Электронная библиотека » Ник Лейн » » онлайн чтение - страница 7


  • Текст добавлен: 27 февраля 2018, 11:20


Автор книги: Ник Лейн


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 24 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

Вы, вероятно, знакомы с диссипативными структурами Ильи Пригожина, например конвекционными токами, возникающими в кипящем чайнике, или крутящейся воронкой, которую образует вода над отверстием слива. Никакой информации для возникновения таких структур не требуется. Конвекционные ячейки появляются в результате неравномерного нагрева жидкости, а воронка образуется согласно закону сохранения момента импульса. Диссипативные структуры возникают за счет притока энергии и материи. Ураганы, тайфуны, водовороты – все это примеры диссипативных структур. Множество их возникает в океане и атмосфере (из-за разницы в потоках солнечной энергии на экваторе и на полюсах).

Мощные океанические течения и ветра не обусловлены никакой информацией. Они стабильны и непрерывны, как и поток энергии, которая их питает. Большое красное пятно на Юпитере представляет собой громадный шторм, антициклон, в несколько раз превышающий размер Земли. Он существует минимум несколько столетий. Все диссипативные структуры требуют непрерывного поступления энергии – как конвекционные ячейки существуют до тех пор, пока электрический ток заставляет воду кипеть и испаряться. В общем, они представляют собой зримые проявления неравновесных процессов, в которых поток энергии поддерживает структуру до тех пор, пока не будет достигнуто равновесие (в случае звезд это миллиарды лет) и структура не коллапсирует. Главная идея: за счет потока энергии могут появляться устойчивые физические структуры предсказуемого строения. К информации это не имеет никакого отношения, но мы увидим, что такие механизмы способны породить условия, благоприятные для возникновения биологической информации, репликации и отбора.

Согласно современным представлениям, основанным на химическом анализе древнейших горных пород и кристаллов циркона, атмосфера древней Земли была относительно нейтральной и состояла в основном из двуокиси углерода, азота и паров воды, подобно вулканическим газам.

Все живые организмы существуют за счет далеких от равновесия условий окружающей среды: мы сами также диссипативные структуры. Непрерывные дыхательные процессы снабжают клетки свободной энергией, необходимой для того, чтобы фиксировать углерод, расти, производить активные интермедиаты, соединять “строительные блоки” в длинноцепочечные полимеры (углеводы, РНК, ДНК, белки и так далее) и поддерживать свое низкоэнтропийное состояние, повышая энтропию окружающей среды. В отсутствие генов или любой другой информации определенные клеточные структуры, например мембраны и полипептиды, будут самопроизвольно формироваться до тех пор, пока будет продолжаться приток реакционноспособных предшественников – активированных аминокислот, нуклеотидов, жирных кислот, пока будет хватать энергии для формирования этих “строительных блоков”. Клеточные структуры существуют лишь в непрерывном потоке энергии и материи. Отдельные части могут заменяться, но общая структура стабильна и будет существовать, пока не иссякнет поток. Непрерывный приток энергии и материи – как раз то, чего не хватает в “первичном бульоне”. В “бульоне” нет ничего, что могло бы вызвать формирование диссипативных структур, которые мы называем клетками. Ничего, что могло бы заставить клетки расти и делиться: в “первичном бульоне” не было ферментов, которые могли бы запускать метаболизм и управлять его процессами. Образование клеток в таких условиях – задача, прямо скажем, не из легких. Существует ли такая среда, которая способна спровоцировать возникновение первых примитивных клеток? Безусловно, она должна была существовать. Но перед тем как мы приступим к ее поискам, обсудим, что требуется для возникновения клетки.

Как изготовить клетку

Что требуется для изготовления живой клетки? Всем клеткам на Земле присущи шесть базовых свойств. Я не хочу, чтобы книга стала похожей на учебник, но все-таки запишем их:

1) Непрерывное поступление активных форм углерода для синтеза новой органики;

2) Приток свободной энергии, необходимой для биохимических процессов – образования новых белков, ДНК и т. д.;

3) Катализаторы, чтобы ускорять и направлять эти метаболические реакции;

4) Выделение отходов, чтобы процессы в клетке соответствовали второму началу термодинамики и можно было обеспечить прохождение химических реакций в нужном направлении;

5) Компартментализация, чтобы отделить внутреннюю среду от внешней, необходимы ячеистые структуры – оболочки клеток;

6) Наследственный материал – РНК, ДНК или их эквивалент, – который в деталях бы определял строение и функции биомолекул.

Все прочее (из стандартного набора свойств живых организмов, который школьники заучивают наизусть: движение, чувствительность и т. д.) – например, для бактерий лишь приятные излишества.

Не нужно много размышлять, чтобы прийти к пониманию, что эти шесть свойств глубоко взаимосвязаны и все были необходимы с самого начала. Непрерывное поступление органического углерода, очевидно, критически важно для роста, репликации… в общем, для всего. Даже на примитивном уровне происходила репликация молекул рибонуклеиновой кислоты. РНК – это цепь нуклеотидов. А нуклеотид – органическая молекула, которую нужно где-то взять. Среди исследователей, занимающихся вопросом происхождения жизни, не утихает спор, что возникло прежде: метаболизм или репликация. Но этот спор бессмыслен. Репликация – это удвоение, и расход “строительных блоков” увеличивается в геометрической прогрессии. Если запас “строительных блоков” не восполнять в том же объеме, репликация скоро прекратится.

Можно предположить, что первые репликаторы состояли не из органики, а были глинистыми минералами и т. п. (Эту идею выдвинул Грэм Кернс-Смит.) Но это не очень удачное решение: минералы недостаточно пластичны для того, чтобы кодировать нечто хоть немного приближающееся к РНК по уровню сложности, хотя они и способны быть хорошими катализаторами. Но если минералы не могут выступать репликаторами, нужно найти наиболее короткий и быстрый путь от неорганических молекул до органических, способных выполнять функцию репликаторов, например РНК. Если согласиться с тем, что нуклеотиды были синтезированы из цианамида, бессмысленно рассматривать неизвестные интермедиаты. Лучше сразу перейти к сути и принять, что некоторые среды на древней Земле были способны предоставлять необходимые для репликации органические “строительные блоки” – активированные нуклеотиды[43]43
  Это обращение к принципу Оккама, на котором основан научный подход: предполагать наиболее простую и естественную причину. Такое предположение может оказаться неверным, но мы не должны без необходимости прибегать к более сложному объяснению. Мы можем в итоге списать происхождение репликации на божественный промысел, если все остальные возможные доводы будут отвергнуты (хотя я в этом сомневаюсь), но до тех пор мы не должны умножать сущности. Это просто подход к проблеме, но успехи науки доказывают, что он эффективен.


[Закрыть]
. Даже если цианамид не годится на роль отправной точки, тенденция к образованию поразительно сходного набора органических веществ в разных условиях (под действием электрических разрядов в восстановительной атмосфере, в ходе химических процессов на астероидах, в автоклавах под высоким давлением) наводит на мысль, что определенные молекулы (в число которых, возможно, входят нуклеотиды) наиболее предпочтительны с точки зрения термодинамики. В первом приближении, образование органических репликаторов требует непрерывного поступления в среду органического углерода. Поэтому мы не рассматриваем среды с очень низкой температурой: хотя органика при замерзании растворов может концентрироваться между кристаллами льда, нет механизма, который бы работал при низких температурах и мог восполнить запас нужных для продолжения процесса “строительных блоков”.

Также необходима энергия. Для того чтобы “строительные блоки” (аминокислоты или нуклеотиды) объединились и сформировали длинноцепочечный полимер (белок или РНК), нужно их активировать. Это, в свою очередь, требует источника энергии, например АТФ или похожего. Возможно, даже очень похожего. В водном мире, каким была Земля 4 млрд лет назад, источник энергии должен был обеспечивать полимеризацию длинноцепочечных молекул. В ходе полимеризации при образовании каждой связи отщепляется одна молекула воды (реакция дегидратации). В водных растворах с молекулами, подвергающимися дегидратации, возникает та же проблема, как при попытке выжать белье под струей воды. Некоторые выдающиеся исследователи были столь озадачены этим затруднением, что поддержали идею возникновения жизни на Марсе, где вода присутствует в гораздо меньшем объеме. Возникнув на Марсе, жизнь добралась сюда на метеоритах – и, выходит, все мы в некотором роде марсиане. Но, конечно, жизнь на Земле прекрасно существует в воде. Любой клетке трюк дегидратации удается тысячи раз в секунду. И люди это умеют: мы совмещаем реакцию дегидратации с расщеплением АТФ – при каждом расщеплении АТФ из среды забирается одна молекула воды. В совокупности реакции дегидратации и “регидратации” (гидролиза) приводят к переносу воды – и к высвобождению энергии, заключенной в связях АТФ. Это упрощает дело: все, что нужно – это непрерывное поступление АТФ или более простого его аналога, например ацетилфосфата. Мы займемся вопросом, откуда они могли взяться, в следующей главе. Пока отметим, что для репликации в воде нужно непрерывное обильное поступление в среду и углерода, и чего-либо похожего на АТФ.

Итак, репликация, углерод и энергия: три из шести факторов. А что насчет отделения от внешней среды? Это также связано с концентрированием. Биологические мембраны состоят из липидов, а те, в свою очередь, – из жирных кислот или изопреноидов (которые присоединяются к глицериновой головке). Когда концентрация жирных кислот превышает пороговое значение, они самопроизвольно формируют везикулы, похожие на клетки и способные расти и делиться, если их “подкармливать” новыми жирными кислотами. Чтобы обеспечить образование жирных кислот, требуется непрерывный приток органического углерода и энергии. А чтобы жирные кислоты (или нуклеотиды) накапливались быстрее, чем они рассеиваются, нужно обеспечить локальное повышение их концентрации с помощью каких-либо физических процессов или за счет природной компартментализации, чтобы сделать возможным формирование более крупных структур. В этих условиях формирование везикул вовсе не является таинством: это наиболее физически стабильное состояние, при котором общая энтропия повышается. (См. предыдущую главу.)

Если активированные “строительные блоки” поступают непрерывно, то простые везикулы будут расти и делиться самопроизвольно, в соответствии с оптимальным соотношением площади поверхности и объема. Представьте шарообразную везикулу – простую “клетку” с разнообразными органическими молекулами внутри. Везикула растет, встраивая в мембрану новые липиды и забирая в свою полость органические вещества. Теперь представим, что она вдвое увеличилась в размерах: вдвое увеличилась поверхность мембраны и вдвое возрос объем органических веществ внутри. Что при этом происходит? Если площадь поверхности возрастает вдвое, объем увеличивается более чем вдвое: площадь поверхности возрастает как квадрат радиуса, а объем – как его куб. Если скорость накопления содержимого клетки не будет выше, чем скорость увеличения площади поверхности, везикула превратится в нечто вроде гантели, а это уже на полпути к формированию двух новых везикул. Иными словами, арифметический рост приносит нестабильность, которая с большей вероятностью приведет к делению и удвоению, а не к дальнейшему увеличению везикулы. Вопрос лишь в том, сколько времени пройдет до того, как растущая везикула разделится на меньшие пузырьки. Так, непрерывный приток органических углеродных предшественников приводит не только к образованию примитивных клеток, но и к зачаточной форме клеточного деления. Кстати, этим путем – почкованием – делятся L-формы бактерий, у которых нет клеточной стенки.

Из-за проблемы соотношения площади поверхности и объема размер клетки ограничен. Это связано просто с поступлением реагентов и выведением отходов. Ницше сказал, что “брюхо служит причиной того, что человеку не так-то легко возомнить себя Богом”. На самом деле экскреция – это термодинамическая необходимость, от которой не смогли бы уклониться и божественные создания. Чтобы любая реакция могла протекать в прямом направлении, ее конечные продукты должны удаляться. Это не более загадочно, чем поведение людей на железнодорожной станции. Если уезжающие не смогут садиться в поезд с той же скоростью, с какой прибывают новые пассажиры, образуется толпа. В случае клеток скорость образования белков зависит от скорости поступления активированных предшественников (активированных аминокислот) и удаления отходов (метана, воды, CO2, этанола – всего, что может образоваться в реакции с выделением энергии). Если отходы не будут физически удаляться из клетки, это помешает протеканию прямой реакции.

Это еще один фундаментальный недостаток концепции “первичного бульона”, в котором плавают и реагенты, и отходы. Этот “бульон” не способен дать никакого импульса, никакой движущей силы, инициирующей новые химические процессы[44]44
  Известный пример: долю спирта в вине нельзя поднять выше 15 % путем лишь спиртового брожения. Накапливаясь, спирт блокирует прямую реакцию (брожение) и подавляет собственное образование. Если спирт не будет удаляться, брожение зайдет в тупик: вино уже достигло термодинамического равновесия. Крепкие напитки, например бренди, получают путем перегонки, добиваясь более высокой концентрации спирта. Я уверен, что мы единственная форма жизни, которая достигла таких высот в деле концентрирования веществ.


[Закрыть]
. И чем больше становится клетка, тем больше она похожа на бульон. Из-за того, что объем клетки возрастает быстрее, чем площадь ее поверхности, относительная скорость поступления углерода и удаления отходов через внешнюю мембрану по мере увеличения объема клетки должна падать. Клетка размером даже с футбольный мяч не сможет функционировать: это будет просто “бульон”. (Конечно, страусиное яйцо по размеру почти с мяч, однако желточный мешок – это просто запас пищи. Зародыш гораздо меньше.) На заре возникновения жизни природные скорости поступления углерода и удаления отходов должны были обусловливать небольшой объем клеток. Похоже, была необходима также некая разновидность физической канализации.

Это подводит нас к вопросу о необходимости катализаторов. Сейчас живые организмы пользуются белковыми катализаторами – ферментами, но РНК также может иметь некоторую каталитическую активность. Проблема в том, что РНК – уже довольно сложный полимер. Она состоит из многочисленных “строительных блоков” – нуклеотидов, и каждый нужно сначала синтезировать, активировать, а после соединить их в длинную цепь. До этого момента РНК едва ли способна выступать катализатором. Какой бы процесс ни дал начало РНК, сначала он должен был инициировать образование других, более простых органических молекул – главным образом аминокислот и жирных кислот. Получается, древний “РНК-мир” в любом случае был загрязнен многими другими органическими молекулами. Та идея, что РНК самостоятельно обеспечила возникновение метаболизма, абсурдна, даже если она сыграла ключевую роль в происхождении репликации и белкового синтеза. Так что послужило катализатором зарождающейся биохимии? Возможный ответ: это неорганические комплексы, например сульфиды металлов (особенно железа, никеля и молибдена). Они и по сей день служат кофакторами нескольких древних, сохранившихся у всех организмов консервативных белков. Хотя мы склонны приписывать каталитические свойства именно белкам, нередко они лишь оптимизируют работу кофактора, который определяет природу реакции. Оторванные от белка, кофакторы не слишком эффективны и не очень специфичны как катализаторы, но это лучше, чем ничего. Степень их эффективности зависит, опять же, от выхода реакции. Первые неорганические катализаторы лишь начали направлять потоки углерода и энергии на образование органики, но благодаря им необходимость в “цунами” отпала и стало достаточно спокойной реки.

Все эти простые органические вещества (особенно аминокислоты и нуклеотиды) проявляют некоторую каталитическую активность по отношению и к самим себе. В присутствии ацетилфосфата аминокислоты могут даже объединяться друг с другом, формируя пептиды – недлинные цепочки аминокислот. Устойчивость пептидов отчасти зависит от их взаимодействия с другими молекулами. Гидрофобные аминокислоты или пептиды, объединяясь с жирными кислотами, существуют дольше. Заряженные пептиды, которые связываются с неорганическими кластерами, например железосерными, могут быть более стабильными. Естественные связи между пептидами и минеральными кластерами могут повышать каталитическую активность минералов, а затем эти связи будут подвергаться отбору в зависимости от того, насколько связь стабильна. Представьте себе минеральный катализатор, осуществляющий органический синтез. Некоторые продукты реакции связываются с минеральным катализатором, что повышает их устойчивость и улучшает каталитические способности минерала (по крайней мере меняет их специфичность). Теоретически такая система может обеспечить появление более богатой и сложной органической химии.

Как построить клетку с нуля? Нужен непрерывный поток активного углерода и доступной химической энергии, который проходит через примитивный катализатор, преобразующий небольшую долю потока в новые органические вещества. Поток должен быть ограничен таким образом, чтобы органические вещества (в том числе жирные кислоты, аминокислоты и нуклеотиды) достигали высоких концентраций, но ничто не препятствовало выводу отходов. Сосредоточение потока может быть достигнуто путем естественного ограничения или компартментализации, что напоминает управление потоками воды на мельнице: это повышает силу потока в отсутствие ферментов и, соответственно, уменьшает потребность в углероде и энергии. Лишь если скорость образования новой органики превышает скорость, с которой она теряется, уходя во внешнюю среду, станет возможно концентрирование веществ, а затем самопроизвольное формирование структур, таких как клеткоподобные везикулы, РНК и белки[45]45
  На самом деле я имею в виду не белки, а пептиды. Последовательность аминокислот в белке определяется генами, закодированными в ДНК. Пептид – это цепь, в которой аминокислоты соединены друг с другом такими же связями, как в белке, но обычно пептид гораздо короче (может состоять лишь из нескольких аминокислот), и его последовательность не предопределена генетически. Короткие пептиды будут формироваться самопроизвольно из аминокислот в присутствии химических “дегидратирующих” агентов, например пирофосфата или ацетилфосфата, которые, возможно, являются абиотическими предшественниками АТФ.


[Закрыть]
.

Ясно, что это лишь намеки на будущую клетку: необходимое, но не достаточное. А сейчас сосредоточимся на очень важном моменте. Без интенсивного притока углерода и энергии, пропущенного через неорганические катализаторы, возникновение и развитие клеток невозможно. Я готов поспорить, что такая закономерность действует во всей Вселенной: учитывая потребность в углероде (см. предыдущую главу), термодинамика диктует необходимость непрерывного потока углерода и энергии через природные катализаторы. Строго говоря, это требование заставляет исключить почти все среды, которые в разное время предлагались на роль места зарождения жизни: теплые водоемы (к сожалению, Дарвин в их отношении был неправ), “первичный бульон”, пористые вулканические породы, побережья, другие планеты (в рамках идеи панспермии) – можете сами продолжить список. Но это требование не исключает гидротермальные источники. Напротив, они отлично ему соответствуют. Гидротермальные источники – как раз та разновидность диссипативных структур, которую мы ищем: работающие на непрерывном потоке и далекие от равновесия электрохимические реакторы.

Гидротермальные источники как потоковые реакторы

Большой призматический источник в Йеллоустонском национальном парке своей устрашающей оранжево-желто-зеленой окраской напоминает мне Око Саурона. Все дело в фотосинтетических пигментах бактерий, которые в качестве донора электронов пользуются выделяющимися из вулканических источников водородом и сероводородом. Хотя йеллоустонские бактерии-фотосинтетики почти ничего не могут рассказать о происхождении жизни, они дают представление о первобытной мощи вулканических источников. Если лишить растительности скалы вокруг источников, пейзаж стал бы напоминать место, где 4 млрд лет назад зародилась жизнь.

Правда, 4 млрд лет назад Земля была покрыта водой. Возможно, горячие источники имелись и на каких-нибудь крошечных вулканических островах, но в основном горячие источники находились глубоко под водой. Открытие подводных гидротермальных источников в 70-х годах XX века вызвало ажиотаж: не потому, что об их существовании никто не догадывался (их легко обнаружить по шлейфу теплой воды), а потому, что никто не представлял себе мощь “черных курильщиков” и не знал, что они выступают средоточием жизни на океанском дне. Оно представляет собой почти лишенную жизни пустыню. “Черные курильщики”, похожие на обвалившиеся дымоходы, непрерывно выбрасывающие клубы черного дыма, дали приют удивительным животным: гигантским червям, утратившим рот и анус, двустворчатым моллюскам с большую тарелку, безглазым креветкам. По плотности жизни “черные курильщики” сопоставимы с тропическими лесами. Открытие “черных курильщиков” привлекло биологов и океанографов, но особенно – ученых, занимавшихся проблемой происхождения жизни. Микробиолог Джон Баросс сразу оценил важность открытия. Он в большей степени, нежели остальные исследователи, сосредоточил внимание на необыкновенной силе и мощности неравновесных процессов, происходящих в гидротермальных источниках, скрытых от солнечного света километрами океанской воды.

Впрочем, “черные курильщики” не отрезаны от Солнца. Обитающие там животные существуют за счет симбиоза с бактериями, которые окисляют сероводород, выделяющийся из “курильщиков”. Именно сероводород является главной причиной неравновесного состояния в “черных курильщиках”: сероводород – восстановленное соединение, поэтому он реагирует с кислородом с выделением энергии. Вспомните механизм дыхания, описанный в предыдущей главе. Бактерии используют сероводород как донор электронов, кислород как акцептор электронов, а выделяющуюся энергию тратят на синтез АТФ. Но ведь кислород – побочный продукт оксигенного фотосинтеза, и до его появления на Земле кислорода быть не могло. Так что бурное развитие жизни вокруг “черных курильщиков” полностью, хотя и не непосредственно, зависит от солнечного света. Четыре миллиарда лет назад подводные гидротермальные источники выглядели совсем иначе.

Что останется, если убрать кислород? “Черные курильщики” возникают при прямом контакте морской воды с магмой в спрединговых зонах срединно-океанических хребтов или в других вулканически активных местах. Через океанское дно вода просачивается в вулканические камеры, которые залегают неглубоко под поверхностью дна. В них вода мгновенно нагревается до нескольких сотен градусов, насыщается растворенными сульфидами металлов и становится сильнокислой. Когда перегретая вода под давлением прорывается через дно, она резко охлаждается и растворенные в ней сульфиды железа, например пирит (“золото дураков”), сразу же кристаллизуются. Взвесь сульфидов железа образует тот самый черный “дым”. Четыре миллиарда лет назад “черные курильщики” были устроены почти так же – кроме того, что они были совершенно непригодными для жизни. Ведь жизнь целиком зависит от химического потенциала. Он обеспечивается наличием кислорода, а его тогда не было. Сероводород очень тяжело заставить реагировать с CO2 с образованием органики, особенно при высоких температурах. Но один революционер от науки, немецкий химик, патентный поверенный Гюнтер Вехтерсхойзер решил доказать, что на самом деле все не так, и весьма в этом преуспел[46]46
  Вехтерсхойзер перевернул представления о происхождении жизни. Он отверг гипотезу “первичного бульона” и завязал в научной прессе долгий ожесточенный спор со Стэнли Миллером. И если вы думаете, что наука всегда остается бесстрастной, то вот вам один из пассажей Вехтерсхойзера: “Теория «первичного бульона» не выдерживает никакой критики: она противоречит логике, несовместима с термодинамикой, невероятна с химической и геохимической точки зрения, идет вразрез с биологией и биохимией и, в конце концов, экспериментально опровергнута”.


[Закрыть]
. С конца 80-х годов Вехтерсхойзер опубликовал ряд новаторских статей, в которых очень подробно описал путь восстановления CO2 до органических молекул на поверхности сульфидов железа. Этот процесс он назвал пиритным пуллингом. Вехтерсхойзер говорил о “железосерном мире”, в котором железосерные минералы (FeS) катализируют образование органических молекул. По своей структуре такие минералы представляют собой кристаллы, собранные из повторяющихся ячеек из ионов двухвалентного железа (Fe2+) и сульфид-ионов (S2–). Крошечные неорганические кластеры из ионов Fe2+ и S2–, известные как железосерные кластеры, до сих пор выполняют ключевые функции во многих ферментах, в том числе участвующих в дыхании. Структура железосерных кластеров идентична кристаллической структуре минералов сульфида железа (FeS), например макинавита и грейгита (рис. 8, 11). Такие минералы могли катализировать реакции на заре возникновения жизни. Но, несмотря на то, что железосерные минералы – прекрасные катализаторы, Вехтерсхойзер экспериментально доказал, что гипотеза пиритного пуллинга в своем первоначальном виде не работает. Только взяв более реакционноспособный монооксид углерода (CO), Вехтерсхойзеру удалось синтезировать органические молекулы. И тот факт, что неизвестны организмы, способные расти за счет пиритного пуллинга, подтверждает, что дело не в неудачных экспериментах: идея и в самом деле плоха.


Рис. 11. Железосерные минералы и железосерные кластеры.

Близкое сходство железосерных минералов и железосерных кластеров, входящих в состав современных ферментов (Russell and Martin 2004). В центре показана повторяющаяся кристаллическая структурная единица грейгита (эти единицы в совокупности образуют решетку). Справа и слева – железосерные кластеры в составе белков. Их структура напоминает структуры грейгита и сходных минералов, например макинавита. Закрашенные области отражают форму и размер названных белков. Изображенные белки, как правило, содержат несколько железосерных кластеров (с никелем или без него).


В жерлах “черных курильщиков” содержится и CO, но его концентрация ничтожно мала, так что органическую химию так не построить. (Концентрация CO в “черных курильщиках” в 1–1000 тыс. раз ниже, чем CO2.) Есть и другая проблема. Внутри “черных курильщиков” чрезвычайно горячо: температура воды в жерле достигает 250–400 °C, но на большой глубине она не кипит из-за высокого давления. При такой температуре CO2 – самое стабильное углеродное соединение. Это означает, что синтез органических веществ в этих условиях не может осуществляться: любая синтезированная органика будет быстро разрушена и снова превратится в CO2. Предположение, что органические реакции могут протекать на поверхности минералов, также сомнительно. Если органические молекулы будут оставаться связанными с поверхностью минералов, их образование в конце концов остановится. Если же молекулы будут диссоциировать, их сразу смоет в океан, и синтез органики в прямом смысле вылетит в трубу. “Черные курильщики” еще и очень недолговечны, период их существования исчисляется десятками лет – слишком мало для зарождения жизни. Хотя “черные курильщики” представляют собой неравновесные диссипативные структуры и с их помощью можно разрешить некоторые проблемы гипотезы “первичного бульона”, их нестабильность и жесткие условия препятствуют синтезу хрупких органических соединений, необходимых для развития жизни. Но все же “черные курильщики” сыграли в этом процессе очень важную роль: насытили воды древнего океана важными для катализа ионами металлов, например железа и никеля, выщелоченных из магмы.

Преимуществами этих ионов могли пользоваться подводные источники и другого типа – щелочные гидротермальные источники (рис. 12). На мой взгляд, эти источники позволяют решить все проблемы, которые возникали с происхождением жизни в “черных курильщиках”. Щелочные гидротермальные источники, в отличие от “черных курильщиков”, образуются не из-за вулканической активности (и поэтому выглядят не столь впечатляюще), но на роль потоковых электрохимических реакторов подходят гораздо лучше. То, что щелочные источники отвечают требованиям жизни, показал геохимик Майк Рассел, опубликовав в 1988 году короткую статью в журнале “Нейчур”. В 90-х годах он написал ряд теоретических работ. Впоследствии к нему присоединился Билл Мартин, который обогатил исследования горячих источников своими микробиологическими идеями, и вместе они обнаружили множество неожиданных параллелей между источниками и живыми клетками. Как и Вехтерсхойзер, Рассел и Мартин утверждают, что жизнь началась с реакций между простыми молекулами, например H2 и CO2 – подобно тому, как автотрофные бактерии из простых неорганических предшественников синтезируют все свои органические молекулы. Рассел и Мартин также подчеркивают роль каталитических способностей железосерных минералов на ранних стадиях возникновения жизни. Мысль Рассела, Мартина и Вехтерсхойзера вращается вокруг горячих источников, железосерных минералов и происхождения автотрофности, и может показаться, что они говорят об одном и том же. В действительности их идеи радикально различаются.

Щелочные горячие источники возникают не при взаимодействии воды с расплавленной магмой, а при гораздо более мягких процессах – химических реакциях воды с горными породами. Мантийные горные породы, богатые оливином, реагируют с водой, превращаясь в гидратированный минерал серпентинит (змеевик) – красивый камень с пестрой зеленоватой расцветкой, напоминающей змеиную кожу. Серпентинит часто используют для облицовки (вспомните здание ООН в Нью-Йорке). Химическая реакция, в ходе которой оливин реагирует с водой и превращается в серпентинит, носит зловещее название “серпентинизация” (“озмеение”). Побочные продукты этой реакции и сыграли ключевую роль в возникновении жизни.


Рис. 12. Глубоководные гидротермальные источники.

Сравнение активного щелочного гидротермального источника из Затерянного города (А) с “черным курильщиком” (Б). Длина масштабной линейки в обоих случаях соответствует 1 м. Высота щелочного источника может достигать 60 м (как 20-этажное здание). Белая стрелка вверху указывает на зонд, прикрепленный к вершине источника. Более светлые участки щелочных источников – наиболее активные. В отличие от “дыма” “черных курильщиков”, гидротермальные жидкости щелочных источников не выпадают в осадок (и поэтому не выглядят как дым). Название “Затерянный город” было продиктовано возникающим там ощущением заброшенности и пустоты, однако это ощущение не вполне соответствует действительности.


Оливин богат соединениями двухвалентного железа и магния. При взаимодействии оливина с водой двухвалентное железо окисляется до трехвалентного – до соединений вроде ржавчины. Это экзотермическая (идущая с выделением тепла) реакция. В ее ходе выделяется большое количество газообразного водорода, который растворяется в теплой щелочной воде, содержащей гидроксид магния. Поскольку оливин – распространенный компонент мантии, эта реакция происходит преимущественно на дне океана вблизи спрединговых зон, где обнажаются свежие мантийные породы. Впрочем, мантийные породы в редких случаях взаимодействуют с водой непосредственно – она просачивается на глубину нескольких километров и уже там реагирует с оливином. Теплая, щелочная, насыщенная водородом жидкость поднимается (так как ее плотность ниже, чем у холодной морской воды), остывает, реагирует с растворенными в океане солями, и из нее выпадает осадок, который и формирует торчащие из морского дна столбы.

В отличие от “черных курильщиков”, щелочные источники не имеют никакого отношения к магме и формируются не над магматическими камерами в центрах океанического спрединга, а в нескольких милях от них. Вода в них не перегретая, а горячая: 60–90 °C. У них нет сквозного канала, из которого поток воды выходит в океан. Вместо этого они пронизаны сетью связанных друг с другом микроскопических пор. И вода в них не кислая, а сильнощелочная. По крайней мере, это те их свойства, которые предсказал Рассел в начале 90-х годов и которые лежали в основе его теории. Голос Рассела, одинокий и страстный, раздавался на конференциях, призывая ученых отвлечься от хтонической мощи “черных курильщиков” и обратить внимание на тихую гавань щелочных источников. Но никто не прислушивался к нему до 2000 года, когда был открыт первый подводный щелочной источник, названный Затерянным городом. Он удивительно соответствует почти всем предсказаниям Рассела, вплоть до местоположения – около 10 миль в сторону от Срединно-Атлантического хребта. Когда все это происходило, я стал задумываться о связи биоэнергетики с происхождением жизни и впервые написал об этом (в книге “Кислород”, опубликованной в 2002 году). Эти идеи сразу привлекли к себе внимание. Для меня в гипотезе Рассела важнее всего то, что она однозначно связывает происхождение жизни с протонным градиентом. Остается вопрос: как именно?


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации