Электронная библиотека » Пол Халперн » » онлайн чтение - страница 7


  • Текст добавлен: 29 декабря 2021, 01:51


Автор книги: Пол Халперн


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 28 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
Экзамен

Получив расчеты Фейнмана, Уилер понял, что они достигли цели, и, учитывая революционный потенциал нового подхода, он сообщил ученику, что настало время оповестить коллег. Оба знали, что проект пока не завершен, они использовали классические, а не квантовые методы. Полное сосредоточение на проблеме собственной энергии электрона и других важных провалах в теории потребовало бы цельной квантовой электродинамики, которая еще не была полностью создана в то время.

Как и в случае с классической физикой, предварительные попытки квантовать (описать в квантовой форме) электродинамику закончились появлением математически непривлекательных бесконечных значений для собственной энергии и других параметров.

Квантовая теория означала бы замещение точных детерминистических механизмов классической теории на вероятностные описания, базирующиеся на математических функциях, именуемых «операторами». Необходимо было учесть некоторую расплывчатость и неопределенность, чтобы отразить непрозрачность реальности на квантовом, субатомном уровне.

С наивным оптимизмом Уилер сказал, что он быстро управится с квантовой частью, в то время как Фейнман подготовит классическое описание. Он убедил Ричарда, что позже, когда экспериментальная фаза будет завершена, он представит отдельную лекцию по квантовым аспектам.

Фейнман, понятно, нервничал перед первой в жизни чисто научной лекцией, наставник успокаивал его и говорил, что она даст ему ценный опыт выступлений. Как только Ричард согласился, Уилер обратился к Вигнеру, координировавшему серию докладов, и попросил внести его ученика в расписание.

За несколько дней до назначенной даты Фейнман шел по коридору Файн-холла и наткнулся на Вигнера. Похвалив труды молодого коллеги, последний упомянул, что на лекцию приглашены несколько профессоров: Джон фон Нейман, которого многие считали гением, один из лучших мировых специалистов по теории квантовых измерений; известный астроном Генри Норрис Рассел, прославившийся схемой классификации звезд; Паули, покинувший Цюрих и посетивший институт перспективных исследований; и наконец сам Эйнштейн, почти никогда не приходивший на выступления, организованные факультетом физики, заинтересовался темой и обещал непременно быть.

Услышав о том, что все эти титаны мысли явятся послушать его гипотезы, Фейнман превратился в настоящий комок нервов, нечто вроде ходячего циклотрона из плоти и крови.

Уилер снова успокоил ученика – если какие-то вопросы покажутся слишком сложными, то он придет на помощь. Ричард немного остыл и продолжил готовить речь.

Перед самым началом выступления он принялся рисовать на доске уравнения, но тут седовласый шестидесятилетний мужчина с грубым южно-германским акцентом прервал Фейнмана. «Привет, я пришел на вашу лекцию. Но, во-первых, где же чай?»27 – поинтересовался Эйнштейн.

Указав на стол с напитками, Фейнман облегченно вздохнул – на первый вопрос величайшего физика современности он ответил. Лекция стартовала, и все получилось не так плохо; погрузившись в выкладки, выступающий забыл о том, какая именно аудитория ему внимает.

Ричард впал в некое подобие расслабляющего транса, как во время давнего сеанса гипноза.

Только резкий выпад Паули по поводу математических ограничений теории – которая, по его мнению, не выглядела многообещающей – вернул Фейнмана к реальности. Венский физик славился прямотой и склонностью к откровенной критике, у него был дьявольский талант находить изъяны в любых теоретических построениях и рассказывать о них в холодной, нелюбезной манере.

В этот раз Паули обнаружил, что модель просто кишит математическими «жучками». Она не выглядела цельной и, соответственно, не могла стать солидной базой для квантовой теории.

Так что его замечания свелись к тому, что «это не работает».

Позже Паули в приватной обстановке сказал Фейнману, что желание Уилера квантовать теорию лишь пустая мечта. Он осудил Уилера за то, что тот не был честен со своим магистрантом по поводу математических сложностей квантования. Паули предсказал, что никакой лекции-сиквела по квантовым аспектам не будет.

Реакция Эйнштейна, напротив, была совершенно иной, дружелюбной, но нейтральной. К этому моменту он был настолько сосредоточен на создании универсальной теории поля и так далек от квантовой физики, что не мог ничего добавить. Он просто обратил внимание на тот факт, что будет сложно соединить теорию поглощения Уилера – Фейнмана с общей теорией относительности. Чтобы сделать подобное, нужно будет интегрировать ее в объединенную теорию электромагнетизма и гравитации. Тем не менее в отличие от Паули он не был склонен отвергать идею в целом, и думал, что в ней есть рациональное зерно.

Еще кое-что Эйнштейн сказал, когда вскоре после лекции Уилер привел ученика в гости к австрийскому светилу.

В 1936 году тот овдовел, жил с сестрой, приемной дочерью и секретарем, каждый из них был обучен не отнимать у него время. Хотя Эйнштейн любил много часов проводить в одиночестве, погружаясь в собственные мысли, он получал удовольствие и от дискуссий в области философии физики, особенно со столь молодыми людьми, как Уилер и Фейнман, ведь они вполне могли воспринять его неортодоксальные идеи.

Уилер прямо спросил Эйнштейна, имеет ли смысл понятие сигнала, идущего против хода времени. Тот отнесся к гипотезе с симпатией и, сославшись на статью, которую написал в соавторстве с Вальтером Ритцем, выразился в том смысле, что фундаментальные законы физики должны одинаково распространяться и в будущее, и в прошлое.

Ободренный такой поддержкой со стороны Эйнштейна, Уилер решил игнорировать замечания Паули. Он продолжил размышлять над тем, как квантовать теорию. Двигаясь вперед по этому пути, он, однако, встречал все больше ям и рытвин и вскоре понял, что застрял.

Хуже всего выглядело то, что к этому моменту Уилер отправил извещение в оргкомитет ежегодной встречи Американского физического общества о том, что он готов выступить на тему квантовой теории действия на расстоянии. У него не было ни малейшего представления, о чем говорить, но он подумал, что по меньшей мере сможет сделать предварительный доклад о ходе работ. Джон пригласил Фейнмана, и тот с радостью согласился, поскольку хотел услышать, как наставник решит (или по меньшей мере попытается решить) проблему.

Выступление началось, Ричард ждал и ждал, Уилер рисовал детали классической теории, не упоминая о квантовой, а затем и вовсе резко переключился на совершенно другую тему. Фейнман вскочил, поднял руку и прервал наставника. «Доклад не имеет ничего общего с заявленной темой! – пожаловался он. – Мы не услышали пока ничего о квантовой теории!»

Фейнман не хотел быть грубым, он просто чувствовал, что честность в науке – единственный путь для достижения успеха. Даже расхождение в интерпретации заголовка может привести к неправильному пониманию того, что уже известно. Уилер согласился с такой оценкой, и когда они покинули встречу, признался ученику, что доклад был большой ошибкой, что у него пока нет решения проблемы и не стоило представлять дело так, будто решение есть.

Как обычно, Паули оказался раздражающе прав.

Уилер осознал, что он снова должен положиться на острый как бритва ум Фейнмана, чтобы убрать математические рытвины, чтобы проект снова двинулся вперед. Но в тот момент он был слишком озадачен, чтобы высказаться настолько определенно. Поэтому, не говоря Ричарду прямо, что сам он не видит, куда им двигаться, он наблюдал, как его магистрант работал самостоятельно и добивался результатов.

Блестящие математические способности Фейнмана идеально дополняли философские догадки Уилера, которым в ином случае светила судьба так и остаться пустыми мечтаниями. Джон был кем-то вроде Леонардо да Винчи, бесконечно производившим разные концепции (и делавшим наброски), а Ричарда можно сравнить с Микеланджело, который прославился практическими достижениями.

Уилер тихо и незаметно помогал величайшему скульптору от наук оттачивать свое мастерство.

Взаимодействие с искусством

Фейнман начал ценить изобразительное искусство и наслаждаться тем, что его подруга – художница. Мир представал чем-то много большим, чем набор уравнений. Рисование помогало раскрыть суть вещей, и хотя математика выглядела забавной, подбрасывала все новые головоломки, по сути, она была не более чем инструментом разработчика, помогающим моделировать процессы, которые без ее помощи оказались бы бы совсем не очевидными. В то время как письменный стол природы содержал множество ящиков, набитых вычислениями, его блистающая крышка выглядела намного более удивительной.

Искусство лежит вне времени, как и любовь.

Молодые любовники надеются, что их романтический взгляд на мир сохранится навечно. Когда ты всецело погружен в прекрасное настоящее, то прошлое и будущее могут показаться иллюзорными.

Увы, но суровые дожди реальности могут смыть какую угодно любовную акварель. Фейнман поддерживал Арлайн в ее стремлении стать выдающимся художником, но постепенно начал понимать, что дорога это нелегкая. Девушка работала на износ, но едва могла добыть денег на жизнь, а кроме того, у нее появились тревожные болезненные симптомы.

Однажды, придя к подруге в гости, Ричард заметил необычную опухоль у нее на шее. Арлайн натирала шишку мазью, но та не проходила много недель, а затем появились признаки лихорадки. Семейный врач подумал, что это может быть тиф, и посоветовал обратиться в больницу, ну а там ее поместили в карантин.

Тесты на тиф оказались отрицательными, и Арлайн вздохнула с облегчением.

Но вскоре появились новые вздутия в районе лимфатических узлов, лихорадка вернулась, и пришлось ложиться на обследование. Пока врачи пытались определить причину болезни, Фейнман торопливо листал книги по медицине в библиотеке Принстона, чтобы самому разобраться с источником хвори.

По всему выходило, что у Арлайн лимфома Ходжкина, опасная разновидность рака. Если это и вправду было так, то оказывались под угрозой планы прожить много счастливых лет вместе.

Пытаясь быть с подругой настолько честным, насколько возможно, Фейнман поделился с ней своим открытием, не забыв упомянуть, что иногда непрофессионал, читающий медицинские книги, приходит к совершенно неверным выводам. Арлайн высоко оценила его честность и попросила Ричарда всегда говорить ей правду.

Когда она упомянула лимфому в разговоре с доктором, тот стал выглядеть еще более озабоченным и назначил новые анализы.

Во время очередной госпитализации Фейнман приехал из Принстона и сопровождал подругу в окружной госпиталь. После того как появились первые результаты, врач отвел Ричарда в сторону и спокойно сказал, что почти наверняка тут и вправду лимфома, и что если так, то Арлайн осталось жить не больше пяти лет. Затем он предложил держать эту новость в секрете, поскольку незачем разбивать хрупкое эмоциональное состояние девушки.

Фейнман помнил о своем обещании и знал, что у Арлайн сильный характер, поэтому он хотел раскрыть ей всю правду. Но члены ее семьи все же боялись, что страшный диагноз повлияет негативно, и убедили его представить перспективы в более радужных тонах. Поначалу он пошел у них на поводу, и некоторое время убеждал подругу, что у нее просто железистая лихорадка (сегодня ее обычно именуют мононуклеозом), но потом сломался и рассказал все.

Как Ричард и ожидал, Арлайн восприняла чудовищные новости очень храбро.

Сама она из-за болезни больше не могла обеспечивать себя и нуждалась в уходе, поэтому Фейнман решил, что им самое время пожениться. Он знал, без сомнения, что если поступит таким образом, то потеряет стипендию и будет вынужден покинуть магистратуру. Ему придется искать работу в частной компании вроде «Белл», чтобы они могли прокормиться. Но он хотел закончить совместный проект с Уилером, и тот служил ему хорошим отвлечением от мрачных мыслей о здоровье подруги.

Несмотря на болезнь, Арлайн не теряла оптимизма, она продолжала все так же сильно любить Ричарда и готова была одобрить и поддержать любой его выбор. Всякий раз, когда он падал духом, она приходила ему на помощь, при каждом успехе радовалась вместе с ним. Например, когда Фейнман сообщил, что их с Уилером работа наконец готова к публикации, она написала ему «Я ужасно счастлива… что ты собираешься опубликовать что-то, это вызывает во мне особенный трепет, когда твоя работа признана за ее значение… я хочу, чтобы ты продолжал этим заниматься и в самом деле отдал миру и науке все, что ты можешь»28.

В то время он как раз усиленно работал над диссертацией.

Продолжая изучать взаимодействие между электронами, он обнаружил, что может изобразить эти взаимодействия, используя диаграммы пространства-времени, где на горизонтальной оси отложено пространство, а на вертикальной – время. Диагональные линии, двумерные проекции световых конусов, представляли взаимодействия, случающиеся при скорости света, и не важно, шли они вперед или назад во времени.

В таком изображении обращенный назад сигнал выглядел столь же логичным, как и направленный вперед. Фейнман не видел необходимости беспокоиться по поводу философского недостатка причинности. С его точки зрения, ничто в эйнштейновской вселенной не предписывает, что причина должна являться раньше следствия, и если правое и левое легко поменять местами, точно так же можно обойтись и с парой «прошлое-будущее».

Понятно, что причинность реально существовала – человечество сталкивалось с ней каждый день – но она не имела определяющего влияния на отношения между частицами. Более того, как указывал Уилер, большая часть обратных сигналов должна компенсироваться прямыми сигналами, так что нарушение закона причинности можно заметить, если вообще можно, очень редко.

Следуя методике Дирака, Фейнман представил сигналы как комбинации синусоидальных функций с разными частотами (количество колебаний в единицу времени) и амплитудами (размахом колебаний). Подобные несложные вибрирующие системы, напоминающие струны, обладали ясной физической и математической структурой и могли стать идеальными компонентами для более сложных гипотез. Но Ричард отступил от подхода британца, поскольку описал взаимодействие между электронами как нечто непосредственное, без участия фотонов, и допустил возможность взаимодействия электрона с самим собой.

Фейнман очень любил простоту и детерминизм классической механики, но понимал, что квантовые процессы невозможны без значительной доли неопределенности. Принцип Гейзенберга диктовал, что нельзя в одно и то же время знать точно позицию и импульс частицы. Подобная расплывчатость подразумевала, что чертить какие-то диаграммы – совершенно безнадежное дело. Сам Гейзенберг смотрел на визуализацию как на нечто, сбивающее с толку и ненужное.

Но Фейнман упорствовал, он привык мыслить образами и хотел работать с картинками, а не с абстракциями.

И тут как раз подоспели благоприятные медицинские новости, так отличавшиеся от мрачных предыдущих прогнозов. Биопсия распухшей железы позволила понять, что у Арлайн на самом деле нет болезни Ходжкина, что у нее одна из разновидностей туберкулеза лимфоузлов, серьезное заболевание, но все же не такое смертоносное, как рак. В то время не было лекарства для так называемой белой чумы, но если пациенту везло, то средства симптоматического лечения иногда позволяли победить ее. Несомненно, девушка нуждалась в лечении, долгом пребывании в санатории, но могла прожить много лет.

Хорошие новости подстегнули Фейнмана, и у него появилась возможность завершить исследования до вступления в брак.

Следуя за светом

До того как Фейнман отполировал свой революционный метод суммирования квантовых траекторий, обычный способ перевода стандартного в квантовое состоял в замене переменных, таких как позиция и импульс, на математические функции, именуемые «операторами». Они учитывали мгновенные изменения в пространстве и времени – известные, соответственно, как производная по пространственным и временным переменным – в волновой функции, описывающей состояния частиц.

Наиболее важный оператор, именуемый «оператор Гамильтона», состоял из комбинации операторов, представляющих кинетическую и потенциальную энергию. Использование этой функции позволяло применить производные и другие математические операции к волновой функции частицы, чтобы получить, при определенных обстоятельствах, значение ее полной энергии.

В принципе, производная показывает, как некая величина изменяется на бесконечно малом интервале в пространстве или времени. Например, если вы нанесете параметры роста ребенка на карточку, то производная от кривой роста скажет вам, насколько быстро он рос в конкретный момент. Производные требуют локальных измерений (нечто, случающееся в конкретной точке во времени и пространстве) и непрерывности в измерениях (нет резких скачков от значения к значению).

Уравнение Шредингера, построенное на основе оператора Гамильтона, ясно показывает, как изменение волновой функции в пространстве связано с ее изменением во времени. Уравнение включает производные, взятые в данной точке в данный момент времени, и определяет, что будет происходить дальше. Следовательно, как локально определенная процедура, требующая непрерывности от точки к точке, уравнение Шредингера оказалось несовместимым с тем формализмом действия на расстоянии, который развивали Уилер и Фейнман.

Уравнение Дирака, тоже включавшее производные, ничуть не лучше подходило для целей наших героев. Вместо использования отдельных операторов для пространства и времени оно комбинировало их в едином пространстве-времени и заменяло стандартные волновые функции более сложными вариантами, спинорами. Тем не менее, требуя локализации в пространстве-времени, оно плохо подходило к действию на расстоянии.

Фейнман понял, что для квантования теории он должен начать буквально с нуля. Он должен был придумать средства для связывания событий, далеко разнесенных в пространстве-времени. В представлении электромагнетизма, которое существовало в рамках концепции действия на расстоянии, как в квантовой, так и в классической формах, два электрона связывались скорее через свои удаленные взаимодействия, чем посредством физической передачи чего-либо.

Все подходы на основе оператора Гамильтона просто не годились.

Убрав фотоны из собственной теории, Фейнман знал, что не может отказаться от задержки, связанной с ограничением по скорости света. Как установил Эйнштейн, информация путешествует со скоростью света, и нет никакой возможности обойти этот принцип. На пространственно-временной диаграмме точки, представляющие два взаимодействующих электрона, должны принадлежать к одному световому конусу. Электроны будут передавать сигналы друг другу, не важно, вперед или назад по времени, со скоростью света. Следовательно, траектория света предлагала отличный ориентир для того, что произойдет дальше.

Еще с тех времен, когда Фейнман изучал механику и оптику в школе, он был хорошо знаком с принципом минимального времени Ферма. Этот принцип точно предсказывает, как ведет себя свет, и показывает, что кратчайший путь для света через однородную среду – прямая линия, луч. Он же говорит, что при переходе из одной среды в другую луч изгибается под определенным углом, следуя закону преломления.

Можно продемонстрировать, как работает принцип Ферма, показав, как свет путешествует из источника в определенном направлении по всем возможным траекториям. Каждая световая волна имеет фазу, этот термин относится к величине запаздывания в волновом цикле. Если у двух волн одна фаза, их пики и впадины идеально совпадают, если они расходятся на 180 градусов, то пики одной волны совпадают с впадинами другой. Если фазы отличаются на другую величину, то пики и впадины не совпадают и не чередуются, напоминая нечто вроде застежки-молнии с несинхронно расположенными зубцами.

Световые волны, двигающиеся практически одинаковыми маршрутами, обычно мало отличаются по фазе. Если, с другой стороны, две световые волны выбирают разные пути, то временная задержка часто приводит к значительной фазовой разнице. Следовательно, близость траекторий является простейшим способом гарантировать минимальную разность фаз.

Отличие между сходными и разными путями проявляется в процессе интерференции: наложения волн таким образом, что возникает одна-единственная волна. Волны без сдвига фаз, или с малым сдвигом, демонстрируют конструктивную интерференцию, пики и впадины накладываются и формируют более мощную волну. Другая ситуация при разности фаз, близкой к 180 градусам: тут происходит деструктивная интерференция, пики и впадины гасят друг друга, и получается более плоская волна.

Таким образом, две волны, идущие схожими маршрутами, должны интерферировать конструктивно. Волны, идущие различными путями, могут в разной степени отличаться по фазе, поэтому и взаимодействуют они по одному из многочисленных шаблонов, большей частью деструктивных.

Теперь разберемся, где в дело вступает принцип Ферма.

Рассмотрим интерференцию всех волн, представляющих все возможные пути от источника к точке назначения. Те волны, чьи маршруты требуют наименьшего количества времени, почти совпадают по фазе. Следовательно, они интерферируют конструктивно, и результатом становится волна с большей амплитудой (высотой пиков и глубиной провалов). Другие волны, наоборот, гасят друг друга из-за разности фаз, формируют более плоские профили.

Таким образом, путь с наименьшим временем становится наиболее заметным, и мы видим его как луч света.

В классической механике объектам не всегда требуется наименьшее время и/или кратчайший путь, чтобы путешествовать из одной точки в другую. Вы бы удивились, если бы бросили баскетбольный мяч и увидели, что он отправился к кольцу по прямой линии. Подобный объект будет следовать по определенной кривой, по параболе, и здесь придется использовать другой физический принцип, принцип наименьшего действия, чтобы объяснить его поведение.

Действие – это особенная величина, определяемая умножением единиц энергии на время. В отличие от таких переменных как позиция или скорость, которые отличаются от точки к точке и от момента к моменту, она определяется для траектории в целом, от одного события в пространстве и времени до другого.

Действие связано с другой величиной, именуемой «лагранжиан», которая представляет собой разницу между кинетической энергией (энергией движения) и потенциальной энергией (энергией положения) для определенного объекта или набора объектов. Вкратце говоря, действие – это интеграл (сумма) значений лагранжиана для каждого момента времени вдоль определенной траектории.

Когда вы бросаете баскетбольный мяч, например, и тот взлетает в воздух, его кинетическая энергия трансформируется в потенциальную, а значение лагранжиана уменьшается. Когда мяч падает к кольцу, потенциальная энергия превращается в кинетическую, а значение лагранжиана растет. Умножим значения лагранжиана для каждого момента времени на бесконечно малый временной интервал, сложим эти значения, используя интегральное исчисление, и получим значение действия для данной траектории.

Ирландский математик Уильям Гамильтон предложил принцип наименьшего действия. В соответствии с ним объект выбирает траекторию, которая оптимизирует (минимизирует или максимизирует) действие. Обычно минимизирует. Следовательно, если вы рассчитаете действие для каждого возможного пути, которым может двинуться баскетбольный мяч, то наименьшая величина определит настоящую траекторию.

С математической точки зрения высчитывание действий для всех возможных путей и минимизация действия реализуется как набор соотношений, именуемых уравнениями Лагранжа. Они описывают то, как на самом деле движется тело, и в случае с баскетбольным мячом определяют параболическую кривую от рук к кольцу.

Принцип наименьшего действия удивителен тем, что он перестраивает классическую физику на интуитивном базисе. Все во вселенной пытается найти оптимальный путь от старта к финишу, и в этом соревновании побеждают и выживают наиболее выгодные траектории.

Подобно отметкам в школьном дневнике, отражающим плохое или хорошее поведение, действие представляет количественно эффективность каждого пути, выделяя тот, который окажется в данном случае лучшим.

А лучшим оказывается та траектория, которой следует объект в физической реальности.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации