действий, когда вы пробуете все, что угодно, для достижения военного перевеса.

Широкая публика заинтересовалась вопросами прогнозирования погоды после знаменитой «Школьной метели» (Schoolhouse Blizzard). В сравнительно теплый день 12 января 1888 г. на Великих Равнинах температура воздуха упала за несколько часов почти на 30 °, и вдруг началась ослепляющая метель{262}262
  «The Blizzard of 1988», Nebraska State Historical Society, last updated June 4, 2004. http://www.nebraskahistory.org/publish/markers/texts/blizzard_of_1888.htm.


[Закрыть]
. Сотни детей, вышедших из школы, попали в эту снежную бурю по дороге домой и умерли от переохлаждения. Несмотря на неточность ранних прогнозов погоды, все надеялись, что эта служба поможет хоть как-то предупредить о столь значительных колебаниях температуры. Соответственно, Национальная служба погоды была переведена в структуру департамента сельского хозяйства и начала заниматься более мирными делами[66]66
  Это было не последним перемещением Службы погоды. В 1940 г., желая помочь Управлению гражданской аэронавтики и принимая во внимание активно развивавшуюся отрасль пилотируемых полетов, Конгресс перевел ее в подчинение Министерства торговли, где она находится и сейчас. – Прим. авт.


[Закрыть]
.

История происхождения Службы погоды до сих пор проявляется в культуре организации. Специалисты по прогнозированию погоды работают в ней круглыми сутками за довольно скромную оплату{263}263
  Младшие синоптики обычно начинают с пятого уровня шкалы зарплат для государственных служащих, то есть получают около 27 тыс. долл. в год до корректировок, связанных со стоимостью жизни. Самая высокая зарплата правительственного служащего в этой схеме составляет порядка 130 тыс. долл. плюс вышеупомянутые корректировки.


[Закрыть]
и воспринимают себя важными государственными служащими. Метеорологи, с которыми я встретился в Кэмп-Спрингз, были настоящими патриотами, редко упускавшими возможность напомнить мне о важности прогнозов погоды для работы сельскохозяйственных ферм, небольших бизнесов, авиакомпаний, энергетического сектора, воинских подразделений, сектора общественных услуг, площадок для гольфа, организации пикников и экскурсий для школьников – прогнозов, которые можно было бы получить за копейки. (NWS удается работать с бюджетом, составляющим всего 900 млн долл. в год{264}264
  «National Weather Service: FY 2012 Budget Highlights», National Oceanic and Atmospheric Administration, United States Department of Commerce. http://www.corporateservices.noaa.gov/nbo/FY09_Rollout_Materials/NWS_One_Pager_FINAL.pdf.


[Закрыть]
, то есть примерно 3 долл. на каждого гражданина США. И это несмотря на то что погода напрямую влияет примерно на 20 % экономики страны{265}265
  «Weather Impact on USA Economy», National Oceanic and Atmospheric Association Magazine, Nov. 1, 2001. http://www.magazine.noaa.gov/stories/mag4.htm.


[Закрыть]
.)

Одним из тех метеорологов, с которыми мне удалось встретиться, был Джим Хоук – директор центра гидрометеорологического прогнозирования NWS. Хоук проработал в этой области около 35 лет, занимаясь и вычислительной стороной процесса (он помогал выстраивать компьютерные модели, которые используют его прогнозисты), и операционной (создавая эти прогнозы и сообщая их широкой публике). И, благодаря этому, он достаточно хорошо представляет себе, как взаимодействуют люди и машины в мире метеорологии.

Так что же конкретно люди могут делать лучше, чем компьютеры, способные обрабатывать данные со скоростью 77 терафлоп[67]67
  Терафлоп – триллион операций с плавающей точкой в секунду; флопс – единица измерения производительности процессора.


[Закрыть]
? Они обладают ви́дением. Хоук отвел меня на этаж прогнозирования, заставленный рабочими станциями, около каждой из которых видела табличка с пояснением типа «военно-морской центр прогнозов» или «центр прогнозов на национальном уровне». Каждая станция управлялась одним-двумя метеорологами, а рядом с каждым из них имелась целая армада жидкокристаллических мониторов с полноцветными картами всевозможных типов погодных данных для каждого уголка страны.

Прогнозисты работали тихо и быстро, с точностью, о которой, наверное, и мечтал Грант{266}266
  Возможно, это не просто совпадение – прогнозирование погоды представляет собой постоянно работающий бизнес, поэтому все сотрудники World Weather Building время от времени выходят в ночную смену. С учетом отсутствия солнечного света и окон в World Weather Building мне порой казалось, что я нахожусь внутри подводной лодки.


[Закрыть]
.

Некоторые из прогнозистов рисовали на этих картах световыми указками, тщательно корректируя контуры температурных градиентов, созданных компьютерными моделями, – 25 миль к западу в сторону дельты Миссисипи, 50 миль к северу в направлении озера Эри. Постепенно, шаг за шагом они приводили карты к желанному платоническому идеалу.

Прогнозисты отлично представляют себе недостатки компьютерных моделей. Это возникает неминуемо, поскольку, как следует из теории хаоса, даже самая тривиальная ошибка в модели может привести к значительным последствиям. Возможно, компьютер оказывается слишком консервативным при прогнозировании ночных дождей в Сиэтле, когда над заливом Пьюджет-Саунд образуется зона низкого давления. Возможно, он не знает, что при одном направлении ветра туман в национальном парке Акадия в Мэйне рассеивается к восходу солнца, при другом – может остаться до середины дня.

Подобные вещи прогнозисты понимают со временем, учась обходить недостатки модели, наподобие того как опытный игрок в пул привыкает обходить слепые зоны бильярдного стола в местном баре.

Уникальным ресурсом этих прогнозистов было и остается их умение видеть. Этот инструмент важен в любой дисциплине – визуальное изучение графика, показывающего взаимодействие между двумя переменными, часто оказывается более быстрым и более надежным способом выявить странные искажения данных, чем статистический тест. Это также одна из тех областей, в которых компьютеры сильно отстают от человеческого мозга. Стоит немного изменить последовательность букв – как в случае технологии CAPTCHA[68]68
  CAPTCHA (Completely Automated Public Turing test to tell Humans from Computers Apart) – полностью автоматический тест Тьюринга для распознания компьютеров и людей; в русской транскрипции – капча.


[Закрыть]
, часто использующейся для противостояния спаму в качестве средства защиты паролей (рис. 4.3), – и даже самые «толковые» компьютеры начинают смущаться. Они воспринимают информацию слишком буквально. Они неспособны распознать закономерность, подвергшуюся даже небольшой манипуляции. Люди же, в силу эволюционной необходимости, обладают мощными визуальными способностями. Они быстро отсеивают любые искажения закономерностей и могут распознать такие абстрактные вещи, как закономерности и организация, то есть то, что оказывается особенно важным в различных типах погодных систем.


Рис. 4.3. Пример теста CAPTCHA


На самом деле, в старые времена, когда метеорологические компьютеры были еще не особенно полезными, прогнозирование погоды представляло собой почти полностью визуальный процесс. Вместо дисплеев в офисах стояли столы с подсветкой, на которых лежали карты. Метеорологи корректировали рисунки на картах с помощью мелков или цветных карандашей. Хотя последняя доска с подсветкой была отправлена в отставку уже много лет назад, дух этого метода живет и в наши дни.

По словам Хоука, самые квалифицированные синоптики-прогнозисты должны обладать способностью думать визуально и абстрактно, но в то же самое время им необходимо разбираться с огромными массивами информации, которой снабжает их компьютер. Более того, они должны понимать динамическую и нелинейную природу изучаемой ими системы. Это непростая задача, требующая тщательного использования и правого, и левого полушарий. Многие из прогнозистов могли бы стать хорошими инженерами или программистами с куда большей зарплатой, однако они сознательно решают стать метеорологами.

NWS постоянно отслеживает два типа данных: первый показывает, насколько хорошо компьютеры справляются в одиночку, а второй оценивает долю человеческого вклада. Судя по статистическим данным, люди способны улучшить правильность компьютерных прогнозов выпадения осадков примерно на 25 %{267}267
  «HPC% Improvement to NCEP Models (1-Inch Day 1 QPF Forecast)», Hydro Meteorological Prediction Center, National Oceanic and Atmospheric Association. http://www.hpc.ncep.noaa.gov/images/hpcvrf/1inQPFImpann.gif.


[Закрыть]
, а прогнозов погоды – примерно на 10 %{268}268
  «HPC Pct Improvement vs MOS (Max Temp MAE: Stations Adjusted >= 1 F)», Hydro Meteorological Prediction Center, National Oceanic and Atmospheric Association. http://www.hpc.ncep.noaa.gov/images/hpcvrf/max1.gif.


[Закрыть]
.

Более того, согласно Хоуку, эти сравнительные данные практически не менялись со временем: какой бы прогресс ни происходил в компьютерных технологиях, люди-прогнозисты могут еще лучше повысить их ценность. Ви́дение стоит дорогого.

Вероятность погибнуть от удара молнии становится все меньше

Когда Хоук только начинал начал свою карьеру в середине 1970‑х, анекдоты о синоптиках были недалеки от истины. Например, в прогнозах погоды NWS, сделанных за три дня, максимальное отклонение от прогнозируемой температуры достигало примерно 6 ° F (рис. 4.4). Это ненамного лучше, чем в случае составления прогноза на основе обычного изучения таблицы долгосрочных средних значений. Однако партнерство между человеком и машиной способно принести немалые дивиденды. В наши дни средняя величина ошибки составляет примерно 3,5 ° F – иными словами, она стала примерно наполовину меньше. Также синоптикам удается значительно лучше предсказывать аномальные погодные явления.


Рис. 4.4. Ошибка в определении среднемесячной максимальной температуры в прогнозах NWS


Какова вероятность получить смертельный удар молнии? На самом деле, значение этого показателя не постоянная величина, которая зависит, например, от вероятности того, будете ли вы на улице в момент возникновения молнии. В 1940 г. вероятность смерти жителя Америки от удара молнии в определенный год составляла примерно 1 из 400 000{269}269
  «Weather Fatalities», National Weather Service, National Oceanic and Atmospheric Association. http://www.nws.noaa.gov/om/hazstats/images/weather_fatalities.pdf.


[Закрыть]
. В наши дни вероятность этого события равна всего 1 из 11 000 000 (то есть ее величина снизилась почти в 30 раз). Отчасти это связано с изменением образа жизни (всё больше работы в наши дни производится в домах) и улучшением коммуникации в области технологий и здравоохранения, но также это связано и с тем, что прогнозы погоды становятся более точными.

Возможно, самые впечатляющие успехи были достигнуты в предсказании ураганов. Всего 25 лет назад, когда Национальный центр по ураганам попытался дать предварительный прогноз местонахождения территории, по которой в ближайшие три дня ударит ураган, диапазон ошибки составлял в среднем 560 км{270}270
  «NHC Tropical Cyclone Forecast Verification», National Hurricane Center, National Weather Service, National Oceanic and Atmospheric Association; updated March 1, 2012. http://www.nhc.noaa.gov/verification/verify5.shtml.


[Закрыть]
. Это слишком много. Нарисуйте, допустим, окружность с радиусом 560 км вокруг Нового Орлеана, и она покроет все точки от Хьюстона, штат Техас, до Таллахасси, штат Флорида (рис. 4.5). Эвакуировать людей с такой большой территории просто невозможно.


Рис. 4.5. Улучшение качества прогнозирования поведения ураганов


В наши дни величина погрешности равна примерно сотне миль, то есть наша окружность охватит лишь юго-восток Луизианы и южную границу Миссисипи. Время от времени ураганы будут выбиваться за пределы этой зоны, но теперь в большинстве случаев нам имеет смысл обращать внимание на заметно меньшую по площади зону, эвакуировать жителей из которой можно за 72 часа. Для сравнения, в 1985 г. такую же степень точности обеспечивали лишь прогнозы, созданные менее чем за 24 часа до события. Это значит, что теперь у нас есть еще дополнительно двое суток до удара урагана – а как мы увидим позже, при эвакуации города типа Нового Орлеана критически важным оказывается каждый час[69]69
  К сожалению, хотя специалистам в области прогнозирования удается значительно лучше выяснять, где ураган нанесет свой удар, у них до сих пор не получается предсказать его силу. Причина этого состоит в том, что силы, управляющие интенсивностью урагана, проявляются в значительно меньшем масштабе, чем те, что определяют его направление. Это означает, что для их анализа нужны более тонкие инструменты, и даже Bluefire пока что не может в полной мере справиться с задачей. – Прим. авт.


[Закрыть]
.

Службе погоды еще не удалось избавиться от Демона Лапласа, однако вполне можно полагать, что она заслуживает большего признания, чем принято считать. Наука прогнозирования погоды довольно успешно развивается, несмотря на все проблемы, связанные с особенностями метеорологических условий. В этой книге вы неоднократно увидите, что при составлении прогнозов это является скорее исключением, чем правилом (так что приберегите свои шутки для экономистов).

Усилия Национальной службы погоды часто недооценивают. Она сталкивается с жесткой конкуренцией со стороны частных компаний{271}271
  Еще одним объектом конкуренции выступают средства налогоплательщиков. До тех пор пока живет память об урагане «Катрина» как о событии, которое не только привело к человеческим жертвам, но и являлось прецедентом, когда государство прямо отвечало за свою реакцию на него, Служба погоды будет, возможно, защищена от значительных бюджетных сокращений. Однако беспокойство о бюджетах остается объектом постоянной паранойи в Кэмп-Спрингс: многим представляется, что какой-нибудь умник в Вашингтоне посчитает, что компьютеры отлично справляются с задачами и что нужды в людях-синоптиках больше нет. Президент Обама предложил в 2013 г. Службе погоды увеличить финансирование на погодные спутники, но срезать финансирование основной операционной деятельности и исследований.


[Закрыть]
, работающих в совершенно иных условиях. В отличие от всех других игроков, Служба погоды должна предоставлять свои данные моделирования бесплатно всем желающим (большинство других стран с хорошими погодными бюро продают лицензии или взимают плату за использование своих данных). Частные компании типа AccuWeather и Weather Channel могут затем использовать их как основу для развития собственных продуктов и их коммерческого распространения. Подавляющее большинство потребителей получают прогнозы от одного из частных поставщиков; трафик сайта телеканала Weather Channel (Weather.com) примерно в десять раз превышает трафик Weather.gov{272}272
  Расчеты трафика приводятся на основании данных Alexa.com.


[Закрыть]
.

В целом я большой сторонник конкуренции на свободном рынке или конкуренции между государственными и частными компаниями. Во многом именно благодаря конкуренции бейсбол активно развивался и смог лучше совмещать знания скаутов и статистиков при прогнозировании развития игроков.

Как видите, в бейсболе идея конкуренции более ясна – сколько мячей ты выиграл (или же соотношение выигранных и проигранных мячей). В прогнозировании погоды ситуация несколько более сложная, а перед частными и государственными прогнозистами стояли разные задачи.

Что делает прогноз хорошим?

«Разумеется, ученого-исследователя не казнят на месте за просмотр Weather Channel, однако многие из них делают это за закрытыми дверями», – рассказал мне доктор Брюс Роуз, приветливый научный руководитель и вице-президент Weather Channel (TWC).

По словам Роуза, у него не было намерения утверждать, что прогнозы TWC лучше правительственных, они просто были другими – в большей степени ориентированными на нужды типичного потребителя.

«Модели обычно не оцениваются по тому, насколько хорошо они предсказывают те или иные практически важные параметры погоды, – продолжает он. – Для жителей Нью-Йорка на самом деле важно, что ожидает их на улице – залитые водой мостовые после ливня или снеговой покров толщиной 10 см{273}273
  Хотя может показаться, что осадки в виде снега в 25 см больше, чем 2,5 см осадков в виде дождя, на самом деле они оказываются почти одинаковыми, поскольку молекулы снега находятся на значительно большем расстоянии друг от друга. При таянии снега высотой 25 см как раз и получается примерно 2,5 см воды.


[Закрыть]
. С точки зрения потребителя, различие огромно, а вот для ученых это не всегда интересно».

На самом деле, значительная доля времени доктора Роуза уделяется прагматичным и даже отчасти банальным проблемам, связанным с тем, как потребители интерпретируют его прогнозы. Например, он задается вопросом, как разработать алгоритмы, позволяющие исходные данные о погоде выразить понятно. Что может означать выражение очень холодно? А вероятность порывистого ветра? Где проходит различие между переменной облачностью и преимущественно пасмурной погодой? Weather Channel должна в этом хорошо разбираться, а Роузу приходится создавать формальные правила, поскольку компания выпускает настолько много прогнозов, что способ их подачи необходимо разрабатывать чуть ли не для каждого случая.

Иногда необходимость адаптировать прогноз к потребностям клиента может принимать комические формы. На протяжении многих лет Weather Channel показывал дождь на своих радарных картах зеленым цветом (иногда сопровождаемым желтыми и красными участками, обозначавшими особенно сильные штормы). В какой-то момент в 2001 г. кому-то из отдела маркетинга пришла в голову гениальная идея выкрасить дождь в синий цвет – что показалось тогда разумным и напоминало естественный цвет воды. Довольно быстро на Weather Channel обрушился вал телефонных звонков разгневанных, а порой и напуганных потребителей: некоторые из них ошибочно приняли синие облака за прежде неизвестный вид осадков (плазменные облака? радиоактивные выбросы?). «Кто-то даже посчитал это последствием ядерного взрыва, – рассказал мне доктор Роуз. – Люди писали нам: “Вы многие годы говорили нам о том, что дождь имеет зеленый цвет, а теперь он оказался синим? Это что еще за выкрутасы?”»

Но, несмотря на все эти анекдотические истории, Weather Channel относится к метеорологии очень серьезно. По крайней мере, в теории, и есть основания думать, что эта компания способна сделать более качественный прогноз, чем правительство. В конце концов, Weather Channel, использует все исходные данные, полученные из правительственных источников, в качестве отправной точки, а затем учитывает и всю ту ценную информацию, которую они в состоянии получить своими силами.

Вопрос заключается в следующем: какой прогноз считать «лучшим»? Я бы сказал просто – лучшим является самый точный прогноз. Однако я знаю о нескольких конкурирующих между собой идеях в области прогнозирования погоды.

В известном эссе 1993 г.{274}274
  Allan H. Murphy, «What Is a Good Forecast? An Essay on the Nature of Goodness in Weather Forecasting», American Meteorological Society 8 (June 1993): pp. 281–293. http://www.swpc.noaa.gov/forecast_verification/Assets/Bibliography/i1520%E2%80%930434%E2%80%93008%E2%80%9302%E2%80%930281.pdf.


[Закрыть]
, написанном Алланом Мерфи (работавшим в то время метеорологом в Университете штата Орегон), утверждалось, что в сообществе прогнозистов погоды имеются целых три определения качества прогноза. Мерфи не утверждал, что то или иное определение лучше остальных; скорее, он пытался начать более открытое и честное их обсуждение. Версии этих определений могут применяться почти в любой области, где нужны прогнозы или предсказания.

Первый (и, возможно, самый очевидный) способ оценки прогноза, писал Мерфи, связан с тем, что он сам называл «качеством», но, пожалуй, его лучше определить как правильность. Иными словами, оценивается ответ на вопрос, соответствовала ли реальная погода прогнозу?

Второй способ обозначен словом «последовательность», но я считаю, что в данном случае чаще подходит слово честность. Даже если прогноз оказался достаточно точным, был ли это лучший прогноз, на который способен прогнозист в то время? Отражал ли он самые наилучшие из имевшихся суждений и модифицировали ли его каким-либо образом перед тем, как представить публике?

И, наконец, Мерфи говорил об экономической ценности прогноза. Способствовал ли он принятию общественностью и политиками более правильных решений?

Проведенное Мерфи различие между правильностью и честностью не сразу очевидно, однако крайне важно. Когда созданный мной прогноз оказывается неверным, я часто спрашиваю себя, был ли это лучший вариант прогноза, который я мог бы дать с учетом имевшихся у меня на тот момент данных. Иногда я считаю, что этак: мой мыслительный процесс оказался верным, я провел все необходимые исследования, выстроил хорошую модель и точно указал, какая доля неопределенности присутствует в прогнозе. В других же случаях я обнаруживал, что мне не нравится моя собственная работа. Иногда я слишком быстро отказывался от ключевых элементов исследования. Иногда я переоценивал степень предсказуемости проблемы. Иногда у меня возникали какие-то другие предубеждения или неверные стимулы.

Я не хочу сказать, что вы должны ругать себя всякий раз, когда ваш прогноз оказывается неверным. Напротив, признаком того, что вы делаете хороший прогноз, является то, что вы полностью принимаете то, как развиваются события, понимая, что не все из них вы можете непосредственно контролировать. Однако у вас всегда есть возможность спросить себя о том, какие цели вы имели, принимая свое решение.

В долгосрочной перспективе заявленные Мерфи цели правильности и честности должны сходиться друг с другом, когда у нас имеются правильные стимулы. Однако так бывает не всегда. Например, не исключено, что политических комментаторов из McLaughlin Group больше волновало желание казаться толковыми на экране телевизора, чем создание правильных предсказаний. Возможно, что они вели себя вполне рационально. Однако если они сознательно делали плохие прогнозы, поскольку хотели произвести приятное впечатление на представителей той или иной партии, или же хотели вновь оказаться на шоу, то можно считать, что они провалили тест Мерфи на честность.

Третий критерий Мерфи – экономическая ценность прогноза – способен запутать нас еще сильнее. Разумеется, мы вполне можем согласиться с доктором Роузом в том, что прогнозы для городов могут заслуживать большего внимания – допустим, если температура воздуха находится около точки замерзания и осадки могут принять форму дождя, льда или снега, каждый из которых может по-разному влиять на безопасность и транспортировку жителей.

Однако это, скорее, связано с тем, на чем Weather Channel концентрирует свои ресурсы и чему уделяет основное внимание. Это не значит, что иногда под сомнение ставится правильность или честность прогноза. Многие газеты стремятся к тому, чтобы каждая опубликованная в них статья была точной и честной, однако им все равно необходимо принимать решение о том, какие материалы поместить на первую полосу. Weather Channel должен принимать аналогичные решения, и экономическое влияние прогноза – это вполне разумная основа для них.

Впрочем, бывают времена, когда цели начинают конфликтовать между собой и коммерческий успех оказывается важнее правильности.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации