Электронная библиотека » Нил Тайсон » » онлайн чтение - страница 9


  • Текст добавлен: 21 февраля 2018, 13:40


Автор книги: Нил Тайсон


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 9 (всего у книги 33 страниц) [доступный отрывок для чтения: 10 страниц]

Шрифт:
- 100% +

Рис. 8.2. Туманность Гантель. Раньше на ее месте был красный гигант, сбросивший внешние оболочки, и из-за этого обнажилось его плотное горячее ядро. На месте ядра сияет белый карлик, а внешние оболочки образуют планетарную туманность, которая подсвечивается ультрафиолетовым сиянием белого карлика. Иллюстрация сделана по материалам статьи J. Richard Gott, Robert J. Vanderbei, Sizing Up the Universe, National Geographic, 2011


Внешние слои таких массивных звезд разбухают значительно сильнее, чем у обычных красных гигантов. Эти звезды превращаются в красные сверхгиганты, радиус которых достигает нескольких астрономических единиц.

В ночном небе некоторые яркие звезды легко различить невооруженным глазом. Красные звезды из главной последовательности обладают малой светимостью; ни одна из них невооруженным глазом не видна. Красный гигант, в свою очередь, огромен и обладает чрезвычайной светимостью, поэтому заметен издалека. Все яркие красные звезды в небе – это либо красные гиганты (например, Арктур в созвездии Волопаса и Альдебаран в созвездии Тельца), либо красные сверхгиганты (Бетельгейзе в созвездии Ориона).

Ученые злоупотребляют приставкой сверх. Мы добавляем ее куда ни попадя, поскольку продолжаем открывать объекты, более крупные или более грандиозные, чем все, что мы знали ранее. Это и сверхновые звезды, и сверхмассивные черные дыры, и, разумеется, так и не воплощенный на практике ускоритель частиц, который называли сверхпроводящим суперколлайдером. Самый известный сверхгигант в небе называется Бетельгейзе. Его радиус примерно в 1000 раз больше солнечного, а по массе он превышает Солнце как минимум в 10 раз. В его ядре из гелия синтезируются углерод, кислород и более тяжелые элементы. Ядро окружено тонкой оболочкой практически чистого гелия, который пока недостаточно густ и разогрет, чтобы гореть, поэтому он сейчас более или менее стабилен. Этот слой окружен оболочкой водорода, из которого синтезируется новый гелий, а за пределами водородного слоя раскинулась львиная доля объема звезды – это огромное газовое облако, состоящее из водорода и гелия.

История эволюции тех звезд, что покинули главную последовательность, была восстановлена в деталях в 1940-е и 1950-е годы, когда мы начали в подробностях понимать физику ядерных реакций, протекающих в недрах звезд, а также смогли задействовать первые компьютеры для решения уравнений, описывающих строение звезд. Значительная часть этой работы была проделана в Принстонском университете под руководством профессора Мартина Шварцшильда. Нил, Рич и я успели с ним поработать на закате его карьеры; это был чудесный человек.

На снимке (рис. 8.3) вы видите Шварцшильда в компании Лаймана Спитцера и Рича Готта. Когда Генри Норрис Рассел (прославленный соавтор диаграммы Герцшпрунга – Рассела) в 1947 году оставил пост руководителя обсерватории Принстонского университета и удалился на покой, он привел на свое место двоих молодых астрономов – Мартина Шварцшильда и Лаймана Спитцера. Обоим было слегка за тридцать. Спитцер, возглавивший факультет, принялся за разработку современных представлений о межзвездной среде (это газ и пыль в межзвездном пространстве) и основал Принстонскую лабораторию физики плазмы, где ученые пытаются запустить управляемый термоядерный синтез, который может стать новым источником энергии. Спитцер всегда останется в нашей памяти как отец космического телескопа «Хаббл»; именно он разработал первичную концепцию и потратил несколько десятилетий, чтобы убедить астрономическое сообщество и Конгресс США в том, что такой телескоп следует сконструировать. Спитцер и Шварцшильд тащили на себе факультет астрофизики Принстонского университета в течение следующих 48 лет. Они оба скончались в 1997 году с разницей в 11 дней, что крайне шокировало всех нас.


Рис. 8.3. Слева направо: Лайман Спитцер, Мартин Шварцшильд и Рич Готт в 1990-е годы. Снимок из личного архива Дж. Ричарда Готта


В 1950-е годы Шварцшильд и его студенты проработали все детали той истории, которую я сейчас рассказываю. Он был одним из первых, кто понял весь цикл звездной эволюции от начала и до конца. Отец Мартина, Карл Шварцшильд, сыграл ключевую роль в изучении черных дыр; мы вновь вспомним о нем в главе 20.

Вернемся к истории звезд. Давление электронов удерживает белый карлик от коллапса. Однако если масса звездного ядра превышает 1,4 солнечных, то даже этого давления не хватает для противодействия гравитации. Под натиском гравитации протоны и электроны сливаются вместе и превращаются в нейтроны (при этом испускаются электронные нейтрино). Получается нейтронная звезда – в сущности, это гигантское атомное ядро, состоящее почти из одних нейтронов. Принцип запрета Паули действует на нейтроны с тем же успехом, что и на электроны, и теперь давление нейтронов позволяет звезде пересиливать действие гравитации. Однако поскольку нейтроны гораздо массивнее электронов, размер нейтронной звезды в устойчивом состоянии (около 25 км) гораздо меньше, чем у белого карлика. Представьте себе, что масса, превышающая солнечную, втиснута в объем, сопоставимый по размеру с островом Манхэттен (вспомните 100 миллионов слонов в наперстке из главы 1)! Вещество нейтронных звезд – наиболее плотная известная нам субстанция. Плотность в центре нейтронной звезды может достигать почти 1015 г/см3.

Если ядро крупной звезды более чем вдвое превышает по массе Солнце, то образующаяся из него нейтронная звезда будет неустойчива и начинает сжиматься дальше. Давления нейтронов не хватит, чтобы противостоять гравитации, и возникает черная дыра. Независимо от того, во что превратится звездное ядро – в нейтронную звезду или в черную дыру, – вещество в процессе падения подвергается чрезвычайно сильному сжатию, что запускает дальнейшее ядерные реакции (как вы помните, оболочка, окружающая ядро, все еще содержит элементы легче железа). Внезапно выделяющаяся при этом энергия может полностью рассеять в пространстве внешние слои звезды, что наблюдается как взрыв сверхновой. Так погибают Звезды, которые на стадии главной последовательности имеет массу около 8 солнечных или больше. После вспышки сверхновой на их месте остаются нейтронные звезды или черные дыры. Взрывы таких массивных звезд называют сверх новыми типа II, чтобы отличать их другого типа звездных взрывов. Допустим, три звезды вращаются друг вокруг друга, причем две из этих звезд – белые карлики. Гравитационные взаимодействия между ними могут привести к столкновению двух белых карликов. Из-за нагрева при таком столкновении их ядерное горючее детонирует и дает взрыв сверхновой. В другом случае красный гигант в двойной звездной системе может сбросить часть своей массы на белый карлик. Да, так описывали процесс раньше. А сейчас говорят, что термоядерный взрыв обычно происходит еще до достижения предельной массы. Такие взрывы называются сверхновыми типа Ia, и их следует отличать от взрывов массивных коллапсирующих звезд. Мы еще вкратце обсудим их в главе 23, поскольку с помощью таких звезд удобно измерять ускоряющееся расширение Вселенной.

Так или иначе, при взрыве сверхновой газ разлетается во все стороны. Это совсем не такой неспешный процесс, как медленное отслоение внешних частей планетарной туманности. Нет, это исключительно бурный взрыв. Звезда целиком или большей частью уничтожается при взрыве, и звездное вещество устремляется во все стороны со скоростью около 10 % от световой. Тяжелые элементы, образовавшиеся в звездном ядре, теперь возвращаются в межзвездную среду, после чего могут войти в состав звезд нового поколения и планет.

В 1054 году китайские астрономы заметили новую звезду в созвездии, которое мы называем Тельцом. Древние китайцы внимательно наблюдали за небом, выискивая там предзнаменования грядущих событий, поэтому их особенно впечатлила эта «звезда-гостья», которая хорошо просматривалась в течение нескольких недель и поначалу была настолько яркой, что ее было видно даже днем. Интересно, но в европейских манускриптах нет совершенно никаких упоминаний об этой звезде, несмотря на то что несколько недель это была ярчайшая звезда на небе. Возможно, в течение всего этого периода в Европе стояла облачная погода, либо все письменные европейские свидетельства были утрачены, либо китайские астрономы просто внимательнее вглядывались в небо.

Фотографии Крабовидной туманности в созвездии Тельца (рис. 8.4), сделанные с интервалом в несколько десятилетий, явно свидетельствуют, что она расширяется. Учитывая наблюдаемую скорость расширения и современные размеры туманности, можно рассчитать, когда должно было начаться это расширение. Получается, это произошло около тысячи лет назад – именно в тот период, когда китайцы наблюдали свою «звезду-гостью». Поскольку Крабовидная туманность находится именно в той части неба, что упоминается в китайских источниках, эта туманность определенно является остатком той самой сверхновой, которую они открыли. Еще через несколько сотен тысяч лет этот газ настолько рассеется, что станет практически невидим – он полностью перемешается с межзвездной средой.

В центре Крабовидной туманности открыли стремительно вращающуюся нейтронную звезду, совершающую около 30 оборотов в секунду. Когда звезда сжимается, она сохраняет угловой момент и вращается все быстрее, подобно фигуристу, прижимающему руки к телу. Ее магнитные поля также сжимаются и становятся интенсивнее. Магнитное поле на поверхности нейтронной звезды в центре Крабовидной туманности примерно в 1012 раз сильнее, чем на поверхности Земли. Благодаря вращению нейтронной звезды ее северный и южный магнитные полюса поворачиваются и испускают радиоволны двумя лучами, подобно маяку. Всякий раз, когда такой луч пролетает мимо Земли, мы фиксируем радиоимпульс. Поэтому нейтронная звезда называется «радиопульсар». Первый радиопульсар открыла в 1967 году аспирантка Джослин Белл.


Рис. 8.4. Крабовидная туманность. Это расширяющийся остаток взрыва сверхновой (которую наблюдали на Земле около 1054 года н. э.). Снимок космического телескопа «Хаббл», NASA


Период его вращения составлял 1,33 секунды. Научный руководитель Белл, Энтони Хьюиш, получил за это открытие Нобелевскую премию по физике. Мне кажется возмутительным, что Белл не разделила с ним эту премию.

Пульсар Крабовидной туманности действует во всем электромагнитном спектре, от радиоволн вплоть до гамма-излучения. Пульсар можно заметить и в видимом спектре как стремительно мерцающую звезду (60 раз в секунду, с такой частотой мимо нас пролетают лучи этого маяка), но астрономы не обращали внимания на это явление до тех самых пор, пока не были открыты радиоимпульсы. Пульсар казался всего лишь тусклой звездой в центре Крабовидной туманности. Крабовидная туманность удалена от нас примерно на 6500 световых лет. Это означает, что на самом деле взрыв произошел около 5445 года до н. э., но свет от него долетел до Земли только в 1054 году.

Вспомните закон обратных квадратов. Ближайшая к нам звездная система – альфа Центавра, до нее 4 световых года. Крабовидная туманность намного дальше, однако сверхновая была ярче всех звезд на ночном небе, ее можно было без труда различить даже днем. Когда ее светимость достигала максимума, эта звезда была примерно в 2,5 миллиарда раз ярче Солнца.

Сверхновые взрываются редко. Последний взрыв сверхновой в Млечном Пути был зафиксирован около 400 лет назад, еще до того, как Галилей впервые направил телескоп в небо. Поэтому в 1987 году все астрономы ликовали, когда удалось засечь взрыв сверхновой в Большом Магеллановом Облаке – это галактика-спутник Млечного Пути. Это был ближайший к нам взрыв сверхновой в современности. Сверхновую было легко заметить невооруженным глазом, хотя она и находилась на расстоянии 150 тысяч световых лет от нас. Мне повезло: в 1987 году я ездил в Чили работать на телескопе в рамках подготовки к диссертации. С каким энтузиазмом (и без труда) я наблюдал эту «новую» звезду в Большом Магеллановом Облаке!

Глава 9
Почему Плутон – не планета

Автор: Нил Деграсс Тайсон


Сейчас я расскажу, как Плутон утратил статус планеты и был разжалован в снежок на задворках Солнечной системы. Также расскажу, какую роль сыграл в этом я, работая в «Роуз-центре Земли и Космоса» при Американском музее естественной истории.

На территории Роуз-центра мы решили обустроить специальный корпус, где можно было бы не просто показывать красивые космические картинки – их и в Интернете хватает. Мы соорудили сферу диаметром 26,5 метра, расположенную в стеклянном кубе. Архитектура и экспонаты сочетаются таким образом, что вы ощущаете себя частью Вселенной – словно идете сквозь нее. У нас цельная сфера. В большинстве планетариев есть только купол, под которым установлен проектор звездного неба, а в коридорах вокруг проектора можно любоваться изображениями Вселенной. Именно таким образом устроено большинство планетариев. Да, космические картинки хороши, но мы думаем, что пора подробнее показать, как устроена Вселенная, а не просто собирать глубочайшие космические феномены и превращать их в экспонаты.

Мы принялись за дело, заручившись поддержкой архитекторов – Джима Польшека и партнеров, а также дизайнеров – Ральфа Аппельбаума и коллег. Пожалуй, Ральф наиболее известен проектом мемориального музея холокоста в Вашингтоне, округ Колумбия. Вселенная любит сферы. Можно многое понять о том, как она работает, просто осознав, что законы физики словно сговорились придавать телам форму шара: это правило действует от звезд и планет до атомов. Как правило, если тело не круглое, это означает, что какие-то силы мешают ему округлиться – например, если это тело быстро вращается. Если найти архитектурное решение округлой формы, то оно само сможет послужить элементом экспозиции и поможет соотносить размеры тел во Вселенной. Мы взяли купол, венчающий космический театр в планетарии Хейдена, и превратили его в полноценную сферу, внутренняя поверхность которой сразу сгодилась в качестве выставочного пространства. У нас получился театр Большого взрыва, посетители которого могут смотреть вниз и наблюдать модель зарождения Вселенной.

Вокруг двадцатишестиметровой сферы мы соорудили галерею, посетители которой могут воочию оценить масштабы Вселенной. Для начала вообразите, что сфера планетария – это вся наблюдаемая Вселенная. На ограждении установлена модель нашего сверхскопления, состоящего из тысяч галактик, одна из которых – Млечный Путь. Диаметр модели – около 10 сантиметров. Вы понимаете, что наша Вселенная намного, намного больше, чем наш родной уголок, для которого у нас есть название, словно строчка в адресе: Сверхскопление Девы. Вы делаете еще несколько шагов, и мы предлагаем вам перенастроиться на другой масштаб: теперь весь планетарий соответствует Сверхскоплению Девы. Его диаметр – 26,5 метра. На перилах установлена модель диаметром 60 сантиметров, в которой изображены Млечный Путь, туманность Андромеды и несколько галактик-спутников. Это наша Местная группа галактик. Далее мы уподобим сферу планетария Местной группе, а на ограждении видим модель Млечного Пути диаметром все те же 60 сантиметров. Галактика напоминает большое зажаренное яйцо: она плоская, со вздутием в центре (так называемый балдж). Пройдем еще немного – и теперь сфера планетария соответствует Млечному Пути, а на ограждении мы видим плексикгласовый шар диаметром всего сантиметров пять, а на нем – сотню тысяч пятнышек. Это шаровое звездное скопление в галактике Млечный Путь. Далее вся сфера планетария соответствует по размеру этому звездному скоплению, а на ограждении у нас установлен шар диаметром около 20 сантиметров. Это пространство, в котором умещаются все орбиты комет, окружающих Солнечную систему: они образуют Облако Оорта.

Бесчисленные кометы из этого облака, вторгающиеся во внутренние области Солнечной системы, – самые опасные для Земли космические тела. Каждая из них, прилетая с окраин Солнечной системы, начинена колоссальной кинетической энергией, и, приближаясь к Солнцу, она только разгоняется. В последний раз комета из Облака Оорта, вероятно, побывала во внутренней части Солнечной системы более 40 тысяч лет назад – никаких исторических свидетельств о таких событиях не сохранилось[7]7
  Не совсем ясно, на каком основании делается это утверждение. Известен целый ряд комет с почти параболическими орбитами, афелии которых до входа во внутренние области Солнечной системы находились примерно на тех расстояниях, где предположительно располагается Облако Оорта. – Примеч. науч. ред.


[Закрыть]
. Если какая-нибудь комета оттуда полетит прямо к Земле, у нас почти не будет времени что-нибудь предпринять. Когда рядом пролетает обычный астероид, мы обычно можем заранее спрогнозировать его траекторию на сотни оборотов вперед. Можно начертить, как его орбита соотносится с земной, и определить, столкнемся мы через несколько сотен оборотов или нет. В таком случае у нас в запасе будет лет сто, чтобы подготовить космическую экспедицию и отклонить астероид с этой траектории. Но если комета прилетает из-за орбиты Нептуна и направляется прямо на нас, то почти ни на какое раннее оповещение рассчитывать не приходится[8]8
  Например, комета Хейла – Боппа, около 35 километров в поперечнике, была открыта всего за два года до того, как максимально приблизилась к Солнцу. Если бы она угодила в Землю, то произошел бы взрыв мощностью 4 миллиарда мегатонн в тротиловом эквиваленте, что в 60 миллионов раз сильнее мощнейшего в истории взрыва водородной бомбы. – Примеч. авт.


[Закрыть]
.

На следующей остановке в галерее «Масштабы Вселенной» большая сфера соответствует Солнцу, а вокруг нее расположены планеты, причем размеры планет выполнены в правильном масштабе относительно Солнца. Процесс продолжается, масштабы шаг за шагом уменьшаются, пока мы не достигаем центра атома. Когда большая сфера соответствует атому водорода, мы показываем точку, соответствующую по размеру его ядру, – диаметр такой точки не более 0,02 сантиметра. Атом водорода – практически пустота.

Сфера планетария оказалась отличным наглядным пособием, чтобы оценить относительные размеры тел во Вселенной.

Сегодня Роуз-центр выглядит роскошно, особенно ночью (рис. 9.1). Слева видна галерея, стоя в которой можно сравнить большую сферу-Солнце с масштабными моделями планет. На картинке заметны Сатурн (с кольцами), а рядом с ним – Юпитер. Разумеется, там видны и Уран, и Нептун. Меркурий, Венера, Земля и Марс слишком маленькие, на этой картинке их не увидишь. По размеру эти модели варьируются от бейсбольного мяча до грейпфрута, и все они установлены на галерейном ограждении, а не свисают с потолка. Вот я и подхожу к рассказу о злоключениях Плутона. Мы не поставили на этом ограждении масштабную модель Плутона рядом с Меркурием, Венерой, Землей и Марсом. И у нас были на то причины.

Мы оказались в эпицентре спора, начатого не нами. Через год после открытия выставки ее посетил один журналист, заметивший, что среди масштабных моделей планет не хватает Плутона. Он решил раздуть из этого большую новость и опубликовал на тему Плутона целую передовицу в газете New York Times. Тогда и началась свистопляска. Рассказываю, что именно мы сделали и почему.


Рис. 9.1. Так выглядит ночью «Роуз-центр Земли и Космоса». Сфера диаметром 26 метров утопает в голубом свете, она хорошо заметна внутри стеклянного куба. Масштабные модели Юпитера и Сатурна хорошо заметны рядом с большой сферой, которая в данном случае обозначает Солнце. Среди этих моделей не было Плутона, из-за чего и разгорелись споры. Снимок предоставлен Alfredo Gracombe


История Плутона начинается с Персиваля Лоуэлла, утонченного джентльмена из Новой Англии. Ему нравилась астрономия, он был богат, поэтому он выстроил обсерваторию, которая называлась (вы угадали) Обсерваторией Лоуэлла. Обсерватория располагалась в Аризоне на высоте 2175 метров. Она так там и сохранилась, а само место называется «Марсианский холм». Лоуэлл фанатично увлекался Марсом; он любил его так беззаветно и так жаждал, чтобы там обнаружилась жизнь, что даже написал три книги на эту тему. Допустим, можно написать книгу о возможности жизни на Марсе, но по свидетельству Лоуэлла, одного лишь Лоуэлла, он наблюдал в телескоп признаки жизни на Марсе. Он видел там растительный покров, изменявшийся в зависимости от времени года, а также видел каналы. Лоуэлл полагал, что на месте пересечения каналов раскинулись оазисы. Он считал, что марсиане страдают от нехватки воды, поскольку увиденные им каналы протянулись от полюсов в те районы, где была заметна растительность. На Марсе есть полярные ледяные шапки. Лоуэлл представлял, что они подтаивают и вода доставляется по каналам везде, где она нужна. Без такого масштабного инженерного проекта марсианская жизнь была бы обречена на гибель от засухи. Сила человеческого воображения удивительна, вот почему мы проверяем наши гипотезы научным методом. Когда в 1877 году Земля и Марс особенно сблизились, Джовании Скиапарелли увидел на Марсе длинные русла, которые назвал итальянским словом canali. Это слово ошибочно перевели на другие языки как «каналы». Русла – естественные формы рельефа. Каналы же могут быть проложены только разумной цивилизацией. Это два совершенно разных слова. Но было поздно. Лоуэлл ухватился за эту идею, начертив затейливую систему каналов. Наконец, когда никому больше не удалось увидеть их в телескопы, пришло понимание, что каналы могут быть обычным обманом зрения, когда глаз выстраивает из случайных черточек длинные линии. На современных снимках не видно никакой системы каналов. Регионы с «растительностью» оказались темными скоплениями базальтовых скал, которые выглядят зеленоватыми на фоне красных пустынь Марса. В разные сезоны эти скалы то покрываются слоем песка во время бурь, то вновь обнажаются.

Персиваль Лоуэлл не только интересовался Марсом, но и инициировал поиски планеты Икс. На рубеже XIX и XX веков были известны восемь планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун. Оказалось, что законы Ньютона красиво описывают движения всех планет в Солнечной системе – кроме Нептуна. Предполагалось, что может существовать неизвестный и незамеченный источник тяготения, который влияет на его траекторию, – то есть неоткрытая планета. Лоуэлл был убежден, что такая планета есть, и назвал ее «планета Икс». Для поисков этой планеты он пригласил на работу Клайда Томбо. Поиски начались близ эклиптики – той плоскости, в которой вращаются известные планеты. Томбо искал объект, который бы заметно сдвигался при сравнении двух снимков одной и той же области неба, сделанных с интервалом в несколько дней или недель. Если бы такой объект обнаружился, это была бы далекая планета, вращающаяся вокруг Солнца. Томбо пользовался прибором под названием «блинк-компаратор» – это важный инструмент, сыгравший значительную роль в истории астрономии, хотя сегодня такие сравнения делаются при помощи компьютера. Первый снимок прикрепляется по одну сторону прибора, второй – по другую, и в компараторе имеется один окуляр с двумя линзами. Наблюдатель быстро просматривает два изображения, которые сменяют друг друга. При этом перебрасывается специальная заслонка, благодаря которой освещается то один, то другой снимок. Любые элементы, положение которых от снимка к снимку изменяется, при этом хорошо заметны. Именно таким образом Клайд Томбо и открыл Плутон в 1930 году.

Название «Плутон» придумала одиннадцатилетняя девочка Венеция Берни, как раз изучавшая в школе древнеримскую мифологию. Планеты именуются в честь римских богов, а Плутон был богом подземного мира. Официальное обозначение Плутона состоит из букв P и L, случайно совпавших с инициалами Персиваля Лоуэлла. Спустя почти полвека был открыт спутник Плутона. Это тело напоминало маленький бугорок на нечетком снимке Плутона, сделанном в 1978 году. Спустя много лет, когда система Плутона расположилась под более удобным углом к лучу зрения, удалось зафиксировать затмения и прохождения спутника по диску планеты. В эти моменты, когда Плутон и его спутник заслоняли друг друга, их совокупная яркость немного снижалась. Когда космический телескоп «Хаббл» сделал снимки в более высоком разрешении, мы смогли непосредственно рассмотреть и сам спутник Плутона, который назвали Харон (по имени паромщика, перевозившего души усопших через реку Стикс в Аид). У Плутона есть спутник, хорошо. Если он претендует на членство в клубе планет, то для начала неплохо. Никаких проблем, думали мы.

Но проблема была. Во-первых, после открытия Плутона считалось, что это и есть недостающая планета Икс, воздействующая на Нептун. Но в таком случае планета Икс должна была оказаться массивной, а не крошечной по сравнению с Нептуном и Ураном. Тем не менее чем больше информации о Плутоне мы добывали и чем точнее его измеряли, тем меньше и легче он казался. Десятилетие за десятилетием Плутон все уменьшался и уменьшался. Только после открытия Харона удалось в точности измерить массу Плутона – по силе тяготения, с которой он удерживает Харон. Что выяснилось? Плутон в 500 раз легче Земли, это просто мизер по сравнению с массой, которая могла бы заметно изменить орбиту Нептуна. Плутон больше не годился для объяснения траектории Нептуна. Что же его отклоняет? Другая планета Икс? Мы продолжали всматриваться в небо. Так и смотрели, пока в 1992 году Майлс Стэндиш, прямой потомок Майлса Стэндиша (одного из отцов-пилигримов) в 12-м поколении, не проанализировал исторические данные, на основании которых орбита Нептуна считалась изменчивой. Наш Майлс Стэндиш – астрофизик из Лаборатории реактивного движения (Пасадена, штат Калифорния). Он опирался на уточненные оценки масс Юпитера, Сатурна, Урана и Нептуна, полученные в 1980-е годы, когда эти планеты облетал «Вояджер». При этом он исключил одну сомнительную подборку данных, полученных Военно-морской обсерваторией США в период с 1895 по 1905 год. В результате он пришел к выводу, что орбита Нептуна полностью согласуется с законами Ньютона, и для ее описания не требуется учитывать никаких дополнительных гравитационных воздействий со стороны неких таинственных тел. На следующее утро планета Икс отправилась на свалку истории.

Что же насчет Плутона? Получалось, что Плутон – самая маленькая известная планета. В Солнечной системе существует семь спутников, которые крупнее него, в том числе наша Луна. Плутон – единственная планета, чья орбита пересекает орбиту другой планеты, настолько это вытянутый эллипс. Плутон состоит в основном изо льда – на 55 % по объему. Для ледяных глыб в Солнечной системе уже есть названия. Их можно было бы назвать «ледяные шары», но гораздо раньше (когда еще не было известно, что они ледяные) за ними закрепилось другое название: кометы. В древности люди любили подбирать поэтические названия для небесных тел. Кометы считались «косматыми светилами», поскольку если у вас копна волос, то на бегу они будут развеваться подобно «хвосту». «Копна волос» по-древнегречески будет «комета». Кометы. Именно так и называются ледяные объекты в Солнечной системе. Плутон во многом схож с кометами. Но он такой один. Он не подлетал к Солнцу с огромной скоростью, а потом не улетал обратно, как положено комете. Когда ледяная комета приближается к Солнцу, ее вещество испаряется, и у нее вырастает длинный хвост. Плутон никогда не приближается к Солнцу, поэтому и хвоста у него нет. Несмотря на все странности Плутона, все мирились с его статусом и готовы были считать его планетой.

Но мы в Роуз-центре стремились, чтобы наши экспонаты как можно дольше сохраняли научную точность. Поэтому мы придавали большое значение тем тенденциям, что прослеживались в изучении планет. Плутон сильнее отличается от Меркурия, Венеры, Земли и Марса, чем все они – друг от друга. Меркурий, Венера, Земля и Марс – небольшие «твердые планеты» (рис. 9.2). Все они относятся к одному семейству.

Меркурий – ближайшая к Солнцу планета. У него большое железное ядро и изрытая кратерами поверхность, атмосферы почти нет. Венера укрыта облаками. На рис. 9.2 она изображена без облаков, мы хотели показать ее рельеф: грандиозные горные хребты и несколько кратеров. У Венеры плотная атмосфера, состоящая из углекислого газа (CO2), там царит чудовищный парниковый эффект, и на поверхности невыносимо жарко. Марс меньше Венеры и Земли, но больше Меркурия. У него есть тонкая атмосфера из углекислого газа, поддерживающая слабенький парниковый эффект. По этой причине, а также потому, что сам Марс находится достаточно далеко от Солнца, на Марсе гораздо холоднее, чем на Земле. Атмосферное давление на поверхности Марса примерно в 100 раз ниже, чем на поверхности Земли. Темные области на изображении Марса – это обнаженные базальтовые породы, не покрытые песком. Красные области (Марс и называют «красной планетой») – это песчаные пустыни. На Марсе есть огромная и длинная рифтовая долина, которая протянулась бы через всю территорию США, от океана до океана. На Марсе есть потухший вулкан Олимп высотой 27 километров. На полюсах Марса – две ледяные шапки, состоящие в основном из водяного льда и припорошенные замерзшим углекислым газом (сухим льдом). Если не считать Земли, Марс наиболее пригоден для жизни по сравнению с остальными планетами.


Рис. 9.2. Сравнительные масштабы планет земной группы («твердых» планет), а также Луны, естественного спутника Земли. Венера показана без густых облаков, так, чтобы был виден ее рельеф (данные получены с радаров, которые были установлены на космическом аппарате «Магеллан»). Снимки адаптированы по материалам статьи J. Richard Gott, Robert J. Vanderbei, Sizing Up the Universe, National Geographic, 2011


Рис. 9.3. Сравнительные масштабы газовых гигантов (для сравнения показаны Земля и Солнце). Снимки адаптированы по материалам статьи J. Richard Gott, Robert J. Vanderbei, Sizing Up the Universe, National Geographic, 2011


Какие планеты еще остались? Юпитер, Сатурн, Уран и Нептун. Все это газовые гиганты (рис. 9.3), иное семейство планет. Опять же, они гораздо более похожи друг на друга, чем на Плутон.

Юпитер вращается по орбите, следующей после Марса. Он состоит в основном из водорода и гелия. Во внешних слоях юпитерианской атмосферы есть метановые и аммиачные облака. Полосы на Юпитере – это облачные пояса, а Большое красное пятно, хорошо заметное на картинке, – это вихрь, бушующий уже более 300 лет. Сатурн похож на Юпитер, но его окружают величественные кольца. Эти кольца состоят из частиц льда, вращающихся на орбите планеты. Уран и Нептун похожи на них, но не такие крупные. У Урана есть тонкие кольца (как и у Юпитера, но у нас на картинке они не показаны). В 1989 году космический аппарат «Вояджер-2» обнаружил, что на Нептуне также есть огромный вихрь, Большое темное пятно, скорость ветра в котором превышает 2400 километров в час. Повторные наблюдения, выполненные космическим телескопом «Хаббл» пять лет спустя, показали, что Большое темное пятно исчезло.

Планеты земной группы образовались во внутренней части Солнечной системы. Там было достаточно тепло, чтобы легкие элементы, гелий и водород, разогрелись до высоких температур и преодолели гравитацию планет. Газовые гиганты, сформировавшиеся во внешней части Солнечной системы, холоднее, поэтому они удержали свой водород и гелий и получились очень массивными. Планеты земной группы и газовые гиганты – это два разных семейства планет. Их свойства сравниваются в табл. 9.1.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации